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Abstract

Background: It has been proposed that muscle insulin resistance in type 2 diabetes is due to a selective decrease in the
components of the mitochondrial electron transport chain and results from accumulation of toxic products of incomplete
fat oxidation. The purpose of the present study was to test this hypothesis.

Methodology/Principal Findings: Rats were made severely iron deficient, by means of an iron-deficient diet. Iron
deficiency results in decreases of the iron containing mitochondrial respiratory chain proteins without affecting the
enzymes of the fatty acid oxidation pathway. Insulin resistance was induced by feeding iron-deficient and control rats a
high fat diet. Skeletal muscle insulin resistance was evaluated by measuring glucose transport activity in soleus muscle
strips. Mitochondrial proteins were measured by Western blot. Iron deficiency resulted in a decrease in expression of
iron containing proteins of the mitochondrial respiratory chain in muscle. Citrate synthase, a non-iron containing
citrate cycle enzyme, and long chain acyl-CoA dehydrogenase (LCAD), used as a marker for the fatty acid oxidation
pathway, were unaffected by the iron deficiency. Oleate oxidation by muscle homogenates was increased by high fat
feeding and decreased by iron deficiency despite high fat feeding. The high fat diet caused severe insulin resistance of
muscle glucose transport. Iron deficiency completely protected against the high fat diet-induced muscle insulin
resistance.

Conclusions/Significance: The results of the study argue against the hypothesis that a deficiency of the electron transport
chain (ETC), and imbalance between the ETC and b-oxidation pathways, causes muscle insulin resistance.
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Introduction

There has been much interest in the possibility that the insulin

resistance in obese individuals and patients with type 2 diabetes is

mediated by mitochondrial deficiency in skeletal muscle [1–10].

This possibility was suggested by the finding that obese insulin

resistant individuals and type 2 diabetics generally have about

30% less mitochondria in their skeletal muscles than age-matched

individuals with normal insulin action [1–7]. The mechanism by

which ‘‘mitochondrial deficiency’’ is thought to cause insulin

resistance is accumulation of intramuscular lipids as a result of a

decreased capacity for fat oxidation [2,9]. There are a number of

reasons why this hypothesis is unlikely to be correct, including

the fact that diabetic muscle can increase fat oxidation many-fold

in response to exercise, indicating that a 30% decrease in mito-

chondria is not limiting for fat oxidation at rest [11]. However,

Ritov et al. [12] have proposed the new concept that insulin

resistance is not due to a decrease in skeletal muscle mitochondria

per se but to a selective decrease in the components of the

mitochondrial electron transport chain, with no decrease in the

enzymes of the mitochondrial fatty acid oxidation pathway. They

proposed that, because of this discrepancy, toxic products of

incomplete fatty acid oxidation accumulate and mediate skeletal

muscle insulin resistance [12].

The purpose of the present study was to test this hypothesis. For

the experimental model, we used rats made severely iron deficient.

Iron deficiency results in a decrease in the iron-containing

constituents of the mitochondrial respiratory chain without

affecting the enzymes of the fatty acid oxidation pathway [13].

As a model of skeletal muscle insulin resistance we used rats fed a

high fat diet, which rapidly develop what appears to be the rodent

equivalent of the visceral obesity/metabolic/insulin-resistance

syndrome [14–17].

Iron deficiency could have effects on the liver, pancreatic beta

cells, adipose tissue and brain that might affect insulin production,

whole body insulin action and glucose uptake and metabolism.

Such effects may be interesting, but have no direct relevance to the

hypothesis being evaluated in this study, which involves only

skeletal muscle. This study, therefore, deals only with the effect of

an imbalance between the mitochondrial fatty acid oxidation

pathway and the capacity of the electron transport chain on

insulin-stimulated glucose transport in skeletal muscle.
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Results

Body weights
The high fat diets resulted in a significant increase in weight

gain (Table 1). Iron deficiency partly protected against the increase

in plasma insulin induced by feeding a high fat diet.

Muscle triglycerides
As in previous studies [18,19], the high fat diet resulted in

significant increases in muscle triglyceride concentration in the two

high fat diet groups (Fig. 1).

Muscle glucose transport
The high fat diet resulted in severe insulin resistance of muscle

glucose transport. As shown in Fig. 2, iron deficiency not only

completely protected against the high fat diet-induced muscle insulin

resistance, but also resulted in somewhat higher glucose transport rates

compared to muscles from rats on the normal iron-containing diets.

Fatty acid oxidation by muscle
The capacity to oxidize fatty acids was evaluated by measuring

the rate of 14CO2 production from [14C] oleate by whole

homogenates of triceps muscle under conditions in which ADP

and Pi are not rate-limiting. In previous studies, it was found that

high fat diets induce an increase in the ability of skeletal muscle to

oxidize fatty acids [20–22], In the present study, the rate of oleate

oxidation by triceps muscles was 60% higher in the high fat,

normal iron, than in the low fat, normal iron control group

(Fig. 3A). However, this difference did not attain statistical

significance (P = 0.08) because of a large standard deviation.

Oleate oxidation was markedly reduced in muscle of the high fat

diet, iron deficient group (Fig. 3A). As shown in Fig. 3B, long chain

fatty acyl-CoA dehydrogenase (LCAD) protein expression, which

was used as a marker for the capacity of the b-oxidation pathway,

was increased about 2-fold in muscles from both the normal iron

and the iron-deficient high fat diet fed rats. Expression of the

enzymes of the fatty acid oxidation pathway is coordinately

Table 1. Body weights and glucose and insulin levels.

Diets

Low Fat Normal Iron Low Fat Iron Deficient High Fat Normal Iron High Fat Iron Deficient

Body Weights, g n = 11 44065 42669 477611* 465616*

Glucose mg/dl n = 10 12063 13263 13967 140613

Insulin, mU/ml n = 6 21.360.8 --- 6966.2{ 34.462.5

Values are means 6 SE. n = number of rats per group.
*High Fat versus Low Fat Diet, P,0.01.
{High Fat Normal Iron versus Low Fat Normal Iron and High Fat Iron Deficient, P,0.01.
doi:10.1371/journal.pone.0019739.t001

Figure 1. Triglyceride concentration in soleus muscles. Values are means 6 SE for 8 muscles per group. High fat diet groups versus control
diet group, P,0.01.
doi:10.1371/journal.pone.0019739.g001
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regulated by PPARd and PPARa, transcription factors that are

activated by fatty acids, so LCAD can be used as a marker for the

capacity of the mitochondrial fatty acid oxidative enzyme pathway

[23].

PGC-1a response
Feeding rats a high fat diet induces an increase in PGC-1a

protein expression in muscle [21,22,24]. This increase in PGC-1a
occurs gradually over about a 4 wk period and is mediated by a

post transcriptional effect that appears to result from PPARd
activation [22]. As shown in Fig. 4, five weeks of high fat diet

feeding resulted in a significant increase in PGC-1a protein

expression in soleus muscle. The iron deficient diets resulted in an

unexpected, large decrease in PGC-1a protein. This finding came

as a surprise, as there is no obvious reason why iron deficiency

should affect PGC-1a protein level.

Mitochondrial proteins and GLUT4
It was previously found that severe iron deficiency, similar to

that induced in the present study, has no effect on the levels of

enzymes of the mitochondrial fatty acid oxidation pathway or on

non-iron containing enzymes of the citrate cycle [13]. The fatty

acid oxidation and citrate cycle enzymes measured included

carnitine palmitoyl transferase, 3-hydroxyacyl-CoA dehydroge-

nase, 3-ketoacid CoA thiolase, citrate synthase, isocitrate

dehydrogenase, and fumarase [13]. There were large decreases

in iron-containing compounds of the electron transport chain

[13].

In the present study the expression of citrate synthase, a non-

iron containing enzyme of the citrate cycle, was unaffected by the

iron deficiency in soleus muscle in both low-fat (Fig. 5A) and high

fat diet groups (Fig. 5B). As in previous studies [13,25], iron

deficiency resulted in a marked decrease in expression of a number

of representative iron-containing proteins of the mitochondrial

respiratory chain. This effect was present in both the low fat

(Fig. 5A) and high fat (Fig. 5B) diet groups. Expression of the

glucose transporter GLUT4 in skeletal muscle, was unaffected by

iron deficiency (Fig. 5A and B). Similar effects of iron deficiency

were observed in triceps and gastrocnemius muscles (data not

shown).

Ratios of LCAD to electron transport chain markers
To evaluate the magnitude of the imbalance between the fatty

acid oxidation and the ETC created by iron deficiency and a high

fat diet, we measured the enzyme activities of LCAD and the iron

containing, electron transport chain enzyme NADH dehydroge-

nase. As shown in Figure 6A, there was an increase in LCAD

activity and a large decrease in the activity of NADH

dehydrogenase in muscle of the iron deficient, high fat diet fed

rats. As a result, there was a more than 2-fold increase in the ratio

of LCAD activity, representative of the fatty acid oxidation

pathway, to NADH dehydrogenase, representative of the ETC

(Fig. 6B). A similar change occurred in the ratio of LCAD protein

to cytochrome c protein (Fig. 6D).

AMP-activated protein kinase (AMPK) phosphorylation
It seemed possible that, as in previous studies in which

mitochondrial dysfunction in muscle resulted in an increase in

glucose transport activity [26,27], there might be an increase in

AMPK activity in the iron-deficient muscles. This turned out to be

the case as evidenced by a significant increase in AMPK

phosphorylation in the iron-deficient muscles (Fig. 7). There was

no difference in AMPK phosphorylation between the iron-

deficient high fat diet and the iron-deficient chow diet groups, so

the data on these groups was combined under ‘‘iron-deficient

diet’’.

Figure 2. Maximally insulin stimulated (2 mU insulin/ml) glucose transport activity. 2-Deoxy-[3H] glucose uptake was measured in soleus
muscle strips in vitro. Values are means 6 SE for 8 muscles per group except for the low fat iron deficient diet groups, in which there were 4 muscles
per group. {High Fat diet, Normal Iron group versus Low Fat diet, Normal Iron group, P,0.01. #Insulin stimulated Iron-Deficient, High Fat diet group
versus Insulin-Stimulated Normal Iron, Low Fat diet group, P,0.05.
doi:10.1371/journal.pone.0019739.g002
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Discussion

Patients with type 2 diabetes and obese, insulin resistant

individuals generally have 30% less mitochondria in their muscles

than normal age-matched individuals [2,4,5]. This finding led to

the hypothesis that a reduction in mitochondrial content of skeletal

muscle impairs the ability of muscle to oxidize fat, resulting in lipid

accumulation and insulin resistance [2,9]. There are a number of

arguments against this concept (reviewed in [11]. The rate of

substrate utilization is determined by the rate of ATP utilization,

which is low in resting muscle. Even patients with type 2 diabetes

with a low exercise capacity are able to increase the rate of fat

oxidation by muscle many fold in response to exercise. It,

therefore, seems improbable that a 30% decrease in muscle

mitochondria could limit fat oxidation in resting muscle.

Furthermore, a decrease in mitochondria severe enough to limit

fat oxidation would result in compensatory increase in glucose

uptake and utilization by muscle, not insulin resistance.

The finding that rats fed high fat diets develop insulin resistance

despite a concomitant increase in muscle mitochondria and in the

ability to oxidize fat [21,22] also argues against the concept that a

decrease in mitochondria mediates insulin resistance. Direct

evidence against the mitochondrial dysfunction causes insulin

resistance hypothesis is provided by the results of studies in rodents

showing that severe impairment of mitochondrial function in

muscle results in increased basal and insulin-stimulated muscle

glucose uptake [26–28]. Furthermore, Asian Indians with severe

insulin resistance and diabetes have an enhanced muscle

mitochondrial capacity for ATP production [29], and weight loss

induced by bilio-pancreatic diversion that results in reversal of

insulin resistance and type 2 diabetes is not associated with an

increase in muscle mitochondria [30]. The effect of impaired

mitochondrial function has also been studied in vitro by Brown

et al. [31], who incubated human muscle cell cultures with sodium

azide and found that a ,50% decrease in respiration increased

insulin independent glucose transport and had no effect on insulin-

stimulated glucose transport or Akt phosphorylation.

However, these arguments do not apply to a new version of the

mitochondrial deficiency hypothesis proposed by Ritov et al. [12].

These investigators found that muscle mitochondria of type 2

diabetic patients had a significantly reduced activity of NADH

oxidase and electron transport chain (ETC) activity but no

deficiency of citrate synthase or b-hydroxyacyl-CoA dehydroge-

nase activities. Based on these findings, Ritov, et al. [12]

hypothesized that ‘‘a deficiency of ETC and disbalance between

ETC and b-oxidation’’ causes insulin resistance due to accumu-

lation of toxic byproducts of incomplete oxidation of fat.

The purpose of the present study was to test the hypothesis of

Ritov et al. [12] that insulin resistance is caused by a reduced

capacity of the mitochondrial electron transport chain relative to

the capacity of the fatty acid b-oxidation pathway. In our

experimental model, rats that were made severely iron deficient

and fed a high fat diet, the imbalance between the capacity for b-

oxidation of fatty acids and the capacity of the electron transport

chain in muscle was considerably more severe than that reported

for human diabetic muscle by Ritov et al. [12]. Not only were the

levels of the ETC proteins cytochrome c and succinate ubiquinone

oxidoreductase markedly reduced, but LCAD, which we used as a

marker for the fatty acid b-oxidation pathway, was increased ,2-

fold in the high fat diet fed rats. Similar to these changes in

mitochondrial protein levels, the ratio of LCAD enzyme activity to

NADH dehydrogenase activity was ,2-fold higher in iron-

deficient than in control muscles. Expression of the enzymes of

the b-oxidation pathway is coordinately regulated by the nuclear

receptors PPARd and a which are activated by fatty acids, and

LCAD is, therefore, a marker for the response of the fatty acid

(FA) oxidation pathway [23]. Despite this large imbalance between

the capacities for fatty acid b-oxidation and the ETC, the iron

deficient muscles not only did not become insulin resistant, but

were completely protected against the insulin resistance induced

by a high fat diet. We think that the present results, together with

those of Wrendenberg et al. [27], disprove the concept that a

reduction in ETC capacity relative to the capacity of the fatty acid

b-oxidation pathway causes insulin resistance. It should also be

Figure 3. Oleate oxidation by triceps muscle homogenates.
A. The capacity to oxidize fatty acids was evaluated by measuring the
rate of CO2 production from [14C] oleate under conditions in which ADP
and Pi are not limiting. Bars are means 6 SE for 7 to 8 muscles per
group. *High Fat, Iron-Deficient diet versus other groups, P,0.05. B.
Long chain acyl-CoA dehydrogenase (LCAD) protein expression in
triceps muscle was measured by Western blot analysis. *High Fat diets
versus control Low Fat diet, P,0.01.
doi:10.1371/journal.pone.0019739.g003
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noted that, in contrast to the report by Ritov et al. [12], a number

of other studies have found that the remaining mitochondria in

muscles of diabetic and insulin-resistant obese humans have

normal function [32,33], and that mitochondria of insulin resistant

[24,34] and diabetic [34] rodent muscles also have normal

function.

As in previous studies of the effects of mitochondrial dysfunction

[26,27], AMP kinase was activated in the iron deficient muscles.

AMPK activation results in an increase in glucose transport

activity in muscle that is additive to the effect of insulin [35–39].

This probably explains why glucose transport was higher in the

iron deficient than in the normal iron muscles.

A high fat diet or raising plasma FFA level induces an increase

in mitochondrial biogenesis [20–22] that is mediated by activation

of PPARd, which brings about a post translational increase in

PGC-1a protein [22]. Furthermore, PGC-1a is activated via

phosphorylation by AMPK [40], which would normally induce an

increase in GLUT4 [41–43]. We, therefore, expected that non-

iron containing mitochondrial proteins and GLUT4 would be

increased in the iron deficient muscles. However, this adaptation

was prevented by a large decrease in PGC-1a protein. This finding

came as a surprise, as we knew of no evidence that iron plays a role

in regulating PGC-1a expression. However, a literature search

turned up a paper by Ishii et al. [44] showing that prevention of

iron uptake by chelation of iron resulted in inhibition of PGC-1b
expression in osteoclasts, while treatment with transferrin

increased PGC-1b expression. Our finding of a marked reduction

in PGC-1a expression in iron deficient muscles provides evidence

that iron availability similarly regulates PGC-1a expression in

muscle, and explains why citrate synthase and GLUT4 expression

were not increased. It is interesting in the present context that

muscle specific PGC-1a knockout mice that were expected to be

insulin resistant because of a decrease in respiratory chain

proteins, were found to be considerably more insulin sensitive

than wild type mice as reflected in glucose uptake during a

hyperinsulinemic clamp [45].

In conclusion, the results of this study argue against the

hypothesis of Ritov et al. [12] that ‘‘a deficiency of electron

transport chain (ETC) and disbalance between ETC, b-oxidation

and TCA cycle’’ causes muscle insulin resistance, and provide

further evidence that mitochondrial deficiency/dysfunction does

not mediate muscle insulin resistance.

Methods

Animal Care
This work was approved by the Animal Studies Committee of

Washington University School of Medicine (Animal Welfare

Assurance #A-3381-01; Approval Number: 20090104). Male

Wistar rats weighing ,50 g were individually housed with a

12:12 hr light/dark cycle. The animals were given ad libitum

access to water and food.

Diets
The diets were obtained from Harlan Teklad (Madison, WI). The

iron deficient diets were made with low-iron casein and iron-deficient

mineral mix. The iron deficient low-fat diet contained ,4.0 kcal/g

with 11% of calories from fat. The iron-deficient high fat diet

contained ,5 kcal/g with 50% of calories provided by fat (43% lard,

7% soybean oil). The normal iron high fat diet had the same protein,

carbohydrate and fat content as the iron deficient high fat diet.

Study Design
The rats were assigned to two groups and fed either the iron

containing or the iron deficient low fat diets for nine weeks. Fifty

Figure 4. PGC-1a expression in soleus muscle was measured by Western blot analysis. Bars are means 6 SE for 5 to 7 muscles per group.
*High Fat diet versus Low Fat control diet group, P,0.01. {Iron deficient diet groups versus normal iron groups, P,0.01.
doi:10.1371/journal.pone.0019739.g004

Mitochondrial Dysfunction and Insulin Resistance

PLoS ONE | www.plosone.org 5 May 2011 | Volume 6 | Issue 5 | e19739



percent of the animals on the iron containing diet were then started

on the iron containing high fat diet, and fifty percent of the rats that

had been on the iron-deficient diet were started on the iron deficient

high fat diet. After five weeks on the high fat or low fat diets, the rats

were used for measurement of muscle glucose transport and

mitochondrial oxidative capacity and respiratory chain protein levels.

Treatment of animals
After an overnight fast that began at 1800 hr, rats were

anesthetized with sodium pentobarbital 50 mg/100 g body weight

between 10:00 am and 11:00 am. A week before the rats were

killed, blood was obtained from a tail vein between 10:00 am and

11:00 am for measurement of glucose and insulin. The soleus and

Figure 5. Effects of iron deficiency on expression of citrate synthase and iron-containing mitochondrial respiratory chain proteins
in soleus muscles of A) Low Fat and B) High Fat diet groups. Bars are means 6 SE for 7 to 8 muscles per group. *Iron Deficient versus Normal
Iron, Low Fat control diet group, P,0.01.
doi:10.1371/journal.pone.0019739.g005
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triceps muscles were dissected out and used for measurement of

glucose transport (soleus) and oleate oxidation (triceps), and the

gastrocnemius muscle was clamp frozen in situ. Samples for future

analysis were stored at 280uC.

Measurement of glucose transport activity
Soleus muscles were split longitudinally into strips to allow

adequate diffusion of oxygen and substrates [46]. One strip was

used for measurement of glucose transport activity and the

remaining portion of soleus muscle was frozen for later

measurement of mitochondrial proteins. The soleus muscle strips

were incubated with shaking at 30uC for 1 hr in 2.0 ml of

oxygenated Krebs-Henseleit buffer (KHB) supplemented with

8 mM glucose, 32 mM mannitol, and 0.1% bovine serum albumin

with or without 2 mU/ml insulin (a maximally effective concen-

tration). Muscles were then washed for 10 min in KHB containing

40 mM mannitol, with or without 2 mU/ml insulin to remove

glucose from the extracellular space. Muscles were then incubated

for 20 min in 1.0 ml of KHB containing 4 mM 2-deoxy-[3H]

glucose (2DG) (American Radiolabeled Chemicals, St. Louis, MO)

(1.5 mCi/ml) and 36 mM [14C] mannitol (ICN Radiochemicals,

Irvine, CA) (0.2 mCi/ml) and 2 mU/ml insulin if it was present in

the previous incubations, to measure 2-DG transport rates [47].

The gas phase throughout was 95% O2-5% CO2. Intracellular 2-

DG accumulation and extracellular space were determined as

described previously [47,48].

Measurement of oleate oxidation
Triceps muscles were minced and homogenized in ice-cold

300 mM sucrose containing 10 mM TrisCl and 2 mM EDTA

using a Potter-Elveheim glass homogenizer to give a 5%

homogenate. Oleate-1-14C oxidation by whole homogenates was

measured as described previously for [14C] palmitate [20].

Measurement of muscle triglycerides
Muscle triglyceride concentration was determined by extracting

total lipids from clamp-frozen soleus muscle samples with

chloroform-methanol (2:1 vol.vol) as described by Folch et al

[49], separating the chloroform and methanol-water phases,

removing phospho-lipids, and further processing the sample using

Frayn and Maycock’s [50] modification of the method of Denton

and Randle [51]. Triglycerides were then quantified spectropho-

Figure 6. Ratios of long chain acyl CoA dehydrogenase (LCAD) to NADH dehydrogenase (NADHDH) in soleus muscle. A. LCAD and
NADHDH enzyme activity levels. B. Ratio of LCAD activity to NADHD activity. C. LCAD and cytochrome c (Cyto c) protein levels. D. Ratios of LCAD to
Cyto c protein levels, *P,0.05.
doi:10.1371/journal.pone.0019739.g006
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tometrically as glycerol using an enzymatic assay kit (Sigma

Chemical).

Western blotting
Muscles were homogenized in ice-cold buffer containing

250 mM sucrose, 10 mM HEPES/1 mM EDTA (pH 7.4),

1 mM each of Pefabloc (Roche), EDTA, and NaF, 1 mg/ml of

aprotinin, leupeptin, and pepstatin, 0.1 mM bpV(phen), and

2 mg/ml b-glycerophosphate. Homogenates were subjected to

three freeze/thaw cycles and centrifuged for 10 min at 7006 g.

Protein concentration was determined using the Lowry Method.

Aliquots were solubilized in Laemmli buffer and subjected to

SDS/PAGE. The following antibodies were used for immuno-

blotting: succinate-ubiquinone oxidoreductase (SUO), cytochrome

oxidase subunit 1 (COX1), cytochrome oxidase subunit IV

(COXIV) (Molecular Probes), citrate synthase (CS) (Alpha

Diagnostic), cytochrome c (cyt c) (Phar-Mingen International),

long chain acyl-CoA dehydrogenase (LCAD) (a gift from Dan

Kelly), peroxisome proliferator-activated receptor d coactivator-1a
(PGC-1a), adenosine monophosphae kinase AMPK and phospho

AMPK (Cell Signaling, Beverly, MA) and GLUT4 (a gift from

Mike Mueckler). After incubation with the appropriate secondary

antibodies, bands were visualized by ECL and quantified by

densitometry.

Measurement of enzyme activities
Long chain Acyl-CoA dehydrogenase activity was measured as

described by Ijlst and Wanders [52]. NADH dehydrogenase

activity was measured using an enzyme activity microplate assay

kit (Mito Sciences, Eugene, OR).

Statistical analysis
Results are expressed as means 6 SE. The significance of

differences between two groups was assessed using Student’s t-test.

For multiple comparisons, significance was determined by one-

way analysis of variance followed by a post hoc comparison using

Tukey significant difference method.
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