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Abstract

Objective: Growing evidence indicates that metabolic syndrome is rooted in fetal life with a potential key role of nutrition
during pregnancy. The objective of the study was to assess the possible associations between the dietary glycemic index
(GI) and glycemic load (GL) during pregnancy and biomarkers of the metabolic syndrome in young adult offspring.

Methods: Dietary GI and GL were assessed by questionnaires and interviews in gestation week 30 and offspring were
clinically examined at the age of 20 years. Analyses based on 428 mother-offspring dyads were adjusted for maternal
smoking during pregnancy, height, pre-pregnancy body mass index (BMI), education, energy intake, and the offspring’s
ambient level of physical activity. In addition, possible confounding by gestational diabetes mellitus was taken into account.

Outcome Measures: Waist circumference, blood pressure, HOMA insulin resistance (HOMA-IR) and plasma levels of fasting
glucose, triglycerides, HDL cholesterol, LDL cholesterol, total cholesterol, insulin, and leptin were measured in the offspring.

Results: Significant associations were found between dietary GI in pregnancy and HOMA-IR (the relative increase in HOMA-
IR per 10 units’ GI increase was 1.09 [95% CI: 1.01, 1.16], p = 0.02), insulin (1.09 [95% CI: 1.02, 1.16], p = 0.01) and leptin (1.21
[95% CI: 1.06, 1.38], p = 0.01) in the offspring; whereas no associations were detected for GL.

Conclusions: Our data suggests that high dietary GI in pregnancy may affect levels of markers for the metabolic syndrome
in young adult offspring in a potentially harmful direction.
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Introduction

Metabolic diseases, including the metabolic syndrome (MS),

have been on the rise worldwide during the last two decades. MS is

associated with increased risk of cardiovascular disease and type 2

diabetes and consists of the components: central obesity, reduced

HDL cholesterol and raised triglyceride levels, as well as raised

blood pressure and fasting plasma glucose levels [1]. Growing

evidence indicates that MS is rooted in fetal life with a potential

key role of nutrition during pregnancy [2]. The intrauterine

environment, influenced by the maternal diet, may ‘‘programme’’

the fetus and thus influence susceptibility for MS in later life [3,4].

The composition and amount of carbohydrates consumed

during pregnancy are of particular interest. Dietary GI is a

measure of the postprandial effect on the plasma glucose of the

carbohydrate of a food item compared to the effect of the same

amount of carbohydrate in pure glucose or white bread. GL in

addition takes into account the amount of carbohydrate in the

food item and thus is a more quantitative measure [5]. The

concept of GI was first introduced by Jenkins et al. in 1981 [6] and

is a commonly used measure of carbohydrate quality. Evidence

has emerged from human and animal studies that maternal

glucose levels may be predictive of metabolic disorders in the

offspring [7–9]. Among a group of non-diabetic and generally

healthy pregnant women, it has been shown that dietary GI is

associated with the levels of glycosylated hemoglobin and plasma

glucose [10]. There is also some evidence to support that a low GI

diet during pregnancy may improve fetal glucose and insulin

regulation and reduce birth weight and fetal adiposity [2,10–13],

although not all studies have supported this [14]. We are unaware

of any previous studies in humans investigating the association

between dietary GI or GL during pregnancy and the metabolic

profile in the adult offspring. Accordingly, this association was
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studied in a unique prospective birth cohort with 20 years’ follow-

up.

Materials and Methods

Ethics Statement
The study was approved by the Danish Data Protection Agency

and the Central Denmark Region Committees on Biomedical

Research Ethics (Reference No. 20070157). Written consent was

obtained from all participants.

The Danish Fetal Origin Cohort 1988
In 1988 a total of 965 out of 1212 eligible women with singleton

pregnancies were recruited for a birth cohort study in Denmark

[15]. Prior to the routine antenatal visit in gestational week 30, the

pregnant women received a postal questionnaire to complete and

return to the antenatal care clinic. Following the antenatal visit, a

15-minute face-to-face interview was conducted by a trained

person who corroborated the response to the self-administered

questionnaire and completed a second interviewer-guided ques-

tionnaire with the women. The two questionnaires covered

medical history, diet and other lifestyle as well as socio-economic

factors. Further information about the women’s health, birth

outcomes, medical history, and anthropometry was extracted from

hospital records and from the Danish Medical Birth Registry as

well as from the records kept by the midwives and general

practitioners. Moreover, screening for gestational diabetes mellitus

(GDM) was done with fasting glucose measurements in woman

who were obese, had a family history of diabetes mellitus, GDM in

a previous pregnancy, a previous delivery of an infant above

4500 g, previous stillbirth, age above 38 years, or glucosuria in the

current pregnancy. When two independent fasting capillary

plasma glucose values were above 4.6 mmol/L the woman was

referred to an OGTT [16].

Offspring Follow Up
During 2008 and 2009, mothers and offspring were contacted

and offspring invited to complete a web-based questionnaire

including inquiries on current health, lifestyle and dietary habits as

well as height, weight and waist circumference.

All potential participants were asked to participate in a clinical

examination. The participants were examined between 8:00 AM

and 12:30 PM after an overnight fasting. Height, weight and waist

circumference were measured. After 7 min. of rest, blood pressure

was measured three times in the horizontal position (2 min.

intervals in between) using an automatic blood pressure device

(OMRON M6 Comfort HEM-7000-E). The average value of the

last two measurements was used in the analyses. A venous blood

sample was drawn and immediately centrifuged and frozen at

280uC.

From a total number of 965 women we traced 894 singleton

offspring. The remaining study group included twins, mothers and

children with an incorrect personal identification number (in use

for every citizen in Denmark), stillbirths, mothers and children

who had died or were abroad, or with unknown addresses, or

offspring that was unable to participate because of illness.

A total of 688 subjects (77% of the eligible population)

participated in the follow up study by filling out the questionnaire,

providing information on the offspring’s level of physical activity,

and of these 439 attended the clinical examination.

Offspring Biomarkers
Plasma glucose levels were measured using bedside equipment

(Accu-chek, Roche Diagnostics, Germany) immediately after

blood sampling. Serum leptin concentrations were determined at

the Medical Research Laboratories, Aarhus University Hospital,

Denmark, by a time-resolved immunofluorometric assay based on

commercially available reagents and recombinant human leptin as

standard [17]. Plasma insulin concentrations were determined

using a commercial ELISA kit. Insulin resistance was estimated

using the homeostasis model assessment for insulin resistance

(HOMA-IR) by means of the formula: fasting glucose (mmol/L) x

fasting insulin (mU/L)/22.5 [18]. Serum triglycerides and

cholesterol fractions (total cholesterol, LDL, HDL) were measured

according to standard methods on a Modular P from Roche

Diagnostics, Basel, Switzerland.

Markers for MS
Primary outcome variables were chosen among the continuous

variables inherent in the definition of MS, i.e. waist circumference

(cm), fasting levels of plasma glucose (mmol/L), triglycerides

(mmol/L) and HDL cholesterol (mmol/L), as well as systolic and

diastolic blood pressure measurements (mmHg). Additionally, the

primary outcome variables were supplemented with secondary

variables associated with MS including BMI (kg/m2), plasma levels

of LDL and total cholesterol (mmol/L), concentrations of fasting

plasma insulin (pmol/L) and leptin (ug/L), as well as HOMA-IR.

Waist circumference and BMI were determined solely by means of

data from the clinical examinations (439 subjects) to eliminate the

possibility of under-reported data on BMI and waist circumfer-

ence. BMI.18.5 and ,25 kg/m2 was considered normal,

whereas BMI#18.5, BMI$25.0 kg/m2 and BMI$30.0 kg/m2 is

termed underweight, overweight and obese, respectively.

Exposure Variables
The dietary assessment method used was a self-administered

semi-quantitative food questionnaire combined with an interview

in which photographic aids were used to assess portion sizes. The

women were systematically asked about all possible categories of

food items. The questions gave information on how often per week

or per day the food item was consumed and how much per

portion. Assessment of dietary intake was done by means of a

national food composition database using standard recipes and

standard portion sizes supplementing the answers from the

questionnaire.

Dietary GI is a measure of the increase in plasma glucose after

intake of a food item (containing 50 or 100 g of carbohydrate) and

defined as the incremental area under the postprandial glucose

response curve in percentage of the corresponding area following

intake of a standard reference food item (same amount of

carbohydrate), which can be either glucose or white bread [5].

Thus, GI measures the effect of the carbohydrate in the specific

food item on the plasma glucose and thus represents a quality

aspect of the food. GL represents both the quality and the quantity

of the food, taking into account that the glycemic effect of a food

item depends not only on the GI but also on the amount of

carbohydrate eaten. Application of GI and GL in research and

partly in clinical settings is widespread though the concept of GI is

still contentious because of controversies relating to methodology

and clinical applicability [19,20].

For foods included in the questionnaire, we used the GI-table

from Foster-Powell et al. 2002 [5], though a newer table exists

[21], with white bread as the standard reference. The table

contains GI-values measured during a time period close to the

time when the dietary data were collected in the cohort. This is

important as the composition of processed foods, and thereby the

GI of these food items, changes over time. Daily dietary GI was

calculated as the product of the GI and carbohydrate content for

GI in Pregnancy and MS Markers in the Offspring
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each food or beverage, summed for all items consumed either as a

snack or as part of a meal in average per day and divided by the

total carbohydrate intake per day. Daily GL was calculated as the

product of the GI and carbohydrate content for each food or

beverage and summed for all items consumed in average per day

and then energy-adjusted by the residual method [22]. Both

variables were analysed as continuous variables and in quintiles

based on the diet of all women in the cohort (n = 894).

Statistical Analyses
Baseline characteristics of pregnant women either with partic-

ipating or non-participating offspring were tested for differences by

x2-test. Distributions of covariates according to maternal exposure

of GI and GL were tested for trends across quintiles of GI and GL

by using Mantel-Haentzel x2-test for trend for categorical

covariates. Associations between maternal GI and GL and

offspring outcome variables were examined by multivariate linear

regression analyses. Waist circumference was adjusted for BMI

using the residual method [23], providing an uncorrelated

measure of BMI and waist circumference. Due to skewed

distributions, all outcome variables except adjusted waist circum-

ference and blood pressure were log-transformed. We a priori

decided to include the following covariates: maternal height

(continuous, 3% missing), education (five categories, 5% missing),

smoking (yes or no, 5% missing), pre-pregnancy BMI (continuous,

3% missing), energy intake (five quintiles, 0% missing), and

offspring’s current physical activity (four categories, 0% missing).

Observations with missing covariate values were excluded from

the analyses.

Maternal height, pre-pregnancy BMI and offspring’s physical

activity were included as these variables are possible determinants

of anthropometric and metabolic measures in the offspring.

Energy intake was included as it is associated with the diet and

possibly also the outcome variables. Maternal education and

smoking were included to account for potential social and lifestyle

confounding. In the presented data, women diagnosed with GDM

were excluded from the analyses. Furthermore, the influence of

GDM status was investigated by conducting the analyses after

inclusion of the GDM cases.

The analyses were performed for combined sexes as well as

males and females separately. The combined analysis included sex

in the model along with the other covariates. Among the women

with participating offspring, the GI varied between 49.3 and 88.3,

whereas GL varied between 108.6 and 267.6. Considering this

exposure range, analyses were made using exposures of 10 units’

increments with the aim to create results with magnitudes of

clinical relevance. Mean changes in outcome variables for 10 units’

increment in GI and GL are presented as absolute increments for

waist circumference and blood pressure and relative increments

for BMI and offspring biomarkers. These measures of association

are expressed as ‘difference per 10U GI/GL increase’ and ‘ratio

per 10U GI/GL increase’. Associations were considered statisti-

cally significant at the 5% level and all regression coefficients are

presented with 95% CI. All analyses were performed using the

SAS GLM procedure (Version 9.3; SAS Institute, Cary, NC).

Results

Mothers of participating offspring were more often normal

weight and non-smokers and had a higher education compared to

mothers of non-participating offspring (table 1). Furthermore they

had a higher energy intake. No significant differences were

observed between the two groups regarding dietary GI and GL.

There was a significant association between increasing GI and

GL and decreasing education, and fewer women with a low GL

intake were smoking compared to women with at high GL intake

(supplementary table S1). No significant association was found

with any other covariate included in the model.

Of the 439 women included in the analyses, 121 women with

high risk of GDM were screened and 11 (9.0% of the screened

group and 2.5% of the total group) were diagnosed. The estimated

prevalence of GDM in Denmark in 1999–2000 was 2.4% [24],

corresponding to between 10 and 11 GDM cases in a population

of 439 women. The 11 GDM cases were excluded from the

analyses reported in tables 2–4. For unadjusted results, please see

the supplementary tables S2, S3, and S4.

In the adjusted analyses of offspring of both sexes (table 2), we

found no associations among the primary outcome variables.

Among the secondary variables, with increasing GI we found

higher levels of total cholesterol (ratio per 10U GI increase 1.03

(95% CI: 1.00, 1.06)), higher HOMA-IR (ratio 1.09 (95% CI:

1.01, 1.16)), and higher levels of insulin (ratio 1.09 (95% CI: 1.02,

1.16)) and leptin (ratio 1.21 (95% CI: 1.06, 1.38)). Analyses with

quintiles of GI did not consistently result in significant associations

but were generally in agreement with the analyses with the

continuous variable. No associations were observed for GL (data

not shown).

In female offspring exposed to maternal GI (table 3) we found

no associations among the primary outcome variables. Among the

secondary variables, with increasing GI we found higher levels of

total cholesterol (ratio 1.05 (95% CI: 1.01, 1.09)) and leptin (ratio

1.21 (95% CI: 1.05, 1.40)) and in addition a borderline significant

association with higher levels of insulin (ratio 1.08 (95% CI: 0.99,

1.19)). Furthermore, with increasing GL the data showed

significant associations with the primary variables: systolic blood

pressure (difference per 10U GL increase 20.46 (95% CI: 20.91,

20.01)) and waist circumference (difference 0.26 (95% CI: 0.01,

0.51).

No significant associations between maternal GI and GL and

any outcome measure were observed in male offspring (table 4 and

data not shown).

Inclusion of the 11 GDM cases in the analyses did not change

the associations (data not shown). Adding the offspring’s waist

circumference to the statistical model did not the change the

associations either (data not shown).

Discussion

In this study we showed significant associations between high

dietary GI in pregnancy and key markers of the metabolic

syndrome (MS) in the young adult offspring. The results may be of

clinical relevance. Thus, an increase in maternal GI of 10 units

was associated with increased HOMA-IR, as well as increased

levels of insulin and leptin among offspring of 9, 9 and 21%,

respectively.

GL was not associated with MS markers among the offspring in

the combined analyses. Nevertheless, among the females the

observed association between increasing GL and higher waist

circumference could be clinically relevant, as the possible effect of

an increase of only 10 GL units – out of a total exposure range of

159 GL units - was 0.3 cm. A borderline significant association

between increasing GL and lower systolic blood pressure among

female offspring only. The extent to which these associations may

be of clinical relevance remains to be determined.

Additional adjustment for the offspring’s waist circumference

did not change the associations between GI in pregnancy and MS

markers in the offspring, suggesting that factors other than current

GI in Pregnancy and MS Markers in the Offspring
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abdominal adiposity and body composition may explain the

associations. These results are in full agreement with a recent study

reporting that carbohydrate-rich diet supplementation in pregnant

rats was associated with increased insulin, leptin and glucose levels

among their adult male offspring, while no association was found

with the offspring’s body weight [25]. These results in rats together

with ours in humans support the idea that GI (and perhaps GL)

during pregnancy may exhibit a causal programming effect in the

adult offspring. Nevertheless, in our observational study we cannot

exclude the theoretical possibility that mother’s and child’s

lifestyles, including eating and physical activity habits, even after

20 years, may be similar as a result of social and familial factors.

However, excluding the offspring’s physical activity from the

statistical model did not change the associations between maternal

GI and offspring MS markers (data not shown). The extent to

which the mother’s diet during pregnancy is associated with the

diet and eating habits of the offspring is unknown. Nevertheless,

leptin in the offspring, the level of which was associated with the

mother’s GI, may influence upon appetite and eating patterns

[26]. Accordingly, it is possible that the offspring’s diet and levels

of leptin may act in concert as mediators in the pathways between

maternal GI and offspring MS markers. In this perspective it

would be incorrect to adjust for the offspring’s diet.

Epigenetic mechanisms may be involved in developmental

programming of MS by GI in pregnancy. Thus, a recent study

found associations between maternal carbohydrate content in

early pregnancy and DNA methylation of candidate genes from

umbilical cord tissue and between the methylation status at birth

and child’s obesity at the age of 9 [27].

According to the ‘‘Pedersen hypothesis’’ and the theory of ‘‘fuel

mediated teratogenesis’’, maternal glucose crosses the placenta

and results in intrauterine hyperglycemia and fetal hyperinsulin-

emia leading to increased fetal growth and adiposity with

consequences for later health [28–30]. This may explain the right

side of the U-shaped association between birth weight and

subsequent development of type 2 diabetes [31,32]. Interestingly,

Table 1. Characteristics of 894 pregnant women in the birth cohort dependent on their offspring’s participation in the follow up.

Mothers with non-participating
offspring (n = 206)

Mothers with participating
offspring (n = 688)

Percent Percent p-value

Height 0.73

2159 9 8

160–164 24 20

165–169 33 34

170–174 23 26

175- 11 13

Education ,0.0001

None 22 13

Vocational 36 23

Bachelor 35 44

Academic 6 19

BMI (kg/m2) ,0.01

,18.6 15 9

18.6–,25 72 82

25–,30 8 6

30– 5 2

Smoking in pregnancy 50 37 ,0.001

Nulliparous 56 59 0.46

Energy intake 0.03

Lowest quintile 24 19

Mid quintile 15 22

Highest quintile 17 21

Glycemic Index 0.98

Lowest quintile 20 20

Mid quintile 21 20

Highest quintile 20 20

Glycemic Load 0.07

Lowest quintile 24 19

Mid quintile 21 20

Highest quintile 23 19

Differences between the two groups of women are reported as p-value from x2-test for measure of association.
doi:10.1371/journal.pone.0064887.t001
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Table 2. MS markers in male and female offspring dependent on their mothers’ dietary GI in 2nd trimester.

Ratio or difference* (95% CI)

GI quintile 1 GI quintile 2 GI quintile 3 GI quintile 4 GI quintile 5 GI continuous p-value

Mean 6 SD 60.8+3.6 67.4+1.3 71.1+1.0 74.5+1.1 80.0+2.7 70.566.9

Fasting glucose 4.9 mmol/L (61.1) 1 0.99 (0.97, 1.01) 1.01 (0.99, 1.04) 1.03 (1.00, 1.05) 1.00 (0.98, 1.03) 1.01 (1.00, 1.02) 0.18

Triglycerides 0.9 mmol/L (61.5) 1 1.04 (0.91, 1.18) 1.10 (0.97, 1.24) 1.16 (1.02, 1.32) 1.04 (0.90, 1.19) 1.04 (0.98, 1.11) 0.18

HDL cholesterol 1.4 mmol/L (61.2) 1 1.05 (0.98, 1.12) 1.04 (0.98, 1.11) 1.05 (0.98, 1.12) 1.03 (0.96, 1.11) 1.03 (1.00, 1.06) 0.09

LDL cholesterol 2.4 mmol/L (61.3) 1 1.05 (0.96, 1.15) 1.07 (0.98, 1.16) 1.10 (1.01, 1.21) 1.07 (0.97, 1.18) 1.03 (0.98, 1.08) 0.26

Total cholesterol 4.3 mmol/L (61.2) 1 1.04 (0.98, 1.10) 1.06 (1.00, 1.12) 1.09 (1.03, 1.15) 1.05 (0.99, 1.12) 1.03 (1.00, 1.06) 0.05

Systolic blood
pressure*

109.9 mmHg (610.6) 0 22.58
(25.27, 0.10)

21.31
(23.93, 1.30)

20.10
(22.84, 2.63)

22.11
(25.02, 0.81)

20.55
(21.91, 0.82)

0.43

Diastolic blood
pressure*

65.7 mmHg (66.7) 0 20.21
(22.25, 1.83)

0.33
(21.66, 2.31)

1.15
(20.92, 3.22)

20.25
(22.46, 1.95)

0.29
(20.74, 1.32)

0.59

Waist
circumference*

81.6 cm (66.0) 0 0.28
(21.08, 1.65)

0.32
(21.01, 1.64)

0.71
(20.68, 2.10)

1.14
(20.34, 2.62)

0.47
(20.22, 1.16)

0.18

BMI 22.2 kg/m2 (61.1) 1 0.99 (0.95, 1.03) 1.02 (0.98, 1.06) 1.03 (0.99, 1.08) 1.01 (0.97, 1.05) 1.01 (0.99, 1.03) 0.28

HOMA-IR 1.2 (61.6) 1 1.04 (0.91, 1.19) 1.16 (1.01, 1.32) 1.27 (1.11, 1.46) 1.11 (0.96, 1.28) 1.09 (1.01, 1.16) 0.02

Insulin 39.5 pmol/L (61.5) 1 1.08 (0.94, 1.23) 1.15 (1.01, 1.30) 1.26 (1.11, 1.44) 1.12 (0.97, 1.29) 1.09 (1.02, 1.16) 0.01

Leptin 6.7 ug/L (63.3) 1 0.93 (0.72, 1.21) 1.22 (0.95, 1.57) 1.38 (1.06, 1.79) 1.21 (0.91, 1.60) 1.21 (1.06, 1.38) 0.01

Shown are the mean differences in the outcome variables waist circumference and systolic and diastolic blood pressure (indicated by*) and mean ratio for all other log
transformed outcome variables. The table includes figures from analyses of quintiles of GI, and from analyses of the data using GI as continuous variable (ratio or
difference per 10U GI increment)1.
1Adjustment for potential confounding by multiple linear regression including energy intake, pre-pregnancy BMI (kg/m2), height (cm), smoking, education, and
offspring sex and leisure activity. The p-value is the result of analyses of the data using GI as continuous variable (n = 386). GI quintiles were determined from the
original data files including 894 women.
doi:10.1371/journal.pone.0064887.t002

Table 3. MS markers in female offspring dependent on their mothers’ dietary GI in 2nd trimester.

Ratio or difference* (95% CI)

GI quintile
1 GI quintile 2 GI quintile 3 GI quintile 4 GI quintile 5 GI continuous p-value

Mean 6 SD 60.8+3.6 67.4+1.3 71.1+1.0 74.5+1.1 80.0+2.7 70.4+6.7

Fasting glucose 4.8 mmol/L (61.1) 1 0.98 (0.95, 1.02) 1.01 (0.98, 1.05) 1.02 (0.99, 1.06) 0.99 (0.96, 1.03) 1.00 (0.99, 1.02) 0.76

Triglycerides 1.0 mmol/L (61.5) 1 1.07 (0.91, 1.26) 1.08 (0.92, 1.28) 1.21 (1.01, 1.45) 1.02 (0.85, 1.22) 1.04 (0.95, 1.13) 0.37

HDL cholesterol 1.5 mmol/L (61.2) 1 1.05 (0.97, 1.14) 1.02 (0.94, 1.11) 1.07 (0.98, 1.17) 1.05 (0.96, 1.15) 1.04 (1.00, 1.09) 0.06

LDL cholesterol 2.4 mmol/L (61.4) 1 1.08 (0.96, 1.21) 1.06 (0.94, 1.20) 1.14 (1.00, 1.29) 1.15 (1.01, 1.31) 1.05 (0.99, 1.12) 0.10

Total cholesterol 4.5 mmol/L (61.2) 1 1.06 (0.99, 1.15) 1.05 (0.97, 1.13) 1.12 (1.03, 1.22) 1.11 (1.02, 1.20) 1.05 (1.01, 1.09) 0.01

Systolic blood
pressure*

104.8 mmHg (68.1) 0 22.16
(25.44, 1.11)

21.86
(25.13, 1.42)

20.34
(23.94, 3.25)

21.50
(25.11, 2.11)

20.51
(22.23, 1.21)

0.56

Diastolic blood
pressure*

66.5 mmHg (66.4) 0 0.58
(21.93, 3.09)

0.11
(22.40, 2.62)

2.07
(20.68, 4.82)

0.98
(21.79, 3.74)

0.52
(20.80, 1.84)

0.44

Waist
circumference*

79.4 cm (65.3) 0 1.03
(20.78, 2.85)

1.04
(20.78, 2.86)

1.18
(20.82, 3.17)

2.00
(20.01, 4.00)

0.78
(20.17, 1.74)

0.11

BMI 21.9 kg/m2 (61.2) 1 1.00 (0.95, 1.05) 1.02 (0.96, 1.07) 1.04 (0.98, 1.10) 1.02 (0.96, 1.08) 1.01 (0.98, 1.04) 0.52

HOMA-IR 1.2 (61.6) 1 1.14 (0.95, 1.36) 1.23 (1.03, 1.46) 1.33 (1.10, 1.61) 1.13 (0.93, 1.37) 1.08 (0.99, 1.19) 0.10

Insulin 41.1 mmol/L (61.5) 1 1.21 (1.03, 1.43) 1.22 (1.03, 1.44) 1.29 (1.08, 1.55) 1.17 (0.97, 1.40) 1.08 (0.99, 1.19) 0.07

Leptin 13.4 ug/L (62.1) 1 1.04 (0.79, 1.38) 1.19 (0.90, 1.58) 1.42 (1.05, 1.94) 1.40 (1.03, 1.91) 1.21 (1.05, 1.40) 0.01

Shown are the mean differences in the outcome variables waist circumference and systolic and diastolic blood pressure (indicated by*) and mean ratio for all other log
transformed outcome variables. The table includes figures from analyses of quintiles of GI, and from analyses of the data using GI as continuous variable (ratio or
difference per 10U GI increment)1.
1Adjustment for potential confounding by multiple linear regression including energy intake, pre-pregnancy BMI (kg/m2), height (cm), smoking, education, and
offspring leisure activity. The p-value is the result of analyses of the data using GI as continuous variable (n = 234). GI quintiles were determined from the original data
files including 894 women.
doi:10.1371/journal.pone.0064887.t003
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the HAPO study suggested that mild elevations of maternal

plasma glucose levels may impact on birth weight as well as risk of

maternal and fetal pregnancy complications even at a level below

conventional diagnostic GDM plasma glucose cut off levels [33].

In the present study, also after exclusion of the 11 GDM cases, the

data revealed associations between dietary GI in pregnancy and

distinct offspring MS markers. Given the known influence of GI on

plasma glucose levels even in non-diabetic pregnant women (10),

we speculate that subtle elevations of plasma glucose in pregnant

women may be a mediator of the programming effect of GI in

pregnancy.

The associations observed between maternal GI and offspring

levels of HOMA-IR, leptin and insulin did not differ significantly

between male and female offspring (p.0.05). Notably, however,

when restricting the analyses to either sex, the associations for

leptin and insulin persisted in females but not in males. This

finding may reflect a lower participation rate among the latter or

sex-specific mechanisms in the fetal programming of metabolic

traits. Recently, in the same birth cohort, we detected obesogenic

effects in female but not in male offspring as a result of fetal

exposure to perfluorooctanoate [34]. Our findings are in line with

a recent study on data from the great Chinese famine, where

exposure to severe undernutrition in fetal life was associated with

higher risk of MS in adult women but not in men [35] and with

another study on data from the Dutch famine study, where

maternal malnutrition during early gestation was associated with

obesity only in women [36]. Sexual dimorphism in developmental

programming may be explained by the sexually dimorphic

embryo-derived tissue of the placenta which plays a significant

role in determing fetal size, nutrition, morbidity and survival [37].

During recent years, evidence has emerged from rodent and

human studies that the growth of the placenta and gene expression

as well as DNA methylation differ between the sexes and

furthermore that the sexes respond differently to environmental

insults [37–39]. Differences in response to quality or composition

of the maternal diet on the sex-dependent placental gene

expression have been observed as well, providing insight in

different sensitivity of male and female fetuses to the maternal diet.

Thus the female placenta seems to be more adaptive to changes in

maternal diet compared to the male placenta [40]. Furthermore, it

has been shown that the maternal diet composition influences the

cortisol level in the mother [41–43] and, in addition, changes the

gene expression and the activity of the HPA axis, which regulate

the glucocorticoid production, differently in male and female

fetuses and offspring [37,44]. Among humans, higher maternal

cortisol was associated with marginally higher Fat Mass Index

(FMI) in 5 year old girls, but marginally lower FMI in boys [45],

indicating that diet-dependent maternal cortisol levels may

influence the offspring with long-term consequences.

Our data indicates that GI during pregnancy has stronger

influence on the offspring’s metabolic profile than GL. In previous

studies investigating the associations between dietary GI and GL

on biomarkers for metabolic disease in adults, the associations

were not consistent between GI and GL [46–48]. Recent meta-

analyses have reported statistically significant associations between

GI or GL and chronic diseases including cardiovascular disease

and type 2 diabetes and came to different conclusions when

addressing the question of whether GI or GL had the most

powerful effect on development of disease [47,49]. Interestingly,

the associations between GI and GL on one hand and adult

disease on the other in general have been reported to be stronger

in women than in men [46,47], which may further support our

sex-dependent findings in the offspring.

Table 4. MS markers in male offspring dependent on their mothers’ dietary GI in 2nd trimester.

Ratio or difference* (95% CI)

GI quintile
1 Gi quintile 2 GI quintile 3 Gi quintile 4 GI quintile 5 GI continuous

p-
value

Mean 6 SD 60.8+3.6 67.4+1.3 71.1+1.0 74.5+1.1 80.0+2.7 70.666.4

Fasting glucose 5.1 mmol/L (61.1) 1 1.00 (0.96, 1.04) 1.02 (0.98, 1.06) 1.03 (0.99, 1.07) 1.03 (0.98, 1.07) 1.02 (1.00, 1.04) 0.06

Triglycerides 0.8 mmol/L (61.5) 1 0.99 (0.80, 1.21) 1.14 (0.94, 1.38) 1.11 (0.92, 1.35) 1.09 (0.87, 1.35) 1.06 (0.96, 1.17) 0.26

HDL cholesterol 1.3 mmol/L (61.2) 1 1.04 (0.93, 1.17) 1.07 (0.96, 1.19) 1.02 (0.92, 1.14) 0.99 (0.88, 1.12) 1.01 (0.95, 1.06) 0.82

LDL cholesterol 2.3 mmol/L (61.3) 1 1.02 (0.88, 1.18) 1.08 (0.94, 1.24) 1.06 (0.93, 1.21) 0.96 (0.83, 1.12) 0.99 (0.93, 1.07) 0.87

Total cholesterol 4.0 mmol/L (61.2) 1 1.01 (0.92, 1.11) 1.08 (0.99, 1.17) 1.04 (0.96, 1.14) 0.97 (0.88, 1.07) 1.00 (0.95, 1.04) 0.96

Systolic blood
pressure*

117.5 mmHg (69.3) 0 23.59
(28.52, 1.33)

21.92
(26.50, 2.66)

21.01
(25.63, 3.61)

24.00
(29.23, 1.23)

21.14
(23.50, 1.21)

0.34

Diastolic blood
pressure*

64.5 mmHg (67.0) 0 21.28
(24.87, 2.30)

20.13
(23.47, 3.21)

20.94
(24.31, 2.43)

22.26
(26.08, 1.55)

20.21
(21.92, 1.51)

0.81

Waist
circumference*

84.0 cm (65.7) 0 21.55
(23.73, 0.63)

21.20
(23.22, 0.83)

20.52
(22.56, 1.52)

20.81
(23.12, 1.50)

20.19
(21.23, 0.85)

0.72

BMI 22.8 kg/m2 (62.9) 1 0.98 (0.92, 1.04) 1.02 (0.96, 1.08) 1.02 (0.96, 1.08) 1.00 (0.93, 1.07) 1.02 (0.99, 1.05) 0.32

HOMA-IR 1.2 (61.6) 1 0.89 (0.71, 1.11) 1.06 (0.86, 1.30) 1.23 (1.00, 1.52) 1.05 (0.83, 1.32) 1.09 (0.98, 1.22) 0.10

Insulin 37.2 pmol/L (61.5) 1 0.88 (0.71, 1.10) 1.04 (0.85, 1.27) 1.24 (1.01, 1.52) 1.01 (0.80, 1.27) 1.08 (0.97, 1.20) 0.14

Leptin 2.3 ug/L (62.7) 1 0.78 (0.46, 1.31) 1.20 (0.73, 1.96) 1.20 (0.74, 1.97) 0.91 (0.52, 1.59) 1.14 (0.88, 1.46) 0.31

Shown are the mean differences in the outcome variables waist circumference and systolic and diastolic blood pressure (indicated by*) and mean ratio for all other log
transformed outcome variables. The table includes figures from analyses of quintiles of GI, and from analyses of the data using GI as continuous variable (ratio or
difference per 10U GI increment)1.
1Adjustment for potential confounding by multiple linear regression including energy intake, pre-pregnancy BMI (kg/m2), height (cm), smoking, education, and
offspring leisure activity. The p-value is the result of analyses of the data using GI as continuous variable (n = 152). GI quintiles were determined from the original data
files including 894 women.
doi:10.1371/journal.pone.0064887.t004
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A limitation of the study is the use of biomarkers for MS and not

MS per se in the offspring, as none of the young people had

developed overt MS at the time of follow-up. The study had

several strengths. Information on maternal diet was provided

prospectively with no knowledge about offspring conditions,

physical activity or body proportions, and the study had a long

follow-up period. We could not identify any participation bias with

regards to the exposure levels (cf. table 1).

In conclusion, our data suggests that dietary GI in second trimester

of pregnancy may be a determinant of HOMA-IR and plasma levels

of insulin, leptin and cholesterol in the adult offspring. GI and GL did

not seem to predict markers of MS in males, whereas both GI and GL

were associated with specific markers of MS among the females. We

speculate that the programming effect(s) of maternal dietary GI in

pregnancy may be mediated via subtle elevations of plasma glucose

levels within the non-diabetic range. This remains to be addressed in

future studies.
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