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Abstract

Integrity of the microtubule spindle apparatus and intact cell division checkpoints are essential to ensure the fidelity of
distributing chromosomes into daughter cells. Cytoskeleton-associated protein 2, CKAP2, is a microtubule-associated protein
that localizes to spindle poles and aids in microtubule stabilization, but the exact function and mechanism of action are poorly
understood. In the present study, we utilized RNA interference to determine the extent to which the expression of CKAP2 plays a
role in chromosome segregation. CKAP2-depleted cells showed a significant increase of multipolar mitoses and other spindle
pole defects. Notably, when interrogated for microtubule nucleation capacity, CKAP2-depleted cells showed a very unusual
phenotype as early as two minutes after release from mitotic block, consisting of dispersal of newly polymerized microtubule
filaments through the entire chromatin region, creating a cage-like structure. Nevertheless, spindle poles were formed after one
hour of mitotic release suggesting that centrosome-mediated nucleation remained dominant. Finally, we showed that
suppression of CKAP2 resulted in a higher incidence of merotelic attachments, anaphase lagging, and polyploidy. Based on these
results, weconclude that CKAP2 is involved inthe maintenanceof microtubule nucleationsites, focusing microtubule minusends
to the spindle poles in early mitosis, and is implicated in maintaining genome stability.
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Introduction

Chromosome segregation in mitosis is governed by a complex

microtubule-based structure arranged in a symmetrical bipolarity

with centrosomes located at the two spindle poles. Normally,

centrosomes nucleate microtubules that remain anchored to

individual spindle poles. With the help of numerous motor

proteins and other microtubule-associated proteins, mitotic

microtubules become organized between the two centrosomes as

a consequence of a minus end-directed microtubule sliding activity

present in the spindles [1]. The proper process of distributing the

correct number of chromosomes into two daughter cells during

mitosis depends on numerous proteins, including centrosomal

components and those responsible for the organization of the

spindle poles. Often, depletion or malfunctioning of any of these

proteins results in the activation of mitotic checkpoints whose

function is to arrest cell cycle progression when chromosomes are

not properly aligned or attached to the spindles [2].

Typically, microtubules from a single spindle pole attach to

individual kinetochores resulting in the equidistant distribution of

the metaphase plate. However, recent experiments have shown

that most, if not all, lagging chromosomes observed at anaphase

are due to merotelic attachments, in which single kinetochores

attach to microtubules emerging from different poles [3]. A

proposed mechanism of merotelic attachments in cancer is the

formation of a multipolar spindle intermediate in cells with

multiple centrosomes. In this model, each centrosome forms a

spindle pole allowing for greater access of microtubules to

kinetochores, which increases the rate of merotelic attachment

formation. The supernumerary centrosomes eventually cluster and

give rise to a bipolar spindle. However, the aberrant microtubule

attachments increase the rate of anaphase lagging chromosomes,

and thus are a major cause of aneuploidy. Thus defects in spindle

assembly or kinetochore-microtubule attachments can cause

aneuploidy, a hallmark of many cancers, in particular of tumors

of epithelial origin, i.e., carcinomas [4]. The increased rate of

whole-chromosome gains and losses constitutes a phenomenon

referred as chromosomal instability [5]. Chromosomal instability

frequently correlates with the presence of multiple centrosomes

and increased rates of anaphase lagging chromosomes [6,7].

Ultimately, chromosomal instability seems to enable tumor cells to

adapt chromosome content to improve their fitness [8].
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Cytoskeleton-associated protein 2 (CKAP2), also known as

tumor-associated microtubule-associated protein (TMAP), is fre-

quently upregulated in various malignancies, including stomach

cancer and diffuse large B-cell lymphoma [9,10]. Previous findings

suggested that CKAP2 has microtubule-stabilizing properties in

interphase cells [11,12], its degradation is essential for normal

completion of cytokinesis [13], and depletion of CKAP2 affects the

mitotic process [14]. Phosphorylation of CKAP2 is specific during

mitosis and determines the association of CKAP2 with microtu-

bules [15,16]. It has been suggested that at least four different

residues play a role in CKAP2 function in mitosis. Of these, Thr-

622 has been shown to be phosphorylated by CDK1-cyclin B1

and to directly regulate spindle dynamics [17]. Recently, Kim

et al. [18] showed that CKAP2 is a novel substrate of the Aurora B

kinase. Nevertheless, the exact cellular mechanism by which these

events occur and the role of CKAP2 in the maintenance of the

mitotic spindle and the stability of the genome remain elusive.

In the present study, using the human diploid, karyotypically

stable colorectal cancer cell line DLD-1, we elucidated the role of

CKAP2 in the formation of the spindle pole, correlated its

expression with partners that are known to play a role in the

spindle formation, and finally investigated the cellular mechanism

by which chromosomal instability arises in cells with altered

expression of CKAP2.

Materials and Methods

Cell Culture and Synchronization
DLD-1 cells obtained from ATCC (American Type Culture

Collection, Manassas, VA) were cultured in RPMI-1640 supple-

mented with antibiotics and 10% FBS at 37uC in 5% CO2. The

identity of the cell line was confirmed by the presence of unique

chromosomal abnormalities (dup(2p) and t(6;11)) as recorded in

the SKY/CGH database (www.ncbi.nlm.nih.gov/sky/) of the

National Center for Biotechnology Information/NIH. To enrich

for mitotic cells, DLD-1 cells were treated with 100 ng/ml of

nocodazole (Sigma-Aldrich, St. Louis, MO) for 16 hours and

synchronized in prometaphase. For all immunofluorescence

experiments, cells were grown on sterilized 22 mm coverslips

inside 6-well plates. Microtubule depolymerization in interphase

cells was performed by treating the cells with 10 mg/ml of

nocodazole for 30 minutes. Cells were released from the

nocodazole block by washing with 1X PBS and incubating in

fresh media for the desired time points at 37uC. For the analysis of
merotelic attachments, cells were treated with 100 mM monastrol

(Sigma-Aldrich) for four hours to accumulate cells in mitosis. Cells

were released from the monastrol block by washing with 1X PBS

and incubating in fresh media for 45 minutes at 37uC.

RNAi Experiments
Two different target sequences were selected against CKAP2,

siCKAP2_5 (59-GCA UUU GUU ACU AAC UGA ATT-39) and

siCKAP2_6 (59-CAC GAU UGU AGA UAU UCU ATT-39)

(Qiagen, Germantown, MD). Additionally, AllStars Negative

Control siRNA (scrambled sequence for control), and AllStars

Hs Cell Death siRNA (blend of highly potent siRNAs against

several mitotic kinases used as a positive control) were used for

RNAi experiments (Qiagen). The siRNAs were transfected into

2,500 plated DLD-1 cells at a final concentration of 5nM using

LipofectamineTM RNAiMAX Reagent (Life Technologies, Carls-

bad, CA). Target specific transfection efficiency was corroborated

at the mRNA level by QRT-PCR and at the protein level by

immunoblot.

The target sequence for stably silencing CKAP2 expression

using an shRNA expression plasmid was 59-AGG AAA CAT GTA

TTC CTT TAA-39 (Open Biosystems, Lafayette, CO). Plasmids

were transfected into DLD-1 cells using Fugene HD (Promega,

Madison, WI). Three days after transfection, positive cells were

selected with 2 mg/ml of puromycin (Sigma-Aldrich) for two

weeks. In order to enrich for transfected cells, positive cells were

separated by fluorescence activated cell sorting (FACS) (FACSCa-

libur, BD Biosciences, Franklin Lakes, NJ) based on green

fluorescence protein (GFP) intensity, regrown in a 100 mm dish,

and single-cell sorted into 96-well plates. Each well was

individually monitored to ensure that only one cell was plated

and single-cell clones were generated accordingly.

Quantitative Reverse Transcription-PCR
Gene expression levels were assessed using Power SYBR Green

technology (Applied Biosystems, Foster City, CA). Gene specific

PCR primers were obtained from Operon Technologies, Inc.

(Huntsville, AL). The gene YWAHZ was used for normalization.

Briefly, five mg of total RNA was reverse transcribed using

Superscript II (Life Technologies), the resulting cDNA was diluted

1:5 and three ml were used in each PCR reaction. PCR was

performed with the default variables of the ABI Prism 7000

Sequence Detection System (Applied Biosystems), except for a

total reaction volume of 25 ml. Each sample was analyzed in

triplicate, and each data point was calculated as the median of the

three measured CT values.

Cytotoxicity Assays: CellTiter-Blue and Annexin V
For the CellTiter-BlueH Cell Viability Assay (Promega), 2,500

cells were transfected with siRNA in 96-well plates and incubated

at 37uC for 96 hours. To measure cell viability, transfected cells

were incubated with 20 ml of CellTiter-Blue reagent for one hour

at 37uC, and fluorescence was measured by SpectraMax M2

(Molecular Devices, Sunnyvale, CA) and analyzed using the

software SoftMax Pro (Molecular Devices).

For the Annexin-V staining, 96 hours after siRNA transfection,

DLD-1 cells were harvested with CellStripper (Corning, Manassas,

VA), washed with binding buffer, and stained with Annexin-V and

7-AAD provided with the Annexin V-PE Apoptosis Detection Kit

(BD Biosciences). Transfection with siRNA against PLK1 (Qiagen)

was used as a positive control. Stained cells were loaded to

FACSCalibur (BD Bioscience) and analyzed by flow cytometry.

Apoptotic cells were determined using the software Cell Quest Pro

(BD Biosciences) and FlowJo (TreeStar, Inc., Ashland, OR).

Immunofluorescence
In order to preserve the cellular structure, DLD-1 cells were

cultured on a 22 mm coverslip and fixed with a 50:50 ratio of ice-

cold acetone: methanol for 15 minutes at 220uC or 4% PFA with

0.1% Triton X-100 for 15 minutes at room temperature. For

analysis of the mitotic spindle, cells were treated with 0.1% Triton

X-100 in PHEM for five minutes at room temperature to induce

permeabilization. Fixed and permeabilized cells were blocked with

5% BSA with 1% normal goat serum in 0.1% PBST for 30

minutes. Antibodies included: rabbit anti-CKAP2 (Sigma-Aldrich,

1:100), rat anti-a-tubulin (YL1/2) (Accu-Specs, Westbury, NY,

1:400) (marker of newly polymerized tubulin, binding to the so

called Try-tubulin), mouse anti-a-tubulin, (DM1A) (Sigma-Al-

drich, 1:400) (for total a-tubulin, referred to DM1A in the text),

mouse anti-NuMA (BD Biosciences, 1:100), mouse anti-c-tubulin
(GTU-88) (Sigma-Aldrich, 1:800), rabbit anti-pericentrin (Abcam,

Cambridge, MA, 1:250), and mouse anti-Hec1 (Abcam, 1:1,000).

Alexa Fluor 488 and Alexa Fluor 568 dyes (Molecular Probes, Life

CKAP2 Aids Microtubule Nucleation Sites
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Technologies, 1:500) were used as secondary antibodies for

labeling. Antibodies were diluted in 0.1% PBST with 5% BSA

and 1% normal goat serum. The incubation time was overnight at

4uC for primary antibodies and one hour at room temperature for

fluorescence-conjugated secondary antibodies. 4,6-diamidino 2-

phenyl-indole (DAPI) solution, ProLong Gold Antifade (Life

Technologies) was used at the final step for DNA staining. Cells

were mounted onto a glass slide for subsequent microscopic

observation.

Nucleation Assay
To depolymerize microtubules, cells were incubated with the

microtubule destabilizer nocodazole (10 mg/ml) for 30 minutes. At

the end of treatment cells were washed four times with 1X PBS

and microtubule re-growth was triggered by transfer to drug-free

medium at 37uC. Cells were released for 2, 30, and 60 minutes at

37uC, for a total of one hour release. Slides were then rinsed once

in 1X PBS, once with PHEM buffer and then fixed in 220uC
methanol. Tubulin structures were detected by incubating cells

with a monoclonal a-tubulin (Sigma-Aldrich, 1:1,000) and rabbit

polyclonal c-tubulin (Sigma-Aldrich, 1:2,000) antibody at three

different time points after drug release.

Image Processing and Analysis
Images were acquired with the Applied Precision DeltaVision

Core System (Applied Precision, Issaquah, WA). This system is

based on an Olympus inverted IX70 fluorescence microscope

(Olympus America, Inc., Melville, NY) equipped with an

automatically controlled stage that allows precise movement in

XYZ directions. Data collection is controlled by SoftWoRx

software installed on a Linux-based workstation. Images were

collected with a 12-bit camera (CoolSnap HQ, Photometrics,

Roper Scientific, Tucson, AZ). Cells were examined with a 86000

Sedat Quadruple Filter Set (Chroma Technology Corp, Bellows

Falls, VT) which included a FITC filter (Ex 490/20; Em 528/38;

Polychroic mirror), a RD-TR-PE filter (Ex 555/28; Em 617/73;

Polycroic mirror), and DAPI filter (Ex 360/40; Em 457/50,

Polychroic mirror) (Chroma Technology Corp.). Images were

analyzed using Metamorph software, version 7.7.4 (Universal

Imaging Corporation, Downington, PA). For the microtubule and

spindle pole analysis, z-series stacks of images were analyzed and

processed using a Delta Vision image processing workstation

(Applied Precision). For each slide 200 prometaphase and

metaphase cells were analyzed based on microtubule morphology

and recorded according to the number of spindle poles with

centrosomes and characterized as normal or disorganized. A two-

tailed t-test was performed to differentiate between control and

CKAP2-depleted cells. Mitotic spindle length was characterized by

the distance between spindle poles. A two-tailed t-test was utilized

to determine the statistical difference between control and

CKAP2-depleted cells. For the total tubulin measurements, 100

cells were analyzed and tubulin measurements were determined by

first calculating the total fluorescence in a cell and then subtracting

the background intensity from the total intensity. The average

intensity and standard deviations were calculated for both control

and CKAP2-depleted cells. A two-tailed paired t-test was utilized

to determine the statistical difference between the two groups. To

analyze merotelic kinetochore orientation in metaphase and

anaphase, each slide was analyzed and recorded as normal or as

showing lagging chromosomes.

Immunoblotting
DLD-1 cells were harvested by trypsinization and incubated in

SDS lysis buffer (1% SDS, 10 mM Tris-Hcl, pH 7.4, with protease

inhibitors). The lysates were sonicated and boiled for five minutes

with LDS Sample Buffer (Life Technologies). Protein samples were

resolved by 4–12% SDS-PAGE and electroblotted onto a PVDF

membrane. The membrane was blocked by soaking in TBS, 0.1%

Tween 20, and 5% milk for one hour, incubated with primary

antibody with blocking solution overnight at 4uC, washed three

times with TBST (TBS, 0.1% Tween 20), incubated with HRP-

linked secondary antibodies for one hour at room temperature,

and washed three times with TBST. The antibodies used were

mouse anti-CKAP2 (Abcam, 1:1,000), rabbit anti-CKAP2 (Sigma-

Aldrich, 1:1,000), rat anti-a-tubulin (YL1/2) (Accu-Specs,

1:1,000), mouse anti-phospho-histone H3 (Ser10, 6G3) (Cell

Signaling, Danvers, MA, 1:1,000), mouse anti-cyclin B1 (V152)

(Cell Signaling, 1:2,000), a/c-tubulin (Cell Signaling, 1:2,000),

GAPDH (Sigma-Aldrich, 1:40,000), and NuMA (BD Biosciences,

1:2,000). Anti-mouse IgG, HRP linked, anti-rabbit IgG, HRP

linked, and anti-rat IgG, HRP linked antibodies (Cell Signaling)

were used for secondary labeling. For the detection of signals,

Super Signal West Pico (ThermoScientific, Rockford, IL) was used

according to the manufacturer’s recommendations. Films were

developed on a Kodak X-OMAT 2000A device.

Spindle Binding Assay
Cells were arrested in mitosis as previously described (see section

cell culture and synchronization). Mitotic cells were harvested by

mitotic shake-off and re-suspended in a hypotonic lysis buffer

(1 mM MgCl2, 2 mM EGTA, 20 mM Tris-HCl, pH 6.8, 0.5%

NP-40, 3 mM of taxol, 10 mM of trichostatin A, and protease

inhibitors). The lysate was then centrifuged at 15,000 g for one

minute to separate the mitotic spindle from the remainder of the

lysate. The supernatant and pellet (10 ml per each fraction) were

analyzed by Western blot.

Metaphase Harvesting and Spectral Karyotype (SKY)
Metaphase chromosomes for SKY were prepared after expo-

sure of the control and CKAP2 depleted DLD-1 cells to colcemid

(Roche, Indianapolis, IN) for 1–1.5 hours at a final concentration

of 0.1 mg/ml. The cells were lysed in hypotonic solution (0.075 M

KCl), and the nuclei were fixed in methanol and acetic acid (3:1).

SKY was performed as previously described [19]. For protocol

details, please refer to Padilla-Nash et al. [20]. Differentially

labeled chromosome-specific painting probes were hybridized

simultaneously onto metaphase chromosomes. Images were

acquired with a custom-designed triple-pass filter using the

SpectraCube SD200 (Applied Spectral Imaging, Carlsbad, CA)

connected to an epifluorescence microscope (DMRXA, Leica

Microsystems, Wetzlar, Germany). For each clone, at least 20

metaphases and corresponding inverted DAPI images were

analyzed with the SkyView software package (Applied Spectral

Imaging) and karyotypes were defined using cytogenetic standard

nomenclature rules.

At least 100 metaphases previously stained with DAPI were

assessed to investigate the variability in the number of chromo-

somes.

Live-cell Imaging
DLD-1 cells transfected with empty vector control and CKAP2-

depleted cells, were then co-transfected with H2B-Cherry (gifted

from Dr. J. Silvio Gutkind, National Institute of Dental and

Craniofacial Research, NIH) and selected with geneticin (G418)

(Sigma-Aldrich) at a final concentration of 200 mg/ml. Positively

selected cells were grown on glass chamber slides (2-chamber) for

72 hours and then analyzed on the Zeiss LSM 5 Live confocal

microscope (Carl Zeiss, Inc., Oberkochen, Germany) within an

CKAP2 Aids Microtubule Nucleation Sites
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incubation chamber XL LSM710 S1 (PeCon GmbH, Germany)

with a heating insert P-LabTek S1. Lasers used: Diode 25 mW

405 nm, DPSS 40 mW 561 nm, Diode 100 mW 488 nm. Time-

lapse images were taken from three regions for each sample every

three minutes for 72 hours. Maximum intensity projections were

taken for each sample and analyzed by ImageJ 1.46.

Results

CKAP2 Accumulates in Mitosis and Localizes to the
Spindle Pole
Previous studies in HeLa and HEK293 cells have demonstrated

that ectopic expression of CKAP2 is cell cycle dependent, with

maximum expression in the G2/M-phase [13,21]. This expression

pattern was confirmed for endogenous CKAP2 in DLD-1 cells

(Figure S1). CKAP2 has been shown to associate with microtu-

bules, thus we sought to confirm the subcellular localization of

CKAP2 by immunofluorescence. We were able to show that

CKAP2 does localize to the mitotic spindle (Figure 1A), and that,

despite confinement to the spindle poles, it does not overlap with

the centrosome (Figure 1B), as shown by lack of co-localization

with c-tubulin. Furthermore, to determine whether CKAP2 is

indeed associated with microtubules, a microtubule-binding assay

was performed. By Western blot analysis, we showed that CKAP2

is present in the spindle fraction of the lysate, in both untreated

and nocodazole-treated cells (Figure 1C). Altogether, while

immunostaining clearly shows the association of CKAP2 with

the spindle pole (Figure 1A and 1B), the microtubule-binding assay

demonstrates that CKAP2 may not bind directly to microtubules

and behave as a canonical microtubule binding protein (MAP).

Hence, the association is either mediated by a spindle element

distinct from microtubules, or CKAP2 is in a large complex whose

association is not microtubule-dependent. Nevertheless, our data

suggest that CKAP2 may be associated with microtubules when

they are present.

To assess the long-term effects of CKAP2 loss-of-function, cells

were transfected with shRNA, and single cell clones were

obtained. Depletion of CKAP2 protein was verified by Western

blot analysis (Figure 1D). Subsequent experiments were performed

with two single cell clones (CKAP2_8 and CKAP2_12). We have

also shown that long-term reduction of CKAP2 expression has

little to no effect on cell proliferation (Figure 1E and Figure S2). In

addition, we observed that decreased expression of CKAP2

mediated by siRNA showed a very limited effect on cellular

viability (Figure S3).

Suppression of CKAP2 Increases Spindle Pole Defects
Data obtained from CKAP2 expression and localization

analyses suggested that the effects of silencing this gene would be

most obvious in mitotic cells, particularly affecting the mitotic

spindle. Thus, we assessed the integrity of the mitotic spindle by

immunofluorescence with a-tubulin as a marker for the mitotic

spindle and c-tubulin as a marker for centrosomes. Immunoflu-

orescence assays confirmed the reduction in protein expression

with a 78% and 88% decrease in signal intensity at the mitotic

spindle in clones CKAP2_8 and CKAP2_12, respectively

(Figure 2A). We found that reduction of CKAP2 expression

resulted in a significant increase in cells with multipolar spindles

(from 3% to 13% of cells, P,0.02) (Figure 2B). Consequently, we

also observed an increase (5–10%) in supernumerary centrosomes

in CKAP2-depleted cells, although the difference was not

statistically significant (Figure 2C). An interesting observation

was a reduced frequency of centrosome clustering, commonly

found in cells with multiple centrosome, in CKAP2-depleted cells

when compared to control cells (data not shown).

Using c-tubulin as a marker for centrosomes, we then assessed

the integrity of spindle poles in the absence of CKAP2. We

observed a significant increase of cells where the c-tubulin signal

was dispersed along the mitotic spindle (from 5% to 40%, P,0.01)

(Figure 3A and 3B). While not statistically significant, we also

detected an increase in the percentage of cells where one

centrosome was dislocated from the spindle pole (from 3% to

8%) (Figure 3A and 3C). In order to examine spindle pole

function, we assessed spindle length by measuring the distance

between the two spindle poles. Data showed that there was an

increase up to 5 mm in the distance between spindle poles when

compared shCKAP2_4 and shCKAP2_8 transfected cells to

control cells (P,0.05) (Figure 3D). This increase in the spindle

length may result from changes in the distribution of forces across

the spindle, as this phenotype was accompanied by an increase in

misalignment of metaphase chromosomes (from 6% to 18%,

P,0.02) (Figure 3E). Overall, these data suggest that despite

spindle abnormalities, cells remain able to form functional mitotic

spindles.

CKAP2 is Crucial for Maintaining the Integrity of the
Microtubule Nucleation Sites in Early Mitosis
Because of the observed defects in c-tubulin, in particular those

resulting in signal dispersal along the mitotic spindle, we next

examined to what extent CKAP2 was required for centrosome-

nucleated microtubule formation and for microtubule stability.

Asynchronous cells were treated with nocodazole for 30 minutes to

depolymerize microtubules (Figure 4A). Cells were released from

nocodazole for 2, 30, and 60 minutes and microtubule re-growth

was analyzed in mitotic cells using an antibody (anti-a-tubulin
YL1/2) specific to newly polymerized tubulin (so called Tyr-

tubulin). Strikingly, we observed as early as two minutes after

release an unusual phenotype consisting of dispersal of newly

synthesized microtubule filaments that, in normal conditions,

should be properly bound to the spindle pole. In CKAP2-depleted

cells, around 60% of cells showed this cage-like pattern of

dispersed nascent microtubules while we only identified this

phenomenon in less than 20% of cells when transfected with an

empty vector control (P,0.01) (Figure 4B and 4E). Nevertheless,

30 minutes post-nocodazole release, the percentage of cage-like

spindles decreased to 40% and microtubule filaments began

forming distinct poles (Figure 4C and 4E), and nearly 100% of

cells displayed successful bipolar spindles at 60 minutes post-

nocodazole release (Figure 4D and 4E). In addition, the total level

of c-tubulin was increased in CKAP2-depleted cells compared to

control cells (Figure 4F). Further analysis showed that the

centrosomal area (indicated by signal intensity) was also larger

although it did not reach significance (Figure S4A). Moreover, we

observed additional c-tubulin, albeit a lesser amount, along the

length of the spindle. This might indicate that more c-tubulin is

being recruited in CKAP2-depleted cells.

Immunostaining of pericentrin, an integral protein component

of the centrosome, showed two prominent foci in the majority of

CKAP2-depleted cells (Figure 5A), demonstrating that, despite the

spindle pole dispersal, the centrosome remained intact. Further-

more, total microtubule measurements assessed by immunostain-

ing against total tubulin showed that there was a slight increase in

the amount of total polymerized a-tubulin (Figure 5B and Figure

S4B and S4C), indicating that the total nucleation capacity of the

centrosome is not reduced, but disorganized. The mechanism by

which this increase in total tubulin polymer might occur has yet to

be fully elucidated.

CKAP2 Aids Microtubule Nucleation Sites
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In order to investigate the possibility that CKAP2-depleted cells

were utilizing a kinetochore- or chromatin-driven microtubule

polymerization mechanism to overcome centrosomal nucleation

difficulties, we assessed the localization of the dispersed microtu-

bule filaments in relation to kinetochores. For this, we visualized

Hec1, a kinetochore component, and a-tubulin using immunoflu-

orescence. Results indicated that nascent microtubules were

neither associated with nor nucleated from kinetochores, as there

was no co-localization of a-tubulin signal to Hec1 (Figure S4D).

Similarly, the presence of microtubule filaments that positioned

outside chromatin boundaries disproved the hypothesis of a

chromatin-directed microtubule polymerization. These data,

together with the fact that CKAP2 is not normally found near

the kinetochores or chromatin (Figure 1A and 1B), prompted us to

conclude that CKAP2-depleted cells did not utilize the non-

centrosomal nucleation mechanism to promote microtubule

polymerization.

One of the major proteins involved in cross-linking and

positioning microtubule minus ends to the spindle poles is NuMA

(Nuclear Mitotic Apparatus) [22]. To assess whether depletion of

CKAP2 affected the positioning of NuMA, mitotic cells in

asynchronous cell populations were analyzed for NuMA localiza-

tion and expression. NuMA localized to the centrosomes and

spindle poles in both control and CKAP2-depleted cells

(Figure 6A), and Western blot analysis showed that the abundance

of NuMA is equally maintained (Figure 6B). Although NuMA and

CKAP2 both localize to the spindle pole, there was no complete

overlay between the two proteins (Figure 6C). As expected, two

minutes post-nocodazole treatment and release, both control and

shRNA transfected cells showed a scattered distribution of NuMA,

which may indicate that NuMA mobilizes to the spindle poles.

However, in CKAP2-depleted cells where spindle pole dispersal

was evident, we observed co-localization of nascent microtubules

and NuMA two minutes post-nocodazole release (Figure 6D),

confirming the finding that the nucleating centers are dispersed

throughout the entire chromatin region. This might suggest a

mechanism by which the dispersed microtubules are gathered to

the spindle pole, and supports the interpretation that CKAP2

might be involved in the recruitment and maintenance of

microtubule minus ends at the spindle poles.

Silencing of CKAP2 Expression Results in a Higher
Incidence of Merotelic Attachments, Anaphase Lagging
Chromosomes, and Chromosomal Instability
We next investigated how the observed spindle assembly defects

affected chromosome segregation. Using an asynchronous popu-

Figure 1. Localization of CKAP2 at the spindle pole in human colorectal cancer cell line DLD-1. (A) DLD-1 cells co-immunostained with
CKAP2 (green), a-tubulin (red), and DAPI (blue) depicting localization of CKAP2 to the spindle pole (Scale bar: 2 mm) (B) DLD-1 cells co-
immunostained with CKAP2 (red), c-tubulin (green) and DAPI (blue) demonstrating CKAP2 does not localize within the centrosome (Scale bar: 2 mm).
(C) Mitotic cells were enriched by mitotic shake-off, lysed in hypotonic buffer, and the lysate fractionated by centrifugation. The pellet contains DNA,
microtubules, and microtubule-associated proteins, whereas the supernatant contains the remaining proteins. These fractions were analyzed by
immunoblot with antibodies specific to CKAP2, a/c-tubulin, and c-tubulin. The presence of CKAP2 in the pellet in both wild-type and nocodazole
treated cells suggests that CKAP2 is indirectly associated with the mitotic spindle. (D) DLD-1 cells were transfected with shRNA, selected with
puromycin, and single-cell separated by FACS based on GFP-positivity. Separated cells were synchronized overnight with nocodazole and harvested
for immunoblot analysis with antibodies specific for CKAP2 and GAPDH. (E) To measure the affect of CKAP2 reduction on cell proliferation,
populations of control (shCTL) and CKAP2-depleted cells (shCKAP2) were counted for six days and plotted. No significant differences in growth
activity are observed.
doi:10.1371/journal.pone.0064575.g001
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Figure 2. CKAP2 is required for bipolar spindle assembly. (A) Representative images of control (shCTL) and CKAP2-depleted (shCKAP2) cells
co-immunstained with CKAP2 (green), a-tubulin (red), and merged with DAPI (blue) (Scale bar: 2 mm). The data is presented as the mean green
intensity per experiment group. One hundred images were analyzed per experimental group. (B) Mitotic cells in asysnchronous populations of
control (shCTL) and CKAP2-depleted (shCKAP2) cells were analyzed for mitotic defects by co-immunostaining with c-tubulin (green) and a-tubulin
(red). Representative images of multipolar spindles were observed CKAP2-depleted cells. Over 100 spindles per experimental group were analyzed in
two independent experiments. The results are presented as mean 6 SD (Scale bar: 2 mm). P-values were determined using the Student’s t-test. (C)
Thirty nuclei were analyzed to assess the percentage of cells with supernumerary centrosomes in CKAP2-depleted cells compared to controls.
doi:10.1371/journal.pone.0064575.g002
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lation of cells, we monitored the incidence of anaphase lagging

chromosomes, micronuclei, and nuclear blebs. By performing live-

cell imaging using a histone H2B-Cherry construct, we observed a

higher incidence of anaphase lagging chromosomes in CKAP2-

depleted cells, which lead to the formation of micronuclei

(Figure 7A). In order to further understand the cause of these

segregation errors, we performed immunostaining for Hec1 and a-
tubulin. First, we found that these anaphase lagging chromosomes

displayed merotelic kinetochore-microtubule attachments

(Figure 7B). Second, a higher incidence of anaphase lagging

chromosomes in CKAP2-depleted cells was observed. In fact, in

between 9% and 17% of cells from the clones with suppressed

CKAP2 showed lagging chromosomes, which represented an

increase of about 3-5-fold over the control cell population

(Figure 7C). As a consequence of the elevated rate of missegrega-

tion, a significant increase of abnormal nuclear shapes, including

micronuclei and nuclear blebs, was identified in a drug-free

asynchronous cell population analysis when comparing CKAP2-

depleted cells with control cells (P,0.05) (Figure 7D). Therefore,

we concluded that depletion of CKAP2 promoted merotelic

kinetochore-microtubule attachments that resulted in anaphase

lagging chromosomes and increased chromosomal instability.

Figure 3. Spindle pole defects in CKAP2-depleted cells. (A) Mitosis in an asynchronous population of control (shCTL) and CKAP2-depleted
(shCKAP2) cells were co-immunostained with c-tubulin (green), a-tubulin (red), and merged with DAPI (blue). The dispersal of c-tubulin away from
the centrosome and dislocation of the centrosome from the spindle pole was analyzed in 200 cells per experimental group in two independent
experiments. Representative images for each experimental group and the mitotic defect are shown (Scale bar: 2 mm). Representative images for each
experimental group are shown. (B) Quantification of the cells with dispersed c-tubulin was presented as mean 6 SD. P-values were determined using
the Student’s t-test. (C) Quantification of the cells with the centrosome dislocated from the spindle pole was presented as mean 6 SD. P-values were
determined using the Student’s t-test (D) Spindle length measured in 50 mitotic cells with bipolar spindles in both controls and CKAP2-depleted cells
is shown. P-value was determined by Student’s t-test. (E) Analysis of the number of misaligned chromosomes in bipolar metaphases shows statistical
significant difference between control and CKAP2-depleted cells. More than 200 cells were counted per condition. P-value was determined by
Student’s t-test.
doi:10.1371/journal.pone.0064575.g003
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Analysis of the karyotype of CKAP2-depleted cells revealed a

higher incidence of chromosomal heterogeneity in the clones

compared to control cells. As illustrated by the radial plots in

Figure 8, the karyotype of control cells showed a perfect

distribution of the expected modal number (2N=46) for DLD-1

cells. However, suppression of CKAP2 in the clones resulted in an

extraordinary increase of aneuploidy (22.6% polyploid cells for

clone CKAP2_8 and 36.2% for clone CKAP2_12 compared to

2.2% for control cells). In addition, spectral karyotype (SKY)

analysis for a representative subset of cells in each clone confirmed

ongoing patterns of aneuploidy and showed de novo clonal

Figure 4. CKAP2 is required for anchoring of centrosome-nucleated microtubules to the spindle pole. (A) Nucleation was assessed after
treating cells with 10 mg/ml nocodazole for 30 minutes and released into fresh media for 2, 30, and 60 minutes. shCTL and CKAP2-depleted cells were
co-immunostained with c-tubulin (green), Tyr-tubulin (red), and merged with DAPI (blue). (B) Two minutes post-nocodazole release, a cage-like
structure was often observed in CKAP2-depleted cells. Representative images for each experimental group are shown. (C) Thirty minutes post-
nocodazole release, microtubules are tethered at distinct poles, often with an increase cells with multipolar spindle poles in CKAP2-depleted cells.
Representative images for each experimental group are shown. (D) Sixty minutes post nocodazole block, both the control and CKAP2-depleted cells
have structured bipolar assembly. Representative images for each experimental group are shown. (E) Quantification of the shCTL cells with non-
centrosomal a-tubulin staining at 2, 30, and 60 minutes is shown. Approximately 50 cells were counted per condition. (F) Measurements of the total
c-tubulin in both the centrosomes and the spindle pole area for CKAP2-depleted cells and controls. Y-axis indicates signal intensity units for c-tubulin.
doi:10.1371/journal.pone.0064575.g004
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structural chromosome aberrations, corroborating the elevated

incidence of chromosomal instability in these cells.

Discussion

In the present study, we have characterized the cellular function

of the cytoskeleton-associated protein 2 (CKAP2), also known as

tumor-associated microtubule-associated protein 2 (TMAP), as a

component of the spindle pole apparatus involved in maintaining

proper microtubule nucleation sites. Our data confirm that

CKAP2 co-localizes with microtubules in the mitotic spindle

[23,24], particularly at the spindle pole [21], where it appears to

play its major role in mitotic spindle assembly.

A major function of the spindle pole is to bundle new

centrosome-nucleated mitotic microtubules and anchor microtu-

bule minus ends after the nuclear envelope breakdown at the onset

of mitosis occurs.

Here, we demonstrate that CKAP2-depleted cells showed a

decrease in spindle pole integrity and concomitant increase of

organizational spindle defects, most notably including multipolar

spindles and dispersion of c-tubulin from the centrosome. In

addition, we identified an increase of c- and a-tubulin when

CKAP2 is absent. Despite this phenotype, the distribution and

function of centrosomes remained intact. This observation

prompted us to determine whether CKAP2 is required for

microtubule nucleation. Analysis of the nucleation capacity of

the centrosomes showed that nascent microtubules were dispersed

across the chromatin region at early time points after the mitotic

release. These dispersed microtubules gathered into specific poles

and became bipolar at later time points (30 and 60 minutes), albeit

with a temporary increase in the number of spindle poles. Further

analysis indicated that depletion of CKAP2 increases both the

microtubule-bound and centrosomal pool. However, technically it

is difficult to clearly identify the centrosome in CKAP2-depleted

cells, and thus we can only speculate that it is the centrosome area.

Of course, it is still possible that there is an increase of c-tubulin
more at the microtubule surface in the spindle pole area. Non-

centrosomal sites of c-tubulin can represent novel sites of

nucleation or capped microtubule minus ends that were released

from the centrosome [25]. However, we failed to observe

microtubule nucleation at or near the kinetochores and chromatin,

therefore we conclude that chromosome-mediated nucleation is

not responsible for the observed ectopic nascent microtubules. The

increase in spindle intensity may indicate a slight increment in

microtubule stabilization or enhanced microtubule nucleation,

potentially via other proteins such as TACC or TPX2, both

known to be potent microtubule nucleators besides c-tubulin.
Microtubules forming from the centrosome do not remain

tightly bound in early mitosis, but, nonetheless, they are anchored

Figure 5. Centrosome nucleation capacity is unaffected in CKAP2-depleted cells. (A) Two minutes post-nocodazole release shCTL and
CKAP2-depleted cells were co-immunostained with a-tubulin (DM1A) (green), pericentrin (red), and merged with DAPI (blue). One hundred cells with
non-centrosomal tubulin staining were measured per experimental group. As already demonstrated, a cage-like structure was observed two minutes
post-nocodazole release. Representative images for each experimental group are shown. (B) Nucleation capacity was determined by measuring the
mean of a-tubulin fluorescence for both the control and CKAP2-depleted cells.
doi:10.1371/journal.pone.0064575.g005
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in the vicinity of the pericentriolar material (PCM) by a group of

proteins that form the spindle pole matrix. Whether these

microtubules come from newly polymerized microtubules detach-

ing from the pole or whether they are fragmented microtubule

minus ends is still undetermined [26]. In CKAP2-depleted cells,

microtubules nucleated in early mitosis are not held in the vicinity

of the PCM and thus dispersed across the nucleus. The presence of

this phenotype strongly supports its subcellular localization within

the spindle pole matrix.

One of the principal molecular components in tethering and

focusing spindle microtubules at the poles is NuMA [27].

Depletion of NuMA results in aberrant spindles, pole fragmenta-

tion, and dissociation of the centrosome from already assembled

spindles, resulting in splayed microtubule ends [22,28,29]. CKAP2

showed functional similarities with NuMA and, like NuMA,

CKAP2 mitotic activity is also regulated by phosphorylation and

dephosphorylation of residues near the C-terminal end [15,30].

However, we have shown here that depletion of CKAP2 does not

compromise the localization and expression of NuMA. In fact, the

distribution of NuMA after microtubule depolymerization and re-

growth was unaltered in CKAP2-depleted cells. Moreover, most

CKAP2-depleted cells are still capable of forming bipolar spindles

after nocodozale washout, which suggests that the absence of

CKAP2 does not impede NuMA to cross-link microtubules and

form the normal bipolar spindle. Perturbation of other well-known

spindle proteins, such as Aurora A, TPX2, or ch-TOG, also

compromises the integrity of the spindle pole, ultimately resulting

in microtubule disorganization, multipolar spindles, and increased

aberrant microtubule-kinetochore attachments [31–34]. Similar to

NuMA, the localization and expression of TPX2 was not altered

upon depletion of CKAP2 (Figure S5). These observations

prompted us to assume that CKAP2 does not affect dynein-

dependent transport of spindle pole organizing proteins. Never-

theless, CKAP2 depletion does increase multipolar spindles,

largely due to multiple c-tubulin foci. Hence, we propose that

the dispersion of c-tubulin could lead to the formation of

additional spindle poles, as well as spindle pole defects.

Defects in kinetochore-microtubule and spindle-microtubule

forces result in an increase in merotelic attachments [35,36].

Merotelic attachments occur when a single kinetochore binds

microtubules from two spindle poles instead of just one. Because

merotelic kinetochore attachments are not detected by the mitotic

checkpoint, cells with merotelic kinetochores can progress through

mitosis [3]. Although most merotelically-oriented chromosomes

Figure 6. NuMA expression and localization is not affected by CKAP2-depletion. (A) shCTL and shCKAP2 transfected cells were co-
immunostained with NuMA (green) and a-tubulin (red), and merged with DAPI (blue). The expression of NuMA was confined to the spindle pole.
Representative metaphase images show that the localization of NuMA remains intact. (B) Immunoblot analysis with antibodies specific for NuMA and
GAPDH showed that the amount of NuMA protein was maintained despite the silencing of CKAP2. (C) shCTL and CKAP2-depleted cells were co-
immunostained with NuMA (green), CKAP2 (red), and merged with DAPI (blue) showing only partial overlay between the two protein although they
both are located at the spindle pole. (D) shCTL and CKAP2-depleted cells were synchronized with nocodazole, and after two minutes post release
cells were co-immunostained with NuMA (green) and a-tubulin (red). Co-localization of NuMA and a-tubulin is shown in the cage-like structures in
CKAP2-depleted cells, but not in control cells.
doi:10.1371/journal.pone.0064575.g006
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segregate properly, a fraction of them remain at the metaphase

plate while the other chromosomes move to the poles [37].

Recently, it has been suggested that segregation errors occur as a

consequence of cells passing through a transient multipolar spindle

intermediate that triggers the formation of merotelic attachments

[38]. The spindle defects observed in CKAP2-depleted cells

suggest that these cells undergo a transient multipolar spindle state,

which would explain the increase in merotelic kinetochore

attachments, forming anaphase lagging chromosomes (Figure S6).

Previous studies in mouse and human fibroblasts have shown

that centrosome separation and establishment of the spindle

apparatus were not noticeably affected in CKAP2-depleted cells

[14]. The same authors also concluded that accumulation of

chromosomes at the metaphase plate appeared largely unaffected

Figure 7. CKAP2-depleted cells show increased chromosome missegregation. (A) Control (shCTL) and CKAP2-depleted (shCKAP2) cells
were transfected with histone H2B-Cherry constructs, selected with geneticin (G418), and analyzed with live-cell imaging. The movie shows CKAP2-
depleted histone H2B-Cherry positive cells undergoing aberrant mitosis with chromosome missegregation resulting in two daughter nuclei with
micronuclei. Arrows indicate lagging chromosomes and resultant micronuclei. (B) CKAP2-depleted cells were immunostained for Hec1 (green), a-
tubulin (red), and merged with DAPI (blue). Cells with lagging chromosomes in anaphase and telophase were analyzed for merotelic attachments.
Representative images of lagging chromosomes in anaphase and telophase are shown here. Magnified views emphasize merotelic attachments in
lagging chromosomes. (C) The histogram represents the number of chromosome missegregation events for each histone H2B-Cherry positive
experimental group. (D) Asynchronous shCTL and CKAP2-depleted cells were analyzed for evidence of chromosome missegregation, including
micronuclei, nuclear blebs, and anaphase bridges. The results are plotted as the mean 6 SD.
doi:10.1371/journal.pone.0064575.g007

Figure 8. CKAP2 plays a role in maintaining chromosome stability. (A–C) Mitotic cells were treated with colcemid in order to obtain
metaphase spreads. Chromosome content was determined by counting the individual chromosomes in at least 100 metaphases. The results are
presented as radial plots, where the concentric circle represents the relative ploidy and each symbol represents an individual cell. In parallel, here
indicated are karyotypes analyzed by SKY showing the increased level of aneuploidy and chromosome instability in CKAP2-depleted cells.
doi:10.1371/journal.pone.0064575.g008
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and suggested that functional aspects of the microtubule spindle

apparatus remained mostly unaltered. Our data provide further

evidence that the absence of CKAP2 does not permanently affect

the spindle structure and may not be essential to maintain cellular

viability. We showed that although cells display a large number of

extra microtubule organizing centers at early time points after

nocodazole washout, CKAP2 appears largely dispensable for the

establishment of the bipolar spindle poles at later time-points. One

possible explanation is that spindle pole/PCM proteins exhibit

functional redundancy allowing proper bipolar spindle assembly

even in the absence of certain components (e.g., CKAP2).

However, despite the fact that the mitotic spindle remains

functional, our data suggest that CKAP2-depleted cells exhibit a

delay in organizing the microtubule nucleation sites in early

mitosis and this delay may result in transient geometric defects of

the mitotic spindle. While other mechanisms might be considered,

we find this explanation appropriate as it combines the defect/

delay observed in microtubule nucleation sites following nocoda-

zole washout in CKAP2-depleted cells with the increased rate of

chromosome missegregation and nuclear malformations

(Figure 6C and 6D). Surprisingly, we detected a substantial

subpopulation of cells with a near-tetraploid karyotype. As we did

not observe systematic failure of cytokinesis and most of the cells

only have two centrosomes, we speculate that an early mitotic

slippage event is the mechanism by which these cells become

polyploid. It has been argued that tetraploidy might represent an

intermediate on the route to aneuploidy [39,40]. In addition to

alterations in the ploidy, we have also identified the formation of

clonal structural chromosome rearrangements, indicative of high

levels of chromosomal instability [41].

In conclusion, we provide clues to elucidate the cellular

mechanism by which CKAP2 regulates proper chromosome

segregation. CKAP2 is involved maintaining the integrity of

microtubule nucleation sites in early mitosis to accurately form the

spindle poles. Although there is apparently enough redundancy to

ensure spindle formation and chromosome segregation, we

propose that CKAP2 depletion increases the formation of

transient multipolar spindles, likely due to a reduction in the

ability to cluster centrosomes and additional spindle poles. This

geometric defect allows for greater accessibility to kinetochores,

resulting in an increase of aberrant microtubule-kinetochore

attachments, a higher frequency of chromosome missegregation,

and ultimately, chromosomal instability.

Supporting Information

Figure S1 CKAP2 expression is restricted to mitosis. (A)
Wild-type DLD1 cells were synchronized in mitosis with 100 ng/

mL nocodazole for 16 hours and released for the indicated time

points (1, 3, and 5 hours). The cells were harvested and analyzed

by immunoblot with antibodies specific for CKAP2, cyclin B1,

phospho-Histone H3, and GAPDH. (B) Progression from mitotic

release through the cell cycle was verified by synchronizing wild-

type cells with nocodazole as previously noted and released for the

indicated time points. Cells were harvested, stained with

propidium iodide and analyzed by FACS.

(TIF)

Figure S2 CKAP2-depletion does not influence cell
viability or cause an accumulation of cells in mitosis.
(A) Cell viability in shRNA transfected cells was analyzed by

measuring the metabolic activity of shCTL and shCKAP2 cells 96

hours after plating. This histogram represents the remaining viable

cells for each experimental group for six technical replicates. (B)

Asynchronous shCTL and shCKAP2 cells were stained with

propidium iodide and the DNA content was analyzed by FACS.

The phases of cell cycle, G1, S, and G2/M, were determined

based on 2N and 4N DNA content.

(TIF)

Figure S3 Depletion of CKAP2 does affect cell viability
in human colorectal cancer cell line DLD-1. (A) DLD1 cells

were transfected with control (siCTL) or CKAP2 (siCKAP2).

Seventy-two hours later, RNA was extracted for qRT-PCR

analysis. (B) Ninety-six hours post siRNA transfection, cells were

harvested for immunoblot analysis with antibodies specific to

CKAP2 and GAPDH. (C) Cell viability was analyzed by

measuring the metabolic activity of siCTL and siCKAP2 cells 96

hours post siRNA transfection. The histogram represents the

percentage of remaining viable cells relative to shCTL for each

experimental group for six biological replicates. (D) Apoptosis was

measured by costaining siCTL and siCKAP2 cells 72 hours post

siRNA transfection with Annexin-V (x-axis) and 7-AAD (y-axis)

and analyzed by FACS [negative control (untreated; top left),

positive control (All Star Death; top right), siCKAP2 (bottom left

and right).

(TIF)

Figure S4 Centrosome nucleation capacity is unaffected
in CKAP2-depleted cells. (A) Plot showing intensity signal for

total centrosome area stained with c-tubulin (B) Total tubulin was

analyzed for 100 cells thirty minutes post-nocodazole release by

measuring the mean fluorescence intensity for a-tubulin DM1A

staining. (C) Total tubulin was analyzed for 100 cells sixty minutes

post-nocodazole release by measuring the mean fluorescence

intensity for a-tubulin DM1A staining. (D) Two minutes post-

nocodazole release, cells were co-immunostained with the

kinetochore protein Hec1 (green), a-tubulin (red), and merged

with DAPI (blue) to determine the presence of chromosome-

directed nucleation. Co-localization of Hec1 and a-tubulin signals

was analyzed in control and CKAP2-depleted cells. Representa-

tive images for each experimental group are shown.

(TIF)

Figure S5 CKAP2 depletion does not affect the expres-
sion and localization of microtubule associated protein,
TPX2. (A) Control (shCTL) and CKAP2-depleted (shCKAP2)

cells were immunostained with TPX2 (green), a-tubulin (red) and

merge with DAPI (blue). Representative images for each

experimental group are presented. (B) Mitotic cells in shCTL

and shCKAP2 populations were enriched by nocodazole treat-

ment for 16 hours and harvested for immunoblot analysis with

antibodies specific for TPX2 and GAPDH.

(TIF)

Figure S6 Cellular mechanism of action of CKAP2.
Absence of CKAP2 results in transient multipolar spindles, which

in turn resulted in merotelic attachments, segregation errors, and

chromosome instability.

(TIF)
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