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Abstract

High-throughput Structural Genomics yields many new protein structures without known molecular function. This study
aims to uncover these missing annotations by globally comparing select functional residues across the structural proteome.
First, Evolutionary Trace Annotation, or ETA, identifies which proteins have local evolutionary and structural features in
common; next, these proteins are linked together into a proteomic network of ETA similarities; then, starting from proteins
with known functions, competing functional labels diffuse link-by-link over the entire network. Every node is thus assigned a
likelihood z-score for every function, and the most significant one at each node wins and defines its annotation. In high-
throughput controls, this competitive diffusion process recovered enzyme activity annotations with 99% and 97% accuracy
at half-coverage for the third and fourth Enzyme Commission (EC) levels, respectively. This corresponds to false positive
rates 4-fold lower than nearest-neighbor and 5-fold lower than sequence-based annotations. In practice, experimental
validation of the predicted carboxylesterase activity in a protein from Staphylococcus aureus illustrated the effectiveness of
this approach in the context of an increasingly drug-resistant microbe. This study further links molecular function to a small
number of evolutionarily important residues recognizable by Evolutionary Tracing and it points to the specificity and
sensitivity of functional annotation by competitive global network diffusion. A web server is at http://mammoth.bcm.tmc.
edu/networks.
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Introduction

Similar proteins typically perform similar functions. Nevertheless,

defining the nature, extent and mix of which similarities bear most

directly on function remains a challenge [1]. This problem is acute

even for proteins with solved structures such as those targeted by the

Structural Genomics project [2], [3]. Many of these were specifically

chosen to have little or no homology with proteins that were already

characterized functionally and about one third (or 3002 out of 9122)

still lack known function. More sensitive methods to recognize

functionally relevant similarities are therefore needed that also take

care not to increase false annotations that may arise whenever protein

homologs diverged in function [4], and which may then propagate

through further rounds of computational annotations [5], [6], [7].

Therefore it remains pivotal to define measures of protein similarity

that are highly functionally relevant, and then to devise analysis

techniques that draw correct functional inferences from them.

Currently, a great diversity of protein similarity measures are

used to infer functions. They include sequence homology [8], [9],

[10], phylogenetic ancestry [11], [12] substrate similarity [13], co-

expression [14], [15], physical interaction [15], [16], [17], genetic

interaction [18], [19] or analogies of sequence [20], [21] or

structure motifs [22–27]. Some methods compare divergent,

aligned proteins to spot discriminating residues that suggest

functional signatures in sequences (EFICAz2) [20] or in structures

(FLORA) [23]. Since relatively few of all sequence or structure

variations are necessarily functionally relevant [28], [29], other

methods focus on just a few but presumably key residues. For

example, residues could be taken from concave protein regions

since these are more likely to be functionally important (pevoSoar)

[22]. More generally, residues can be taken from putative

functional sites in their relative three-dimensional (3D) configura-

tion to create 3D templates: composite structural motifs of a few

amino acids that directly mediate function. Experimentally

validated 3D templates are available but they do not cover all of

functional space [30], however, and their simple geometric

matches can be spurious [31], [32]. Profunc [33] mitigates these

problems by using multiple template sources, including enzyme
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active sites gathered from the Catalytic Site Atlas [30], ligand and

DNA binding sites [34], and automatically generated triads of

amino acids called ‘reverse templates’ [33]. None of these methods

begin with a dedicated approach to identify protein functional sites

and their key determinants.

Here, we focus on 3D templates that embody evolutionary

information. Our rationale is that functionally important residues

may often be distinguished by sequence variations that correlate

tightly with evolutionary divergence [35], [36] and form spatial

clusters in structures [37], [38], [39]. Such clusters then suggest

binding sites or catalytic sites on the surface, and allosteric

pathways internally [35], [37], [40], [41], [42], [43] which, in

turn, efficiently guide experiments to block, separate, rewire, or

mimic function [44–54]. Building on these computational and

experimental studies that demonstrate evolutionary identification

of functional determinants, our approach ranks the relative

evolutionary importance of every residue in a protein sequence

with the Evolutionary Trace [35], [55] (ET), and then selects the

six most important and clustered surface residues to define a 3D

template. The geometric matches of these evolutionary templates

in other protein structures at sites that are themselves evolution-

arily important then define Evolutionary Trace Annotation (ETA)

annotations [31], [56]. So far, ETA annotations have been shown

to be functionally specific (positive predictive values above 90%) in

enzymes and non-enzymes alike [57], but their functional

resolution and coverage are limited. For example, enzyme

predictions, are at the third rather than the fourth EC level and

coverages range from 40 to 70 percent.

We hypothesize that we can improve performance by basing

annotations not only on direct matches to a protein of interest, but

on all ETA matches detected across the proteome. This follows

studies that systematically pool together multiple functionally-

relevant matches between proteins [58]. One such approach

examines a protein-protein interaction neighborhood to choose

predictions that maximize the observed versus expected frequency

of a function in a local subnetwork [59]. An extension further

factors the network’s topological weights into the prediction [17].

Another approach employs a probabilistic analysis of the

functional neighborhood defined by sequence alignment bit-scores

[60]. More generally, a network in which each node is a protein

and each edge is a pairwise match can be constructed and then

analyzed with clique or module detection algorithms to increase

the amount of information involved in a prediction. For example,

Mcode uses a greedy algorithm to grow clusters from a seed node

[61]. SpectralMod iteratively cuts edges until only dense clusters

remain [62]. CFinder groups together tightly connected cliques

into clusters [63]. Once a cluster is identified, enriched functions in

that cluster are propagated to unannotated members of the cluster

[64]. There is, however, no single best clustering method for all

topologies, and clustering approaches can be less accurate than

local methods [65].

Global graph theoretic tools may further improve performance

by including the entire network topology into annotation transfer

[64]. One such approach optimizes the labeling of proteins with

unknown function in order to maximize connections between

proteins with the same function [16]. Other methods use Markov

random fields and assume that the function of every protein in the

network is dependant, in probabilistic terms, only on its direct

neighbors [66]. Lastly, flow or diffusion-based methods have been

proposed that are able to take advantage of both global structure

and local similarity. FunctionalFlow is an iterative algorithm that

simulates the flow of liquid through a network for the purposes of

functional annotation [67]. These methods can also be directly

optimized and have been applied to prediction of protein-protein

interactions [68] as well as prediction of Gene Ontology (GO)

terms [69], [70].

Therefore, we applied a global network diffusion method to

integrate all ETA matches into the functional inference. Since

most functions permeated and reached most of the protein nodes,

we further devised a z-score statistic of confidence for every

protein-function pairing. The function with the greatest confi-

dence was then chosen as the most likely annotation for that

protein. In practice, the correlation between confidence and

accuracy is strong. As a result, the ETA network diffusion method

yields accurate predictions at the fourth, and highest resolution,

level of the Enzyme Classification and also substantially reduces

false positives compared to other annotation methods.

Results

Annotation by ETA network diffusion proceeds in two main

steps: the construction of a network, described here and in

Figure 1A, followed by the diffusion of functional labels, described

next and in Figure 1B. First, the Evolutionary Trace (ET)

algorithm [35], [55] ranks the evolutionary importance of every

residue in a protein sequence by correlating their variations with

phylogenetic divergences. Top-ranked residues (usually defined as

those in the top 30th percentile) are then mapped onto the

structures, where typically they cluster spatially at the locations of

functional sites. Second, ETA heuristically selects six top-ranked,

proximate, surface amino acids from each protein to define a 3D

template. Third, it searches all other structures in the dataset for

geometric matches to this template. Since often geometry is

insufficient to generate specific matches, ETA also specifies, with

an SVM, that the matched sites should themselves be composed of

functionally important (top-ranked) residues. Fourth, and last, it

narrows the list to reciprocal matches – i.e. those cases in which

protein A has a significant match to protein B and protein B has a

significant match to protein A. In our ETA networks, it is these

reciprocal matches that are turned into weighted edges by

averaging the ET score (which indicates evolutionary similarity

of the match) and the RMSD (which indicates structural similarity

of the match, see Methods). Thus, the network nodes represent

individual protein structures, and the network edges represent

molecular and evolutionary similarities identified by ETA [57]

that, by our hypothesis, should bear directly on the potential for

proteins to have identical biochemical roles.

Next, once the network has been constructed, a diffusion

mechanism lets annotation data flow from node to node so that the

poorly annotated regions draw information from the richly

annotated ones.

Formally, let a graph have n nodes, each depicting a protein,

such that a number p#n carry labels yi that represent specific

functions, where the index I ranges from 1 to n. ETA matches

provide all-against-all linkage data on by averaging the ET score

and RMSD of the template match to define edges in a symmetric

adjacency matrix, w. If nodes I and j have a mutual ETA template

match (Figure 1A), then they are linked by edges so that the

adjacency matrix entry is set to wij.0, otherwise wij = 0 if there is

no known or significant similarity. The problem is then to infer

function for the remaining q = n - p nodes from the nodes with

known labels y and the network’s connectivity. This frames an

optimization problem between two conditions: (i) that the

function of neighboring nodes be similar (smoothness condition),

and (ii) that the final label of a node be consistent with its initial

label if its function was known (initial condition). Both conditions

can be most simply represented by a quadratic ‘‘cost’’ function

[71]:

Network Diffusion of Function
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where the functional label yi is set to either 1 if node I has a

function y, to 21 if it does not have that function, and to 0 if there

is no evidence either way (unlabeled node); and where 21#fi#1

are the predicted functional labels of the output prediction

vector. Finally, the coupling parameter a is analogous to a

diffusion coefficient that balances smoothing with loss of the

initial labels. This formulation is empirical, but it is convenient

because solving f = {f1,…,fn} is equivalent to solving a sparse

linear system with the graph diffusion kernel, viz.

f ~ 1zaLð Þ{1
y, where L~D{W is the Laplacian matrix, with

the link weight matrix W and D~diag dið Þ, di~
X

j
wij . In the

more limited context of binary protein function classification

the computational efficiency of this approach surpassed semi-

definite programming (SDP) and support vector machines (SVM)

[72].

Here, in order to extend this method to multi-label classification

we need to account for the bias introduced by different label

frequencies. To do this, we introduce a prediction z-score, defined

by the solution f ~ f1,:::,fnf g as z~ fi{f
� ��

sf , where f denotes

the average and sf the standard deviation evaluated on all

unlabeled nodes; z measures the positive deviation from the

expected random mean in standard deviation units and thus

eliminates any absolute bias due to initial conditions in y, which

then allows a meaningful comparison between multiple functional

classes of variable size within the network. After diffusing every

function to every node, we use the function with the highest z-

score as our prediction. In this way, we add a new step to the ETA

Figure 1. Overview of ETA Network Diffusion. 1A. We detect similarities between proteins using Evolutionary Trace Annotation (ETA), which
consists of three steps. First, the Evolutionary Trace (ET) algorithm ranks positions in aligned sequences by the correlation of their variations with
evolutionary divergence. These ranks of evolutionary importance are mapped onto the protein structure. Second, six amino acids are selected
heuristically based on their evolutionary importance, proximity and surface exposure, forming a structural template (red spheres). Third, the template
is matched against proteins with known function. These steps are repeated for the matched proteins in order to verify that the match is reciprocal.
Significant matches are selected by an SVM (not depicted). 1B. We construct a graph using ETA matches so that nodes represent protein chains and
edges represent evolutionary and structural similarity. We select an enzymatic function and apply one of three labels to every node in the network:
blue if the node is known to have that function, white if it is known to not have that function, or ‘‘?’’ if it is unknown whether or not the node has that
function. We then allow these labels to ‘‘diffuse’’ to all other nodes in the network based on the strength and number of connections. This results in a
weight assigned to every node for all enzymatic functions present in our network. In a final step (not depicted) we normalize the weights assigned to
a particular node with respect to all other un-annotated nodes in the network. The normalized weights (called z-scores) are compared. The functional
label with the highest z-score is taken as the prediction, and the magnitude of the z-score is used as a measure of confidence.
doi:10.1371/journal.pone.0014286.g001
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process, coupling relevant and non-trivial edge detection with

global function propagation.

We have benchmarked this method on two distinct test sets.

First, we perform a leave-one-out test on the FLORA [23] test set

in which we attempt to predict the function of a given protein

using matches to the remaining proteins in the test set. Second, we

have assembled a test set of Protein Structure Initiative [3] (PSI)

proteins, and attempt to predict their function by matching them

against a representative subset of the Protein Data Bank [73]

(PDB). Finally, we examine the effect of lowering availability

sequence similarity, an important consideration because the PSI

often contains structures with few homologs [74].

Comparative study against the FLORA method
Like ETA network diffusion, FLORA [23] is a structure-based

annotation method; it is recent, and thus provides a state-of-the-art

baseline control. We compared both methods in a leave-one-out

experiment against FLORA’s published dataset and 3 EC digit

prediction results (Figure 2). Those predictions were stratified by

stepping down through each z-score and, at each threshold,

calculating the cumulative accuracy, coverage and sensitivity. Any

true prediction with a z-score that fell below the threshold was

deemed a false negative (fn) while those that fell above the

threshold were counted as either true (tp) or false positives (fp)

depending on whether they matched the known function.

Sensitivity (calculated as (tp/(tp + fn)) rose, and prediction

confidence fell, as the z-score threshold was lowered.

Overall, the ETA network diffusion markedly reduces false

positives. Initially, like FLORA it maintains perfect accuracy up to

14% sensitivity, as shown in Figure 2, and its accuracy decreases to

a similar extent until 54% sensitivity. Thereafter, however, the two

methods diverge: accuracy drops steadily for FLORA but not for

ETA network diffusion. The difference is largest near 97%

sensitivity where ETA network diffusion has 4-fold fewer false

positives (90% vs 60% accuracy). Finally, past 97% sensitivity,

incorrect predictions for ETA Network diffusion soar, but this is

expected from the extremely low confidence of the predictions past

that point (the z-score is below 20.05). Since FLORA [23] was

itself superior to other template methods, such as CATHEDRAL

[75] and Reverse Templates [76], these results suggest that ETA

network diffusion also outperforms these approaches.

Structural Genomics
Next, we sought to test ETA network diffusion on a larger and

more realistic test set of annotated structural genomics proteins

(Structural Genomics test set). These proteins were added to an

ETA network of a representative subset of the PDB (PDB 90, non-

redundant at the 90% sequence identity level) by identifying ETA

matches between proteins in the test set and proteins in the PDB

90.

The ETA network diffusion proved equally accurate on this test

set as it had before on the FLORA test set and the confidence z-

score continued to separate the reliable predictions from those that

were not. Thus at the highest resolution EC digit, the fourth level

that typically indicates the substrate of an enzyme, the accuracy

was better than 98% up until 45% coverage corresponding to a z-

score of 0.89 (Figure 3A). It then decreased slowly to reach 96% at

60% coverage, corresponding to a z-score of 0.68, and then it

dropped slightly more rapidly thereafter. Compared to the single

point for ETA, at 65% coverage, the network achieved 6% better

accuracy and halved the false positives (36 vs 74).

The specificity may be increased further at the expense of the

functional resolution: at the third EC digit (Figure S1A) the

accuracy remains perfect (100%) up to 29% coverage, which

corresponds to a z-score of 1.7 or above, and it remains over 98%

until 72.7% coverage and a z-score of 0.67 or above. The accuracy

gain over ETA is nearly 4%, at 73% coverage, which translates to

2.5-fold fewer false positives (19 vs 53).

Impact of network diffusion
In order to distinguish the contribution of global network

diffusion from the contribution of purely local matches, we

compared these results to a nearest neighbor algorithm on the

same underlying network (Figure 3A). Diffusion proved more

accurate until the low z-score of 0.3, which corresponds to 70%

coverage. These gains can be striking. For example, in the region

near 50% coverage, diffusion is 7.7% more accurate, representing

4-fold fewer false positives (12 vs 48). Likewise, this pattern is

repeated for 3 EC digit annotations (Figure S1A). At 50%

coverage, diffusion has 2.5-fold fewer false positives (7 vs 19) and it

is interesting to note that the crossover point is identical, with z-

scores both near 0.3, which in this case is 80% coverage. Thus,

nearest neighbors is less accurate than global network diffusion at

all but a small coverage range, which is properly identified by low

z-scores. Since the only additional information available to the

diffusion method is global network information, i.e. information

not available in matches in the local neighborhood, we conclude

that the global topology of the network provides important

annotation information and this information is tapped into by the

diffusion mechanism embodied in the cost function (eq. 1). In that

regard, Figure S4C shows that, in cases where a path exists

between proteins, a significant number of proteins with identical

functions are removed from each other by more than 1 link

(42.9%), 2 links (32.2%) and even 3 or more links (26.5%).

Structural Genomics annotations vs BLAST and PSI-BLAST
Likewise, it is also important to examine whether structural

genomics data, combined with ET network analysis, provide extra

information over purely sequence-based methods. In order to

compare the accuracy/coverage with BLAST [9], the most widely

used tool for functional annotation [77], a BLAST search for each

protein in the structural genomics test set against Swiss-Prot [78]

Figure 2. Performance on the FLORA test set. The diffusion
method shows a clear improvement at higher sensitivities.
doi:10.1371/journal.pone.0014286.g002
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was followed by comparing the accuracy to ETA network

diffusion. We then repeated this process using PSI-BLAST.

BLAST proved to be more accurate on this testset than PSI-

BLAST, likely due to the availability of homologs in Swiss-Prot.

Swiss-Prot contains vastly more potential matches than the

PDB90, likely biasing this comparison in favor of BLAST. Despite

this, ETA network diffusion had a consistent 4% accuracy

advantage for 3 EC digit annotations over BLAST down to a z-

score of 0.3, or 81% coverage (Figure S1B). This corresponds to a

4-fold reduction in false positives (7 vs 28).

Importantly, at a higher functional resolution (4 EC level

annotation), the gains are even more impressive (Figure 3B). The

accuracy is 9% better at 50% coverage and there is no crossover

point: the accuracy of ETA network diffusion is never exceeded by

the accuracy of BLAST. This corresponds to a nearly 80%

reduction in false positives (12 vs 57). Thus, the more precise the

annotation, the better ETA structural genomics networks perform

relative to sequence comparisons.

Accuracy and confidence scores
To assess whether the confidence z-score can reliably identify

false predictions, we examined the correlation between accuracy

and the z-score. The trends are similar for both 3 (Figure S2 C&D)

and 4 EC digit (Figure 3 C&D) predictions: the accuracy is nearly

perfect for z-scores above 2, it drops slightly between 2 and 0.4,

then it steeply declines thereafter to level out towards 87% and

81% accuracy for 3 and 4 EC digit predictions, respectively.

In practice, of over 649 4 EC level predictions that fell above a

z-score threshold of 0.5 in the structural genomics test set, only 30

were predicted to have a function different from the one listed in

the PDB. Assuming the latter are correct, this yields a rate of

accuracy of 95.4%. Likewise, 382 predictions fell over a z-score of

1, and of these 375 matched existing reference annotations,

yielding a 98.2% accuracy.

Staphylococcus aureus case study
The ETA network diffusion method was then applied to a set of

2767 structural genomics proteins categorized in the PDB with

‘‘unknown function’’. Matching to the PDB90 at a z-score cutoff of

0.5 led to 257 predictions; however, not all of these predictions

were completely novel since some of the PDB profiles did contain

some functional inferences.

As an illustration, our method confidently (z score over 2.9)

predicts carboxylesterase activity (EC3.1.1.1) for a bacterial

protein with unknown function (PDB 3h04 chain A). The protein

(Uniprot accession Q99WQ5, gene name SAV0321) originates

from a vancomycin drug resistant strain of the bacteria

Staphylococcus aureus, an organism that can cause life-threatening

infections [79]. This annotation, shown in Figure 4A, is based on

template matches to three chains which share carboxylesterase

activity and range between 10 and 13% sequence identity with the

query chain. The three matches are chains 2hm7A, 1jjiD and

2c7bB, which all belong to a Rossman fold (CATH [80] fold

description 3.40.50.1820), although the query protein lacks fold

Figure 3. 4 EC Performance on Structural Genomics test set. 3A. Accuracy/coverage tradeoffs of ETA network diffusion and nearest neighbors
are shown in red and blue circles, respectively. Coverage (percentage of entire test set) increases as confidence decreases, so at 10% coverage we
show the accuracy (# of true predictions/# of predictions made) of our 10% most confident predictions. Blue triangle shows performance of ETA.
Diffusion gives clear accuracy advantages at most coverage cutoffs. 3B. Performance compared to the top match from a BLAST search of Swiss-prot.
Diffusion on an ETA network clearly outperforms BLAST (black circles) at most coverages on this dataset, demonstrating the need for complementary
structural based methods. 3C: Accuracies when the z score cutoff is varied. For each z score, we plot the accuracy of all predictions with that score or
higher. Accuracy and z score show a positive correlation. Accuracy shows a steep decline after z = 0.4. 3D shows a magnified view of the beginning of
the steep decline.
doi:10.1371/journal.pone.0014286.g003
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annotation. A PSI-BLAST [10] search finds many unannotated

homologs in other strains of S. aureus as well as several other

bacteria, such as Enterococcus faecalis and Lactobacillus buchneri. The

first-EC-level classification hydrolase (EC 3) and second-level

classification esterase (EC 3.1) can begin to be gleaned from

matches above BLAST e-values of 9e-10 and 6e-06 respectively.

Annotations that disagree with ours, such as arylesterase (EC

3.1.1.2) are first matched at BLAST e-value of 0.003. Homology

with a carboxylesterase is first found in a match with BLAST e-

value of 0.004. The sequence motif-based EFICAz2 [20] method

makes no prediction, thereby confirming that this protein is

difficult to annotate from sequence information alone.

The DALI [81] algorithm, which performs whole domain three-

dimensional structural alignments, reveals similarities to the same

carboxylesterases that ETA matches. The catalytic triad of chain

2c7b is known to be Ser154, Asp251, and His281 [82], and these

residues are aligned with a corresponding serine, aspartic acid, and

histidine in chain 3h04A, suggesting functional importance for

these residues. All three residues of this triad were included in the

reciprocal ETA template.

In order to definitely determine if SAV0321 possesses

carboxylesterase activity, in vitro biochemical techniques were

performed next. A his-tagged version of SAV0321 was expressed

in E. coli and purified by affinity chromatography (Figure 4B) and

its ability to hydrolyze the carboxylesterase substrate 4-nitrophenyl

acetate to form 4-nitrophenol and acetic acid was measured. The

production of 4-nitrophenol is detectable by UV spectrometry at a

wavelength of 405 nm (Figure 4C) [83], [84] From the absorbance

values we extrapolated the specific activity (Figure 4D), and we

showed that it is similar to the positive control, a carboxylesterase

from porcine heart (Sigma). Moreover, this specific activity was

also consistent with specific activity values of other known

carboxylesterases for the same substrate [85], [86], [87]. BSA,

the negative control, has no such activity. Therefore, we can

conclude that the ETA network prediction of carboxylesterase

activity for SAV0321 is correct.

Figure 4. in vitro biochemical assay confirms the ETA network diffusion prediction of 3h04 as a carboxylesterase. A) The prediction of
carboxylesterase function for this unknown protein is based on ETA template matches to three chains, all of which have identical function and fold,
and low sequence identity with the query protein. B) 10 mg of purfied 3h04 was run on a SDS-12% polyacrylamide gel and stained with Coomassie
brilliant blue. The single band shown at 35 kDa corresponds to his-tagged 3h04. C) Plot of absorbance at 405 nm vs time for 3h04 (blue), esterase
from porcine liver (Sigma, red), and BSA (Sigma, green). D) The specific activity of 3h04, 19368 (blue), is similar to that of the esterase from porcine
liver, 166651 (Sigma,red). Specific activity is represented in Units (U) per mg of protein. All error bars depict standard deviation.
doi:10.1371/journal.pone.0014286.g004

Network Diffusion of Function
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Sequence similarity
In order to test the impact of homology on these predictions,

edges in the structural genomics test network were removed, in

increments of 20% sequence identity, to eliminate links between

any two proteins with more than 80% sequence identity, then

with more than 60%, and so forth. This creates new networks

with ever less information due to homology (Figure 5). At and

above 40% sequence identity, accuracy of ETA network diffusion

exceeds BLAST’s by between 7% and 8% in the low coverage,

high confidence region of the plot (below 50% coverage). Thus,

ETA predictions depend less on sequence identity than BLAST.

Of note, a BLAST search against the SwissProt database biases

the results in favor of BLAST, since it contains more than 27

times [78] the number of sequences than there are structures in

our PDB-derived dataset. Despite this, ETA network diffusion

gives accuracies higher than BLAST in the high confidence

interval, demonstrating the effectiveness of the z-score for

distinguishing the correct predictions, even when faced with less

reliable matches.

In practice, most proteins will either a) exhibit very high

sequence identity to a close homolog, or b) will not exhibit

homology to any protein, though there are a significant number

that lie somewhere in between (Figure S3). Therefore, the cutoffs

at 100% and 20% in Figure 5A and 5E represent the most likely

scenarios for protein annotation. In both cases, ETA network

diffusion outperforms BLAST and nearest neighbors. With the

cutoff set at 100% sequence identity, ETA network diffusion has a

clear advantage at most coverages, as we have seen. At 20%

sequence identity the accuracy of all methods is low (below 40%).

However, ETA network diffusion maintains a small accuracy

advantage among the very highest confidence predictions (below

7% coverage). Thus, at levels of sequence identity likely to be

found in practical test cases, ETA network diffusion maintains an

accuracy advantage.

Figure 5. Performance penalty as edges are removed from a graph according to the sequence similarity of the nodes they connect
for 4 EC predictions. Accuracy/coverage tradeoffs of ETA network diffusion, nearest neighbor, and the top match from a BLAST search against
Swiss-prot are shown in red, blue and black circles respectively. Coverage increases as confidence decreases, meaning at 10% coverage we show the
accuracy of our 10% most confident predictions. Maximum allowed sequence identity is 80% in 3A, 60% in 3B, 40% in 3C and 20% is 3D. Accuracies
decline with each removal, but ETA network diffusion maintains higher accuracy at high confidences/low coverage.
doi:10.1371/journal.pone.0014286.g005
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Discussion

This work shows that the diffusion of protein functions over a

network of local structural and evolutionary similarities yields

accurate functional predictions. The key distinguishing features of

the diffusion process are (1) that it is guided by functionally-

relevant links. These links are defined by reciprocal ETA matches,

which establish that two proteins share some key functional

determinants that are in identical structural configurations.

Importantly, they can be generated from ET analysis without

any prior knowledge of a protein’s likely function or mechanism.

However, these links do reflect both evolutionary and structural

information about the most functionally relevant parts of a

protein. (2) Network diffusion also puts every link and every known

prior annotation on par across the entire network, so that all

annotations compete without bias, and the best one at each node is

objectively assessed with a statistical z-score.

Compared to other state-of-the-art approaches, confidence

values proved better at sorting unreliable predictions, and in turn

this improved annotation accuracy at the third and at the fourth,

and most specific, EC levels. These results are general since they

apply across all types of enzymes, and they are accurate since false

positive rates decrease substantially—between 2- to 5-fold. The

many predictions on unannotated proteins demonstrate the

benefits of the repeated use of evolutionary information and its

integration with structural information over the structural

proteome.

In order to identify the various sources of information that

improve annotation we compared the impact that negative

information has on diffusion on identical PDB 90 networks and

Structural Genomics testsets. Accuracy-coverage curves with

negative labels (Figure S4A, red) have a substantial accuracy

advantage over the same curves without negative labels (purple).

Without the negative labels, accuracy falls: at 50% coverage it

drops by 16% and 10.7% for 3 and 4 EC digit predictions,

respectively. Thus, the -1 entries in the y vector, which indicate the

knowledge that a protein does not perform a specific enzymatic

function, contribute significantly to accuracy. By contrast, many

annotation methods, for instance the nearest-neighbor and

BLAST approaches we benchmark against, do not make use of

this information. Hence, knowledge of which proteins in the

network lack a particular function is critical for function prediction

with diffusion, and may contribute to accuracy advantages over

other methods.

Additionally, in order to assess the contribution of distant

positive labels to annotation, we examined the shortest path

lengths between proteins with the same and differing functions.

Figure S4C shows a stacked histogram comparing the lengths of

shortest paths in the network between nodes with a correct

prediction and nodes in the dataset, segmented by the confidence

z-score. Proteins with the same function (blue) tend to have shorter

distances between them than proteins with different function

(orange), indicating that functions generally cluster in the network.

However the distributions have long tails, especially for predictions

with a z score less than 3, so that in a number of instances proteins

with the same function can be quite distant. Based on our

accuracies, the diffusion process is presumably able to connect

these distant proteins. Therefore, both negative labels and positive

labels distant by 10 or more nodes are additional information

sources that contribute to more accurate predictions in ETA

Network Diffusion.

Strikingly, these results rely on the large-scale comparison of just

six evolutionarily important template residues, chosen protein by

protein. The accuracy of the network shows that these residues

effectively capture the determinants of protein function. This in

essence, validates on a large scale the notion that ET analysis

identifies key functional residues—consistent with the conclusions

of many experimental case studies [36]. Notably, as this study

draws from many previous ideas, such as 3D templates [57], [76]

evolutionary importance [35], functional site analysis [88],

molecular determinants of function [23], [20] and network

analysis [64], [69], [89], [90] it combines them uniquely by

repeatedly relying on evolution at each step of the annotation

process.

First, the 3D template residues are selected for their evolution-

ary importance measured by ET, and for their structural

clustering. This local structural motif defined by evolution obviates

the need for any prior knowledge, or assumptions, about the

nature and determinants of function. This is an advantage since

compared to the size of the proteome, there are relatively few

proteins with reliable data on the molecular mechanisms

underlying their function and specificity, as may be available

from the catalytic site atlas [34]. Likewise, these 3D templates also

replace searches for structural features, such as clefts, cavities or

depressions, which are suggestive but rarely sufficient [88].

Second, the selection of which 3D template matches are

functionally relevant also relies on evolution. Out of the profusion

of purely geometric matches between a template and protein

structures, only those that involve residues with evolutionary

importance similar to the template residues are retained. Every

accepted match, and therefore every edge in the network, indicates

reciprocal similarities of evolutionary constraint and structural

context, which raises the likelihood of a true functional similarity.

It follows, third, that diffusion over a network defined by these

evolutionary template matches disseminates evolution-guided

inferences over the structural proteome. The correlation between

the confidence z-score associated with every diffused function and

the reliability of annotations confirm that these three hierarchical

types of evolutionary inferences—meaning the 3D template, the

match, and the diffusion—are all well founded: evolutionary

analysis thus dramatically narrows the search for the essential

determinants of a protein’s function and for their comparison.

The global network approach also has many intrinsic

advantages. It removes the heuristic aspect of the ETA voting

approach, [57] it enables global and formal integration of

information over the entire structural proteome, and, as a future

direction, it prepares the integration of ETA information with

many other types of functionally relevant protein similarity, since

the latter usually come in the form of pairwise relationships are

therefore well suited for network representation [64], [69].

Specifically, the diffusion process is non-local and draws

information from all of the functional labels in the network, not

just those from direct matches. As a result, it extends prediction

coverage compared to strictly local techniques. This is illustrated,

for example, by the gene PHO147 in Pyrococcus horikoshii (PDB

2dz9 chain A), as shown in Figure 6. This protein matches solely

unnannotated proteins in a well-connected cluster, so both ETA

and nearest neighbors can make no prediction. Network diffusion,

however, enables more distant annotations to inform the

annotation of this node, leading to a correct fourth EC digit

prediction.

The computation of a confidence z-score that correlates with

prediction accuracy is another contribution of this work. Together

with the global diffusion process, it enables unbiased consideration

of all possible functions, establishes an objective criterion for

selecting the best candidate, and attaches a confidence value to it.

As a result, predictions can be stratified by the z-score, yielding the

accuracy versus coverage receiver-operator curves, shown in

Network Diffusion of Function
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Figures 3C and 3D, that remain close to 100% accuracy over a

large coverage. Predictions with a z-score above 2 are over 99%

accurate and over a z-score of 1 they are 98% accurate.

Conversely, on the FLORA set, the vast majority of false positives

also had the lowest confidences (z,20.05) (Figure 2). The z-score

is therefore an adequate marker of confidence with which to

recognize unreliable predictions that otherwise would become false

positives. Overall, we see from 2 to 5 fold reductions in false

positives when compared to ETA, FLORA, nearest neighbors or

BLAST.

Collectively these improvements yield confident predictions at

the 4th EC level, which identifies precise substrates in many cases.

For example, the predicted EC annotation for gene PHO147 in

Pyrococcus horikoshii (PDB structure 2dz9A) is biotin—acetyl-CoA-

carboxylase ligase (EC 6.3.4.15). This function indicates the

substrates ATP, biotin and acetyl-CoA-carboxylase, which would

not be obtainable from a 3 digit EC annotation (EC 6.3.4,

Carbon—Nitrogen Ligases), which usually describes the chemical

reaction.

In the future, a number of network diffusion limitations remain

to be addressed. Here only enzymatic functions were considered,

although ETA itself makes both enzymatic and non-enzymatic

predictions using Gene Ontology (GO) terms [57]. The reason

was that the network diffusion of labels taken from a GO directed

acyclic graph (DAG) is more complex than from the simple EC

hierarchy. Another concern is to further extend the coverage of

yet unannotated proteins. As seen in Figure 5, ETA network

diffusion performs better than a BLAST search when there are

fewer homologs at high confidence z-scores. However, many

non-homologous proteins share molecular function as a result of

convergent evolution, [91] and variations can produce enzymes

with similar function but differing sequence motifs [92].

Moreover, enzymatic function can be flexible and depend on

context and expression level [7] such that enzymes are

promiscuous and may perform several functions [93]. Presum-

ably, to achieve even greater coverage, these problems will need

to be addressed by raising the function detection sensitivity of the

network. Further improvements in template construction [39],

[94] or data integration [69] are possible directions towards these

goals.

In practice, the competitive diffusion of Evolutionary Trace

Annotations via a global network of local evolutionary and

structural similarities provides a highly specific and reliable

method to predict the function of novel protein structures. With

the goal of minimizing false positives, we showed that the

confidence z-score can reliably select correct annotations and

identify those that are likely to be false. The improvement over

sequence comparison and nearest neighbor methods is most

striking for 4 EC level predictions. This leads to 257 high-

confidence functional predictions of Structural Genomics proteins

(Table S1). For one of these, the prediction of carboxylesterase

activity in Staphylococcus aureus protein SAV0321 (PDB ID 3h04),

we have demonstrated the accuracy of our method through an in

vitro assay.

Figure 6. Network neighborhood of PDB structure 2dz9A. Depicts the network neighborhood within 2 steps from structure 2dz9A. Structures
in red are annotated as biotin—acetyl-CoA-carboxylase ligases (6.3.4.15). White structures have no function or are part of the test set. The nearest
neighbor method leads to no prediction for 2dz9A because all matches are only to proteins without known function, but diffusion leads to a correct
prediction because of the proximity to that functional label and high connectivity.
doi:10.1371/journal.pone.0014286.g006
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Methods

ETA matches were generated as previously described. [57]

Edge weights were built from an ETA match using:

1=2 rmsd{mrmsdð Þ=srmsdz ETScore{mETScoreð Þ=sETScore½ � ð2Þ

where rmsd and ETScore are output by ETA and describe the

template match, mrmsd is the average rmsd, srmsd is the standard

deviation of the rmsds, mETScore is the average ETScore and

sETScore is the standard deviation of ETScores. The ETScore

describes the difference in evolutionary importance of matched

residues and the rmsd describes the difference in structure of the

matched template. Network construction and the diffusion

algorithm are described in Results.

The nearest neighbor algorithm uses the same underlying

network as the diffusion algorithm. It uses all ETA matches to

proteins with known function and picks the function with the

largest cumulative edge weights. The average edge weight of the

winning function is used as a confidence value.

Coverage/accuracy curves were produced by sorting the

predictions for the test sets in descending order by z-score, and

then plotting a point showing cumulative accuracy (correct

predictions/predictions made) and coverage (predictions made/

size of test set) for each z-score threshold. The sensitivity/precision

plot was produced in a similar manner: test set predictions were

sorted in descending order by z-score and cumulative sensitivity

(tp/(tp + fn) and precision (tp/(tp + fp)).

Comparison with BLAST was performed by BLASTing each

chain in the test set against release 14 of Swiss-Prot, which is

contemporary with the PDB data we used. The EC annotation of

the resulting homolog with the smallest e value was taken as the

predicted function. Comparison with PSI-BLAST was performed

in an analogous manner against the same release of Swiss-Prot as

the BLAST comparison. PSI-BLAST was allowed to run for 4

iterations.

The Structural Genomics testset was collected from the Protein

Data Bank(PDB) by searching for proteins tagged with ‘‘structural

genomics’’ and having an EC annotation. There were 1217

proteins with at least a 3-digit EC annotation, and 1036 with a 4

digit EC annotation. The list of candidate proteins for novel

predictions were collected by searching the PDB for proteins

labeled ‘‘structural genomics’’ and ‘‘unknown function.’’ Struc-

tures lacking annotation were counted by searching the protein

databank for proteins tagged with ‘‘structural genomics’’ and

matching a text search for ‘‘unknown function’’ or ‘‘hypothetical.’’

The PDB 90 dataset was downloaded from the PDB website. Of

approximately 18,600 proteins, 17,924 of them had enough

homologs to perform an Evolutionary Trace. Annotations from

the PDB were supplemented with annotations retrieved from the

GOA database [95].

In the FLORA testset there were 911 domains which represent

821 unique PDB chains. Of those, Evolutionary Trace (ET) was

able to find enough homologs for 806, which we used in our leave-

one out experiments. The 15 proteins for which ET was not able

to produce results are reflected in the lack of perfect sensitivity in

Figure 2. ETA predictions of three-digit EC functions were made

as described previously.

ClustalW [96] was used to calculate sequence identity between

matches found between the testset of 1217 structural genomics

proteins and their BLAST matches in SwissProt. Only matches

with EC annotation were recorded. 10 sets of predictions were

created, one for each {100, 90, 80, 70, 60, 50, 40, 30, 20, 10}%

sequence identity cutoff. At each threshold we ignored matches

that exceeded the allowed sequence identity. For BLAST

predictions, the match with the lowest e-value below the given

sequence identity threshold was used. Self matches were excluded.

For the S. aureus case study, the EFICAz2 search was done

through the PSiFR [97] tool provided at http://psifr.cssb.biology.

gatech.edu/. The PSI-BLAST search was done through the web

interface at http://www.ebi.ac.uk/Tools/psiblast/.

The structural comparisons were done with the DALI web

interface [81]: http://ekhidna.biocenter.helsinki.fi/dali_server/.

Network distance calculations were performed via the net-

workX python library.

Cloning and Expression
3h04 was amplified by PCR using the following primers: 59-

CTCCGTCGACAAGTGACTGAAATTAAA -39 and 59- ATA-

GTTTAGCGGCCGCCTTACACCATTGTTATAGC -39. The

underlined sequence corresponds to Sal1 and Not1 restriction sites

respectively. The PCR fragments were digested with Not1 (NEB)

and Sal1 (NEB) and ligated with pet28a Not1/Sal1 digested

vector. The ligation yielded an N-terminal 6x his-tag fusion that

was utilized for purification. The pet28a-3h04 plasmid was then

transformed into E. coli BL21D cells by electroporation. The

resulting strain was grown in LB broth containing 25 mg/mL of

kanamycin at 37uC. When the optical density at 600 nm reached

between.5-.6, protein expression was induced by the addition of

IPTG (Sigma) to a final concentration of.1 mM and left shaking at

150 rpm overnight at 25uC. The next day, cells were pelleted by

centrifugation and frozen at 280uC until needed for purification.

Purification
4mL of Bugbuster Mastermix Reagent (Novagen) was mixed

vigorously with 1 g of cell paste and 5 mL of protease inhibitor

cocktail set VII (Calbiochem), and incubated shaking at 4uC for

1 hour. The mixture was then centrifuged to pellet the insoluble

debris and the supernatant was mixed with Ni-nitrilotriacetic acid

(NTA) agarose resin (Qiagen) equilibrated in wash buffer (50 mM

NaH2PO4 [pH = 8.0], 2 M NaCl, and 2% glycerol) containing

7.5 mM Imidizole and left shaking at 4uC for 1 hour. The column

was then washed with 10 column volumes of wash buffer +25 mM

imidizole. The bound 3h04 protein was step eluted from the

column with wash buffer containing 40–400 mM Imidizole. 3h04

containing fractions were pooled and dialyzed against 50 mM

potassium phosphate buffer (monobasic, pH 7.0) containing 10%

glycerol. 3h04 protein solution was then concentrated using a

10 kDa cutoff Amicon Ultra-4 centrifugal unit (Millipore). Protein

concentration was estimated using the Micro BCA Protein Assay

Kit (Thermo).

Enzyme Assay
Carboxylesterase specific activity was determined by measuring

the amount of 4-nitrophenol produced from the hydrolysis of 4-

nitrophenyl acetate. One unit (U) of enzyme was defined as the

liberation of 1 mmole of 4-nitrophenol per minute. A 100 mM

stock solution of 4-nitrophenyl acetate was made by dissolving the

substrate in 100% DMSO. The final reaction mixture contained

50 mM 2-(N-Morpholino)ethanesulfonic acid (MES) pH 6.0, 3%

DMSO, 1 mM 4-nitrophenyl acetate and enzyme. After pre-

incubation for 10 minutes at 25uC, the reaction was initiated by

the addition of the substrate. The reaction was monitored by

observing the change in absorbance at 405 nm by UV

spectrometry (Amersham Ultrospec 3100pro). The molar extinc-

tion coefficient used for 4-nitrophenol at 405 nm for the specified

conditions was 8,629 M21 cm21.
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Supporting Information

Table S1 Novel structural genomics predictions. The improve-

ment in our method allowed us to make leads to 257 new high-

confidence functional predictions of Structural Genomics proteins.

Found at: doi:10.1371/journal.pone.0014286.s001 (0.19 MB

DOC)

Figure S1 3 EC Performance on Structural Genomics test set.

S3A. Accuracy/coverage tradeoffs of ETA network diffusion and

nearest neighbor are shown in red and blue circles respectively.

Coverage increases as confidence decreases, meaning at 10%

coverage we show the accuracy of our 10% most confident

predictions. Blue triangle shows the performance of ETA voting.

S3B. Performance compared to the top match from a BLAST

search of Swiss-prot. Diffusion on an ETA network clearly

outperforms BLAST (black circles) at most coverages on this

dataset. S3C: Accuracies when the z score cutoff is varied. For

each z score in the range, we plot the accuracy of all predictions

with that score or higher. Accuracy shows a steep decline after

z = 0.4. S3D shows a magnified view of the beginning of the steep

decline.

Found at: doi:10.1371/journal.pone.0014286.s002 (0.29 MB TIF)

Figure S2 3 EC Performance on Structural Genomics test set.

Accuracy/coverage tradeoffs of ETA network diffusion, nearest

neighbor, and the top match from a BLAST search against Swiss-

prot are shown in red, blue and black circles respectively.

Coverage increases as confidence decreases, meaning at 10%

coverage we show the accuracy of our 10% most confident

predictions. Maximum allowed sequence identity is 100% in 3A,

80% in 3B, 60% in 3C, 40% in 3D and 20% in 3E. Accuracies

decline with each removal, but ETA network diffusion maintains

higher accuracy at high confidences/low coverage.

Found at: doi:10.1371/journal.pone.0014286.s003 (0.44 MB TIF)

Figure S3 Sequence Identity Between Testset Proteins and

Their Top BLAST Match. In order to further explore the

relationship between sequence identity and prediction accuracy,

we have performed a BLAST search against the Swiss-Prot

database and show a histogram of the sequence identity between

the query protein and its BLAST match with the smallest e-value.

The distribution is not normal: most proteins either have a close

homolog, or do not display sequence homology with any proteins

in the database.

Found at: doi:10.1371/journal.pone.0014286.s004 (0.19 MB TIF)

Figure S4 Additional sources of information that lead to correct

predictions. In order to better understand the accuracy gains

observed with ETA network diffusion, we have performed several

comparisons. A & B: We perform network diffusion with (red) and

without (purple) negative labels (labels that denote that a protein

does not carry a particular function). Including negative labels

increases accuracy by 16% and 10.7% for 3 (A) and 4 (B) digit EC

predictions respectively, at 50% coverage, suggesting that negative

labels are very important for prediction accuracy. All tests were

performed on the structural Genomics testset and the 2008 PDB

90 dataset. C: Distance from nodes with correct 3 EC predictions

to nodes with and without the same function. For every protein in

the testset for which we make a correct prediction, we show the

length of the shortest path to nodes with the same (blue) and

different (orange) functions, separated by confidence z-score. All

infinite distances are ignored. Highly confident predictions tend to

be disconnected from the network. Predictions with lower

confidence have fewer close connections with the same function

and presumably must rely on information from more distant

nodes.

Found at: doi:10.1371/journal.pone.0014286.s005 (0.34 MB TIF)
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