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Abstract

Pathway analysis has been proposed as a complement to single SNP analyses in GWAS. This study compared pathway
analysis methods using two lung cancer GWAS data sets based on four studies: one a combined data set from Central
Europe and Toronto (CETO); the other a combined data set from Germany and MD Anderson (GRMD). We searched the
literature for pathway analysis methods that were widely used, representative of other methods, and had available software
for performing analysis. We selected the programs EASE, which uses a modified Fishers Exact calculation to test for pathway
associations, GenGen (a version of Gene Set Enrichment Analysis (GSEA)), which uses a Kolmogorov-Smirnov-like running
sum statistic as the test statistic, and SLAT, which uses a p-value combination approach. We also included a modified
version of the SUMSTAT method (mSUMSTAT), which tests for association by averaging x2 statistics from genotype
association tests. There were nearly 18000 genes available for analysis, following mapping of more than 300,000 SNPs from
each data set. These were mapped to 421 GO level 4 gene sets for pathway analysis. Among the methods designed to be
robust to biases related to gene size and pathway SNP correlation (GenGen, mSUMSTAT and SLAT), the mSUMSTAT
approach identified the most significant pathways (8 in CETO and 1 in GRMD). This included a highly plausible association
for the acetylcholine receptor activity pathway in both CETO (FDR#0.001) and GRMD (FDR = 0.009), although two strong
association signals at a single gene cluster (CHRNA3-CHRNA5-CHRNB4) drive this result, complicating its interpretation. Few
other replicated associations were found using any of these methods. Difficulty in replicating associations hindered our
comparison, but results suggest mSUMSTAT has advantages over the other approaches, and may be a useful pathway
analysis tool to use alongside other methods such as the commonly used GSEA (GenGen) approach.
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Introduction

Genome wide association studies (GWAS) examine the

association of hundreds of thousands of genetic variants with

disease or other phenotypes. These studies have successfully

identified associations between genetic variants and outcome, such

as associations between SNPs at the 15q25 and 5p region and lung

cancer risk [1,2,3,4,5,6]. GWAS of lung cancer and other diseases

generally identify only a few SNPs that are associated with disease

and these usually have small effect sizes. For instance, the per allele

odds ratio for variants which implicate acetylcholine receptor

genes at 15q25 with lung cancer risk is about 1.3 [1,2,5]. SNPs

with weaker effects could be missed given the stringent require-

ments needed for adjustment for multiple comparisons.

Pathway analysis has been proposed as a complementary

approach to single SNP analyses in GWAS. Pathway analysis

groups genes that are related biologically and tests whether these

gene groups are associated with outcome. Although outcome

associated with variation at many genes may be too small to detect

in GWAS using single SNP analysis, associations may be detected

from the joint effect of many weaker signals at genes grouped into

a pathway based on shared biological function. Other benefits of

this approach are the substantial reduction of the multiple testing

burden once genes are grouped into pathways for association

testing [7] and the incorporation of biological knowledge into the

analysis, which is not accounted for in GWAS.

The number of methods developed for pathway analysis

continues to increase. Many on-line programs offer a simple gene

set enrichment approach that uses some form of Fisher’s Exact test

to determine over-representation of genes within a pathway.

Generally, a gene is assigned a P-value (usually obtained from the

SNP most strongly associated with outcome at a gene) and an

arbitrary cut-off (e.g., P#0.05) is used to separate genes strongly

associated with outcome from other genes. A Fishers Exact

calculation is then used to test for within pathway enrichment of

genes strongly associated with outcome. This approach does not
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account for linkage disequilibrium patterns among SNPs at

different genes in the pathway. As well, it may over-estimate the

significance of pathways with large genes (i.e., many SNPs), since

selecting the most significant SNP when there are many SNPs at a

single gene is more likely to find a strong association between gene

and outcome by chance [8,9].

The popular GSEA approach generally uses the SNP most

strongly associated with outcome at each gene to represent gene-

outcome associations. Some implementations take into account

linkage disequilibrium among SNPs and gene size bias by

performing phenotype (case-control status) permutations and

using normalization routines. Genes are first ranked by size of

their test statistic for association with outcome. A Kolmogorov-

Smirnov-like running sum statistic is then used to test for

enrichment of highly ranked genes within pathways, by comparing

the pathway test statistic to its null distribution as determined by

the phenotype permutations [9,10]. Other approaches, for

example the SUMSTAT approach which uses the sum of x2

statistics assigned to genes as a pathway test statistic [11], can be

adapted to use phenotype permutations and normalization

methods. Alternatives to these gene set enrichment approaches,

such as methods of combining P-values (similar to meta-analyses),

have also been proposed for pathway analysis. Some of these,

incorporate methodology that accounts for potential bias related to

gene size or correlation among SNPs [12,13].

We compare four pathway analysis methods. These include a

simple gene enrichment approach in EASE, which calculates a

modified Fishers Exact probability [14], GSEA (using the GenGen

program) [9,10], a modified SUMSTAT approach, and SLAT, a P-

value combination approach [12]. The first method is representative

of early simpler approaches which use the Fishers Exact test, while

the others, as outlined above, are more sophisticated and designed to

address biases related to gene size and linkage disequilibrium among

SNPs. We compare and contrast the results from analyses using these

methods in two lung cancer GWAS data sets.

Materials and Methods

Samples
Data were used from case-control GWAS of lung cancer risk.

These included lung cancer cases and controls from Central

Europe [2], Toronto [2] and Germany (HGF study) [15,16] and

non-small cell lung cancer cases and controls from Texas (MD

Anderson Cancer Centre) [1]. Genotyping was performed using

either the Illumina HumanHap300 or HumanHap550 chips. Data

from the four studies were combined into two data sets: 1) Central

Europe and Toronto (CETO); and 2) Germany and Texas

(GRMD), in order to reach adequate sample size and statistical

power to detect associations in the pathway analyses. The choice

of which data sets to combine was predominantly made to ensure

similar sample sizes in the two independent analyses. Table 1

provides further details related to these studies.

Selection of pathway analysis methods
Pathway analysis methods were identified through literature

review. Methods implemented in the programs EASE [14],

GenGen (developed from GSEA) [9,10], and SLAT [12] were

chosen because they were widely used and/or representative of

other pathway analysis approaches. We chose the SUMSTAT

method based on a report indicating it had superior power to

detect pathway associations than GSEA or Fishers Exact methods

[11]. For this method an in-house SAS program was developed.

The methods are described here briefly, with details provided in

the original publications.
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Description of gene set analysis methods
With the exception of SLAT, pathway analysis methods

described here require assignment of a test statistic (or P-value)

to each gene representing its association with outcome. We used

the common practice of assigning each gene the most significant

test statistic from all SNP associations tests for the gene [8,9].

Input for EASE requires that genes significantly associated with

outcome are distinguished from all other genes, using a pre-

specified cut-off (e.g., P#0.05). Enrichment for significant genes in

each pathway is then tested using the EASE score, a modified

Fishers Exact probability representing the upper bound of

jackknife Fisher exact probabilities. Global FDRs are calculated

to account for multiple comparisons [14].

GenGen is adapted from Gene Set Enrichment Analysis

(GSEA), used originally for microarray analysis [17]. Genes are

ranked in descending order according to size of the initial

association statistic. A weighted Kolmogorov-Smirnov-like run-

ning sum statistic is then calculated that reflects over representa-

tion of higher ranked genes in a pathway in the gene list. The

weight takes on the values of SNP test statistics representing genes

in the list. A normalized enrichment statistic (NER) is calculated

for observed data, followed by phenotype permutations which give

permuted NER values, creating the null distribution from which

pathway association P-values are determined. FDRs are used to

account for multiple comparisons [9].

The modified SUMSTAT (mSUMSTAT) approach, that we

developed, is adapted from Tintle et al. [11]. The approach is

similar to that used in GenGen but the pathway test statistic is

calculated by averaging x2 test statistics within each pathway. The

equation below shows the calculation of the normalized mean

value of the observed x2 statistic, where S refers to a specific gene

set and p denotes the permutation. The normalized permuted

statistic is calculated the same way.

x2

n

� �
S{mean

x2

n

� �
S,p

� �� �
=SD

x2

n

� �
S,p

� �

The p-value is determined by comparing the normalized mean

value of the x2 statistic to the normalized permuted mean x2

statistics [18] and a FDR is calculated according to Wang et al.

[9]. This method contrasts to that of Tintle et al., [11] through the

calculation of a normalized test statistic, and use of phenotype

permutations instead of randomly selected gene sets to determine

the null distribution.

The SLAT program calculates P-values for association of SNPs

with outcome for a defined pathway (as in this study), gene, or

region. P-values reaching a specific threshold are combined into a

test statistic. The statistic is calculated for observed and phenotype

permuted data which permits determination of a pathway P-value

[12]. No particular method for adjusting for multiple comparisons

is provided by the authors. (We used the Benjamini-Hochberg

correction to calculate FDRs for this method).

Analysis details
SNPs were excluded when the P-value for HWE in controls was

#0.001 (consistent with previous pathway analysis studies [9,11]),

the minor allele frequency was ,1%, and genotype was missing in

.5% of individuals. In addition, SNPs from the HumanHap550

chip that were used in the German GWAS were excluded if there

was no corresponding SNP from MD Anderson (the study with

which German GWAS data was combined).Subjects with sex

discrepancies (based on heterozygosity rate at chromosome X) and

those with .10% missing SNPs were excluded.

Unconditional logistic regression, using PLINK 1.05 [19]

generated allelic x2 values for SNPs for each data set, CETO and

GRMD, for use in the programs EASE, GenGen and mSUM-

STAT. Permuted SNP association results were generated for

GenGen and mSUMSTAT using 1000 logistic regression runs with

case-control status randomly shuffled for each run. Logistic

regression analyses were adjusted for sex, age and country of origin.

The SLAT program performed its own SNP association tests for its

pathway analysis, which does not include adjustment for covariates.

SNPs were assigned to a gene if they were within 20 kb of the

gene. A SNP to gene linking file and GO level 4 pathway database

file, both obtained from the GenGen web site, were used to link

SNPs, genes and pathways. Only pathways with 15 to 200 genes

were included to avoid testing overly large or small GO pathways

[6]. The x2 of the most significant SNP at gene was assigned to

that gene. This x2 statistic was used to assign the cut-off value of

P#0.05 to identify strongly associated genes for analysis with

EASE. The same x2 statistic was used in the calculation of the

pathway test statistics for GenGen and mSUMSTAT. All SNPs at

each gene were used as input for the calculation of pathway P-

values for SLAT.

The influence of gene size on pathway ranking of the four

pathway analysis methods was investigated using linear regression

analysis (SAS 9.2: SAS Institute Inc., Cary, North Carolina).

Median gene size (median number of SNPs per gene) was

calculated for each top pathway and included as the outcome

variable in a model with pathway analysis method (treated as a

categorical variable and coded into four dummy variables) as the

main effect and number of genes per pathway included as a

potential confounder.

Results

Table 2 shows the number of significant pathways identified by

the four pathway analysis methods in CETO and GRMD using a

FDR of #0.05 as the criterion to determine statistical significance.

EASE identified 10 pathways as associated with lung cancer risk in

the two data sets, 7 in CETO, 5 in GRMD, with two significant

pathways common to both data sets. The mSUMSTAT method

identified 8 pathways as significant, 8 in CETO, 1 in GRMD with

one being common to both data sets. SLAT identified five

pathways as significant, three in GRMD and two in CETO.

Since EASE identified 10 significant pathways, more than the

other methods, Table 3 shows the top 10 pathways identified in

CETO and GRMD by all pathway analysis methods (taken from

lists comprising results from both data sets). An FDR of #0.05 in

both data sets was used as the criteria for a replicated result.

Transmission of nerve impulse and the Ras guanyl nucleotide

exchange factors pathways were identified by EASE as associated

with lung cancer in CETO and GRMD (Table 3). The

Table 2. Number of significant pathway associations (using
FDR, = 0.05) for Central Europe-Toronto (CETO) and
Germany-MD Anderson (GRMD) by pathway analysis method.

Data set EASE GenGen mSUMSTAT SLAT

CETO 7 0 8 2

GRMD 5 0 1 3

Both CETO and GRMD 2 0 1 0

Total 10 0 8 5

doi:10.1371/journal.pone.0031816.t002
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acetylcholine receptor activity pathway was identified as associated

with lung cancer in CETO and GRMD by mSUMSTAT. This

pathway contains the CHRNA3-CHRNA5-CHRNB4 gene cluster at

15q25, where GWAS have identified several SNPs associated with

lung cancer risk [1,2,5]. This pathway was the highest ranked

pathway in CETO using the GenGen method (FDR = 0.19)

(Table 3). In GRMD, this pathway was ranked 16th among all

pathways (not shown) by GenGen. The FDR was 0.43, but it was

accompanied by a nominally significant P-value (P = 0.004). Other

significant pathway associations in CETO had corresponding

nominally significant P-values in GRMD, specifically: heme

metabolic process, porphyrin metabolic process, pigment biosyn-

thetic process, and 4 iron, 4 sulfur cluster binding using

mSUMSTAT; and low-density lipoprotein binding using EASE.

SLAT identified regulation of cell migration as significantly

associated with lung cancer in GRMD, with a corresponding

nominally significant P-value in CETO (Table 3).

Other than the acetylcholine receptor activity pathway, which

was identified by both mSUMSTAT and GenGen as a top

pathway, there were few top pathways identified by more than one

method. Chloride ion binding was associated with risk in CETO

according to EASE and GenGen. Complement activation-classical

pathway was associated with lung cancer risk in CETO according

to GenGen, mSUMSTAT and SLAT. Heme metabolic process

was identified as associated with risk in CETO by GenGen and

mSUMSTAT. Chromatin assembly was associated with lung

cancer risk in CETO according to mSUMSTAT and SLAT.

Interleukin-2 biosynthetic process was identified as associated with

risk by EASE and GenGen in GRMD. Regulation of cell

migration was associated with risk for GRMD according to EASE

and SLAT (Table 3). Anion transport was identified as a top

pathway by mSUMSTAT but 35 of 102 genes in this pathway

were included in the chloride ion binding pathway (64 genes),

identified as a top pathway by EASE and GenGEN (gene number

in pathways calculated following SNP mapping). Likewise, 16 of

18 genes in the interleukin 2 pathway (EASE) are included among

the 65 genes in the cytokine metabolic pathway (GenGen). Other

top pathways identified by different methods shared genes but the

overlap was 12% or less based on shared genes for the larger of the

two pathways (e.g., 20 of 50 positive regulation of phosphorous

pathway genes (GenGen) are included in the growth factor

metabolism pathway (SLAT), which has 165 genes).

The EASE method selected pathways with greater gene size

(defined using the median number of SNPs per gene) than the

other methods. The average gene size for the top EASE pathways

shown in Table 3 was 12.2 SNPs per gene, whereas average top

pathway gene size was 8.4 for GenGen, 7.4 for mSUMSTAT, and

8.7 for SLAT. Regression analysis, where pathway analysis

method was coded into four dummy variables, produced a

statistically significant association between the EASE method and

gene size (P = 0.02).

As two methods identified acetylcholine receptor activity as a top

pathway we examined this association in more detail. SNPs near the

CHRNA3-CHRNA5-CHRNB4 gene cluster showing strong associa-

tions with lung cancer risk, are in strong LD, and there is overlap

among SNP test statistics assigned to these genes (i.e., the test statistic

for the same SNP was assigned to both CHRNA5 and CHRNA3).

These pathway characteristics may bias pathway association signals

[20,21] To evaluate whether the pathway analysis was driven by a

single associated gene or the gene cluster, we examined the effect of

removing the CHRNA5 gene (where the putative causal variant is

located) and the entire gene cluster from analyses using mSUM-

STAT and GenGen. Removing CHRNA5 had no influence on

mSUMSTAT results in CETO (CHRNA5: P, = 0.001,

FDR#0.001) but FDRs fell well below the 0.05 significance level

in GRMD (CHRNA5: P = 0.002, FDR = 0.37). Removing CHRNA5

from the GenGen analysis resulted in reduced strength of association

in CETO (P = 0.003, FDR, = 0.48) but virtually no change in

GRMD (P = 0.01, FDR, = 0.41). However, removal of the entire

gene cluster resulted in marked reduction of the FDR and loss of

significance in the two data sets for both pathway analysis methods

(mSUMSTAT without CHRNA3-CHRNA5-CHRNB4: CETO:

P = 0.19, FDR = 0.56 GRMD: P = 0.71, FDR = 0.82; GenGen

without CHRNA3-CHRNA5-CHRNB4 CETO: P = 0.11, FDR =

1.00 GRMD: P = 0.32, FDR = 0.76).

We further explored the association of this pathway with risk by

graphing odds ratios and 95% confidence limits for acetylcholine

receptor pathway SNPs and genes produced by unconditional

logistic regression analyses. Figure 1A shows odds ratios for

specific SNPs assigned to genes (i.e., the most significant SNP for

each gene) for the CETO analysis and for comparison, odds ratios

for these same SNPs for GRMD. In addition to SNPs in the

CHRNA3-CHRNA5-CHRNB4 gene cluster, a SNP at CHRNA2

showed a nominally significant association with risk in both data

sets (CETO: P = 0.012; GRMD: P = 0.022). Figure 1B shows odds

ratios for the most significant SNP assigned to each gene in either

data set (i.e., the actual SNPs used in pathway analyses in the two

data sets). Additional nominally significant associations were found

for CHRM3 (CETO: P = 0.003; GRMD: P = 0.028), CHRNA7

(CETO: P = 0.016; GRMD: P = 0.009), and CHRNA4 (CETO:

P = 0.012; GRMD: P = 0.038) in both data sets. In total, 6 of 8

genes associated with risk in CETO were associated with risk in

GRMD, a result greater than expected by chance given the

number of SNPs at each gene.

Discussion

Four pathway analysis methods were compared by using each to

test association of GO level 4 pathways with lung cancer risk in

two lung cancer GWAS data sets. Methods compared included

four gene set enrichment approaches, EASE, GenGen, mSUM-

STAT and a p-value combination approach, SLAT. After

adjustment for multiple comparisons using an FDR of less than

or equal to 0.05 as the criterion for a significant association, EASE

and mSUMSTAT identified more pathways associated with lung

cancer risk across the two datasets (10 and 8 respectively) than did

GenGen (no pathways), or SLAT (5 pathways). EASE and

mSUMSTAT also identified pathways that were significantly

associated with risk in both data sets: transmission of nerve impulse

and Ras guanyl nucleotide exchange factor by EASE; and the

acetylcholine receptor activity pathway by mSUMSTAT. There

was limited agreement among the different methods in the

identification of top ranked pathways. Comparing genes among

top pathways chosen by each method showed only a modest

degree of overlap.

In comparing pathway analysis methods, we examined whether

the number of SNPs per gene in pathways influenced the selection

of top pathways. The results indicated EASE, identified top

pathways with a significantly greater median number of SNPs per

gene than the other methods. This result is not unexpected. For all

gene set enrichment methods we used the common approach of

assigning the most significant SNP to represent each gene. Genes

with more SNPs, generally large genes, are more likely to be

assigned a SNP with a high association statistic, which can lead to

over estimation of significance of pathways with large genes (gene

size bias) [8,9]. We acknowledge that large genes might be more

likely to harbour multiple variants which are truly associated with

outcome, but our comments focus on statistical properties of the
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methods, specifically the potential for false positives resulting from

gene size bias. EASE, which uses a relatively simple approach

based on the Fishers Exact test, is susceptible to this bias.

Normalization routines and phenotype permutations incorporated

into GenGen and mSUMSTAT protect against this bias [6,22].

SLAT is also protected against this bias as it uses all SNPs in a

pathway for analysis and incorporates a phenotype shuffling

routine [12]. The more robust design of GenGen, mSUMSTAT

and SLAT provides an additional benefit, as these methods

account for correlation among SNPs within pathways.

A critical aspect of this comparison was the use of replication of

top pathways across CETO and GRMD to help evaluate the

relative performance of these methods. However, based on an

FDR of #0.05, few replicated associations were found. Lack of

study power may in part account for the small number of

replicated associations. In particular GRMD (cases = 1639,

controls = 1618) may have had insufficient sample size to detect

associations found in CETO (cases = 2258, controls = 3027).

Heterogeneity between data sets might also have contributed to

small number of replicated associations, as the German sample

was restricted to subjects under age 50, and the MD Anderson

GWAS included only ever smokers. Therefore, GRMD subjects

were younger and had a higher proportion of ever smokers

compared to CETO subjects.

Among the three methods (GenGen, mSUMSTAT and SLAT)

that are robust against gene size bias only mSUMSTAT identified

a replicated association. This was for the acetylcholine receptor

activity pathway. The association of this pathway with risk is not

unexpected as several SNPs at or near the CHRNA3-CHRNA5-

CHRNB4 gene cluster are associated with both lung cancer risk

[1,2,5] and nicotine addiction [5,23,24]. It is of interest that the

GenGen method also identified acetylcholine receptor activity as

the top ranked pathway in CETO and one of the most highly

ranked pathways in GRMD, although the result was not

significant in either data set after correcting for multiple

comparisons using the FDR. We note that the associations found

for this pathway was driven by the CHRNA3-CHRNA5-CHRNB4

gene cluster, as demonstrated by the dramatic reduction of

Figure 1. Comparison of odds ratios for acetylcholine receptor pathway showing. A) the most significant SNP for each gene used in
Central Europe-Toronto analysis and odds ratios for same SNPs for Germany MD Anderson); B) the most significant SNP assigned to each gene in
either data set (i.e., the actual SNPs used in pathway analyses in the two data sets). Chromosome number (Chr) and genes for both graphs are shown
on left. (Central Europe – Toronto SNPs: solid fill, Germany MD Anderson matching SNPs: no fill; Germany MD Anderson top SNP (differing from
Central Europe-Toronto): grey fill). A) Reference allele same in both Central Europe-Toronto and Germany-MD Anderson but chosen to show positive
association for Central Europe-Toronto. B) Reference allele always chosen to show positive association. CHRNA5 is excluded as SNPs are identical to
those representing CHRNA3. Odds ratios adjusted for age, sex and country of study.
doi:10.1371/journal.pone.0031816.g001

Pathway Analysis Comparison with Lung Cancer GWAS

PLoS ONE | www.plosone.org 6 February 2012 | Volume 7 | Issue 2 | e31816



strength of association (according to the FDR) found for both the

mSUMSTAT and GenGen methods when data were reanalyzed

with these three genes removed from the pathway. This may

complicate the interpretation of the observed association as ideally,

significant pathways should not be identified from a signal that

might ultimately represent a single gene or variant [20,21] We

point out, however, that there are two independent risk associated

loci in this region [25] and it is currently not clear which genes in

the region are causally related to disease risk. It is preferable then

that pathways such as these are identified to be associated with

outcome by the analysis method, and the researcher can then

follow-up with additional exploratory analyses. Further investiga-

tion of this pathway did suggest that allowing the same SNP to

represent both CHRNA5 and CHRNA3 in the analysis overesti-

mated significance in the GRMD data set for mSUMSTAT and

the CETO data set for Gengen. Results from analyses that

excluded CHRNA5 are likely the most appropriate for this

pathway.

For the purpose of further comparing pathway associations

across data sets we used a less restrictive criterion for a replicated

pathway association (a significant FDR in one data set and a

nominally significant association (P, = 0.05) in the second). This

permitted additional associations to be identified, although with

less confidence than those identified using the original criterion.

The mSUMSTAT method found four potential risk associated

pathways with a significant FDR in CETO and nominally

significant P-values in GRMD: heme metabolic process, porphyrin

metabolic process, pigment biosynthesis and 4 iron, 4 sulfur cluster

binding. The heme metabolic and porphyrin metabolic pathways

show a high degree of overlap. All four of these pathways include

IREB2 which is in the same region of strong LD that includes the

CHRNA3-CHRNA5-CHRNB4 cluster. SLAT identified one path-

way, regulation of cell migration, using this same criterion.

Overall, our results (along with insights from other comparisons

discussed below) suggest mSUMSTAT should be considered when

choosing a method for pathway analysis. Lack of strong replication

of pathway associations makes it difficult to evaluate GenGen and

SLAT against one another. However, the GenGen approach

appears to have some advantages. GenGen results provided some

support for an association of the acetylcholine receptor pathway

with risk, and like mSUMSTAT this method allows for the

incorporation of covariates, whereas the SLAT program does not

have this capability. Finally, GenGen is commonly used and has

provided other plausible associations in pathway analyses of

GWAS data sets [10]. On the other hand, the utility of SLAT is

difficult to assess given our results and further evaluation of this

method is needed. The rest of the discussion focuses on

mSUMSTAT and GenGen.

Our mSUMSTAT method contrasts to that of Tintle et al. [11]

through calculation of a normalized test statistic, and use of

phenotype permutations instead of randomly selected gene sets to

determine the null distribution. These changes were introduced to

address gene size bias and maintain the correlation structure

among SNPs in a pathway.

Some simulation results suggest that approaches that use the

sum or average of the x2 as a pathway test statistic will be more

powerful than those that use the weighted Kolmogorov-Smirnov-

like running sum statistic incorporated into GenGen and related

GSEA approaches. Tintle et al. found that the original

SUMSTAT test statistic was more powerful than a GSEA

approach in a comparison where random gene sets were used to

construct the null distribution for both methods [11]. Efron and

Tibshirani found generally lower p-values using mean test statistics

when compared to GSEA in simulated gene expression analyses

[18].Their analysis used a t-test instead of a x2 statistic, allowing

for gene expression comparisons of two groups. Permutation and

normalization approaches were the same as used here, except

normalization for GSEA also incorporated means and standard

deviations calculated from permutations with random gene sets.

Our results are consistent with these studies in that mSUMSTAT

identified several significant associations in CETO and GRMD

(with one of these replicated in both data sets), while GenGen did

not, suggesting that mSUMSTAT may have greater power to

detect associations.

Since the strongest association found by GenGen and mSUM-

STAT was for the acetylcholine receptor pathway we graphed

odds ratios and confidence limits to further explore the pathway

association. Despite weak association signals found for these

regions when the CHRNA3-CHRNA5-CHRNB4 cluster was re-

moved from analyses, the graphical presentation of results suggests

that SNPs outside of this gene cluster may contribute to the

association, as suggested by replicated associations across the two

data sets. This association appeared more convincing when

comparing the most significant SNPs representing each gene

across the two data sets (gene based comparison) as opposed to

comparing the most significant SNPs at each gene in CETO to the

same SNPs in GRMD (variant based comparison). Better evidence

for replication could result from a gene based approach versus a

SNP based approach if multiple SNPs capture the causal variant(s)

more completely than single SNPs for some pathway genes. This

can be advantageous to pathway analysis approaches which can

rely on gene based association signals to better replicate pathway

associations.

In summary, this study compared several different pathway

analysis approaches in two lung cancer GWAS data sets

comprising four studies. Difficulties in replicating associations

across studies hindered our comparison and we cannot clearly

establish one pathway analysis method as superior to the others.

However, the mSUMSTAT approach did demonstrate several

strengths such as a highly plausible association with the

acetylcholine receptor pathway and several additional suggestive

associations, while accounting for correlation among SNPs and

gene size bias. Since different pathway analysis methods can

produce different results using the same data set (as was seen here),

it is best to use more than one method when examining pathway

associations with disease risk [26]. We suggest that the mSUM-

STAT method could be used in combination with other methods,

such as the better known GenGen approach, in pathway analysis

investigations.
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