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Abstract

Background: The historical Japanese influenza vaccination program targeted at schoolchildren provides a unique
opportunity to evaluate the indirect benefits of vaccinating high-transmitter groups to mitigate disease burden among
seniors. Here we characterize the indirect mortality benefits of vaccinating schoolchildren based on data from Japan and the
US.

Methods: We compared age-specific influenza-related excess mortality rates in Japanese seniors aged $65 years during the
schoolchildren vaccination program (1978–1994) and after the program was discontinued (1995–2006). Indirect vaccine
benefits were adjusted for demographic changes, socioeconomics and dominant influenza subtype; US mortality data were
used as a control.

Results: We estimate that the schoolchildren vaccination program conferred a 36% adjusted mortality reduction among
Japanese seniors (95%CI: 17–51%), corresponding to ,1,000 senior deaths averted by vaccination annually (95%CI: 400–
1,800). In contrast, influenza-related mortality did not change among US seniors, despite increasing vaccine coverage in this
population.

Conclusions: The Japanese schoolchildren vaccination program was associated with substantial indirect mortality benefits
in seniors.
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Introduction

Despite current approaches to prevention and control, seasonal

influenza remains a significant cause of morbidity and mortality

worldwide. While the elderly have the highest mortality rates of

all age groups, school-aged children are the most important

sources of community-wide transmission [1]. Vaccination is

currently the most effective means of preventing seasonal

influenza. Until recently, the seasonal vaccination strategy in

the US targeted persons at risk for serious complications

including seniors aged $65 years, individuals with chronic

conditions, children aged 6–23 months, and pregnant women [2].

Vaccine recommendations have gradually been expanded to

include all persons $6 months, but vaccination coverage among

school-aged children in the US has remained modest [3,4].

Analysis of US national vital statistics revealed that increasing

vaccination coverage in seniors from 1980 to 2001 did not

correlate with a decline in influenza-related mortality [5];

influenza-related hospitalization rates increased steadily in

persons aged $50 years during this time period [6]. These

findings suggest that the strategy of vaccinating only ‘‘high risk’’

populations may not be sufficient to decrease influenza

transmission and severe burden at the population level, in part

due to the weak immune response of seniors to vaccination [7].

A complementary, albeit debated, vaccination strategy specif-

ically targets schoolchildren to reduce community-wide transmis-

sion of seasonal influenza. School-based trials and observational

studies in the US and Russia suggest that the vaccination of

schoolchildren can reduce influenza-related morbidity and

mortality among non-immunized contacts and the elderly [8–
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14]. In a recent cluster-randomized controlled trial, immunization

of ,80% of schoolchildren conferred a 61% indirect protection

against influenza infection to unvaccinated individuals [15]. While

promising, these studies were conducted in small or selected

populations and do not necessarily provide sufficient evidence to

change vaccination policies [1]. Further evaluation of the

population-level effects of different vaccination strategies is

warranted to improve influenza control programs.

The Japanese experience offers a unique opportunity to

examine the population-level benefits of vaccinating schoolchil-

dren. From 1977 to 1987, the Japanese schoolchildren vaccina-

tion program achieved between 50 and 85% annual coverage in

children aged 3 to 15 years. The program was officially

discontinued in 1994, when the priority groups for vaccination

switched to seniors aged $65 years and those aged 60–64 years

with high-risk conditions [16–21] (Table S1). A previous study of

mortality trends by Reichert et al. showed that the Japanese

schoolchildren vaccination program was associated with a

decrease in the overall number of influenza-related excess deaths

and that excess deaths increased once the program was

discontinued [16]. Unfortunately, the study suffered from

methodological issues related to the estimation of influenza

disease burden, and did not adjust for variation in circulating

strains and rapid socio-economic and demographic changes

following World War II [22–24]. Further, Reichert et al. could

not quantify the indirect benefits of schoolchildren vaccination on

mortality among seniors due to lack of age-specific data [16]. In

the present study, we carefully re-examine the Japanese

vaccination strategy by analyzing detailed age-specific mortality

and virus surveillance data, and address previous methodological

criticisms. More importantly, we develop a statistical approach to

quantify the indirect effects of schoolchildren vaccination on

influenza-related mortality in seniors, using data from the US as a

control.

Methods

A detailed description of the data sources and analytic approach

is given in Information S1 and summarized below.

Mortality data and excess mortality approach
We compiled monthly pneumonia and influenza (P&I) deaths

and population estimates for individuals $65 yrs during 1978–

2006 from the Japanese Ministry of Health, Labor and Welfare

and the US National Center for Health Statistics (Table S2). As in

previous studies, we concentrated on trends in P&I mortality rates,

a specific indicator of influenza-related mortality [25,17]. We

focused on the 1978–2006 time period to obtain reliable

information on vaccine coverage ([17] and Table S1) and to

avoid the period of adaptation following the 1968 influenza A/

H3N2 pandemic, during which mortality in Japan and the US

declined steeply even in the absence of vaccination [16]. Mortality

data were stratified by five senior age groups (65–69, 70–74, 75–

79, 80–84, 85–89 years) to allow careful adjustment for changing

post-war demographics. Data on dominant influenza subtypes

circulating in Japan and the US during the study period were

obtained from [5,17].

To estimate seasonal influenza-related mortality rates, we

applied Serfling cyclical regression models to monthly P&I death

rates for each country and age-group, as in [5,26]. These models

provide seasonal baseline levels of expected mortality in the

absence of influenza virus circulation. Mortality observed in excess

of the baseline during influenza-epidemic months is attributed to

influenza and termed ‘‘seasonal excess mortality’’.

Estimating excess mortality reduction among seniors
To account for long-term changes in mortality unrelated to

influenza and for baseline differences between Japan and the US,

we standardized winter-seasonal excess P&I mortality rates for

changes in population structure and summer mortality rates

(Information S1). This approach has been used in the past to

adjust for differences in socioeconomic status and access to

healthcare between high and middle-income countries [27]. We

chose the US summer P&I mortality rate and population structure

in 2000 as a reference.

To quantify the indirect benefits of the Japanese vaccination

program, we assessed differences in crude and adjusted excess P&I

mortality rates during the schoolchildren vaccination period

(1978–1994) and the period immediately after the program was

discontinued (1995–2006). We modeled age-stratified seasonal

excess death rates using multivariate negative binomial regression,

using a log-link with a dummy indicator for time period, adjusting

for age and dominant virus subtype. A formal description of the

model used and model diagnostics are provided in the Fig. S3,

Table S8. We checked that interaction terms between the time

period and age variables were not significant in the model. We also

compared influenza-related mortality trends in Japan with those in

the US using the same methodology, utilizing the US experience

as a concurrent control that did not implement the vaccination of

schoolchildren.

Results

Influenza-related mortality trends in Japanese and
American seniors

Monthly time series of P&I mortality rates in Japanese and

American elderly, aged 65–89 years, reveals a series of peaks in

November–April during 1978–2006 (Fig. 1). On average, peaks of

P&I mortality in Japan reached magnitudes ,50% larger than

those in the US. Influenza A/H3N2 was dominant in 17 of the 29

seasons studied in both countries.

To examine long-term trends in influenza-related mortality we

calculated excess P&I mortality rates for 29 winter seasons, 1977/

1978 to 2005/2006 (Fig. 2, Table S3). On average, over the entire

period studied, crude excess mortality rates were higher in Japan

than in the US (19 v. 16 per 100000, respectively), but this patterns

reversed after adjustment for population demographics and socio-

economic trends (Table 1). Indeed, adjustment for between-

country differences in socio-economic conditions, using summer

mortality rates experienced in the US in 2000 as a reference,

resulted in a ,50% reduction in Japanese winter-seasonal excess

P&I mortality rates. In both countries, excess mortality rates

increased sharply with age (Fig. 3A & 3C, Tables S4) and were 2.1

to 2.5- fold higher during A/H3N2-dominant seasons than those

dominated by influenza A/H1N1 or B (Table S3). A sharp

elevation in excess mortality was observed in the US and Japan

during 1997–2000, a period concurrent with four sequential A/

H3N2-dominated seasons (Fig. 2).

Estimating the indirect mortality benefits of the Japanese
schoolchildren vaccination program

To evaluate the effectiveness of the Japanese schoolchildren

vaccination program we compared excess influenza-related

mortality rates when the program was in place (1978–1994) with

those in the decade after the program was discontinued (1995–

2006). In Japan, average crude and adjusted excess P&I mortality

rates among seniors increased by 93 and 113%, respectively,

during the post-schoolchildren vaccination program period

(P,0.04, Table 1). In addition, excess mortality rates increased

Vaccination and Excess Mortality, US and Japan
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by 26 to 114% across the 5 senior age subgroups after the program

was terminated (Fig. 3A & 3B, Tables S4). Interestingly, the

increase in excess mortality rates was more pronounced in older

age groups (P,0.05 for adjusted mortality rates among 70–89 year

olds).

To check that the increase in excess P&I mortality in Japan

after 1994 was specific to the discontinuation of the schoolchil-

dren vaccination program, we used trends in excess P&I

mortality in the US over the same time period as a control. In

contrast to Japan, there was no difference in excess mortality

rates before and after 1994, in any of the US senior age groups

(Table 1, Fig. 3C–D). In addition, adjusted excess mortality

rates in Japan were significantly lower than those in the US

during the Japanese schoolchildren vaccination program

(P = 0.001) and subsequently became similar to those in the

US (P = 0.18, Table S5).

To further control for increased circulation of the influenza A/

H3N2 subtype after the Japanese schoolchildren vaccination

program was discontinued, we fit negative binomial models to

seasonal excess mortality rates, with time period, dominant

influenza subtype, and the five age groups as covariates (Table 2).

In Japan, the relative risk of adjusted excess mortality in seniors

was 0.64 during the vaccination program (95% CI: 0.49–0.83),

corresponding to a 36% reduction in excess mortality through

indirect protection (95% CI 17–51%). These vaccination benefits

represent 992 adjusted excess deaths averted per season among

seniors in Japan (95% CI: 355–1,825) or 7.5 deaths averted per

100,000 (95% CI: 2.8–14.4 per 100,000). The estimated benefits

were lower in the unadjusted data (Table 2). In contrast to Japan,

the same modeling approach applied to the US data revealed no

significant difference in the risk of excess mortality between the

two periods (Table 2).

To ensure that our findings were not simply the byproduct of

the particular time periods chosen, we repeated our analysis using

different time periods for trend comparisons. For instance, we

compared the last ten influenza seasons of the schoolchildren

vaccination program (1983–1994) with the first ten seasons after

the program was discontinued (1995–2006). The reductions in

excess P&I mortality rates associated with the schoolchildren

vaccination program were even more pronounced when we

considered these shorter periods (Table S7).

Finally, as a sensitivity analysis, we compared influenza

vaccination strategies in Japan and the US by including excess

mortality rates from both countries in the same model, allowing

direct between-country comparisons (Table S6). This model

confirmed that Japanese seniors were at lower risk of adjusted

excess P&I death during the schoolchildren vaccination

program compared to when the program was discontinued,

and produced similar mortality reductions as before (36%, 95%

CI: 17–50%). Interestingly, however, Japanese seniors remained

at lower risk of death than US seniors during the entire study

period (Table S6).

Figure 1. Pneumonia and influenza (P&I) mortality rates among the Japanese (A) and US (B) elderly, aged 65–89 years, Jan. 1977–
Dec. 2006. Expected mortality rates in the absence of influenza virus circulation are shown in black, as determined by the Serfling seasonal baseline
approach. Influenza epidemic months are highlighted in grey.
doi:10.1371/journal.pone.0026282.g001
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Discussion

To evaluate the indirect mortality benefits of the Japanese

schoolchildren vaccination program, we studied seasonal influen-

za-related excess mortality rates among Japanese and American

seniors from 1978 to 2006. We found that crude excess P&I

mortality rates in Japanese seniors increased by 93% after the

schoolchildren vaccination program was discontinued in 1994. A

large fraction of this increase was due to more frequent circulation

of the severe influenza A/H3N2 virus subtype in recent years.

After controlling for circulating subtype, trends in population

demographics and baseline risk of death, we estimated that the

schoolchildren vaccination program conferred a 36% protective

benefit against influenza-related mortality to Japanese seniors

(95% CI:17–51%). On average, we estimate that this program was

associated with 992 excess P&I deaths averted per season (95% CI:

355–1,825). In addition to this statistical analysis, we developed an

age-structured transmission model to estimate the indirect

mortality benefits of schoolchildren vaccination (Information S1).

The model predicted a 26–52% reduction in influenza-related

mortality amongst senior populations, consistent with our

statistical findings (Figs. S1–2).

To control for changes in the severity of circulating influenza

viruses, we estimated trends in influenza-related mortality in the

US, where influenza vaccination was targeted to high-risk groups

and coverage among seniors has gradually increased to ,65%.

We did not find significant changes in influenza-related mortality

rates among US seniors during the study period (1978–2006),

consistent with previous work [16].

In 2001, Reichert et al. reported that the Japanese schoolchil-

dren vaccination program prevented between 10,000 and 12,000

excess P&I deaths per season in the entire population, but the

authors did not analyze mortality data specific to seniors [16].

Our estimate of 992 excess P&I deaths (95% CI: 335–1,825)

averted among seniors is substantially lower. Reichert et al.

estimated mortality reductions by comparing excess P&I

mortality rates in 1990 to those in the 1960 s. Notably,

influenza-related excess mortality rates in the 1950 s–60 s were

declining sharply in all countries due to socio-economic changes.

Excess mortality rates also declined during the years immediately

following the 1968 A/H3N2 pandemic, likely due to the

population-wide acquisition of natural immunity to these viruses

over time (rather than to vaccination) [5,28]. In addition, this

study and others have shown that excess mortality estimates are

very sensitive to the frequency of A/H3N2 virus circulation,

which was not controlled for in the Reichert et al. study [16].

Therefore, we believe our evaluation of the schoolchildren

vaccination program using mortality data specific to seniors,

Figure 2. Seasonal excess pneumonia and influenza (P&I) mortality rates among the Japanese (A) and the US elderly (B), aged 65–
89 years, 1977–78 to 2005–06 seasons. Squares represent seasons dominated by influenza A/H3N2 viruses; circles represent seasons dominated
by influenza A/H1N1 or B. Blue symbols represent crude excess mortality estimates; red symbols represent excess mortality estimates adjusted for
population aging and trends in baseline mortality risk. The blue and red lines represent 5-yr moving averages of the crude and adjusted seasonal
excess mortality rates, respectively. Grey bars in (A) represent the number of vaccine doses distributed per influenza season in Japan; grey bars in (B)
represent the influenza vaccine coverage among the US non-institutionalized elderly aged $65.
doi:10.1371/journal.pone.0026282.g002

Vaccination and Excess Mortality, US and Japan
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and including recent years for comparison, is more prudent and

allows adjustment for important confounders.

Our results can also be compared to those of a recent

Canadian cluster-randomized controlled trial, in which immuni-

zation of ,80% of schoolchildren conferred 61% indirect

protection against clinical influenza infection to unvaccinated

individuals (95% CI: 8–83%) [15]. Our analysis suggests a lower

indirect mortality benefit of 36% (95% CI: 17–51%), although

the confidence intervals of the two studies are large and overlap.

Our study’s lower point estimate could be explained by lower

vaccination rates among Japanese schoolchildren, or lower

efficacy of historical vaccines [18,19,21]. We note that our age-

structured transmission model corresponds well with the

Canadian findings, predicting a ,60% reduction in influenza-

related mortality among seniors at high vaccine coverage (Fig.

S2). Further research should focus on combining epidemiological

data with mathematical transmission models to evaluate different

vaccination strategies.

Several limitations of our study should be mentioned. We

concentrated on P&I mortality, despite the fact that the impact of

influenza is not limited to solely P&I [29]. The Japanese

schoolchildren vaccination program was associated with a non-

significant reduction in excess all-cause mortality in seniors (not

shown), which could be explained by a lack of specificity and

unaccounted baseline time trends [5,25]. Although it would have

been interesting to investigate trends in other causes of death

traditionally linked to influenza, such as respiratory and cardiac

diseases, these data were not available to us. Additionally, our

study was ecological and prone to confounders, which is why we

introduced the US comparison as a control. Furthermore, we

adjusted for the circulation of more virulent A/H3N2 viruses,

accounted for population aging by studying age-specific mortality

rates and used sensitivity analyses to explore the robustness of our

findings. We also supplemented our data on vaccine doses

distributed with age-specific vaccine coverage data for selected

years [18,19,21]. Finally, we used mortality data from summer

Figure 3. Crude (left panels) and adjusted (right panels) excess pneumonia & influenza (P&I) seasonal mortality rates by age group
and time period in Japan (top) and the US (bottom). Rates were adjusted for time trends in the baseline risk of mortality. Asterisks indicate
statistically significant differences between the two time periods using Wilcoxon’s Rank Sum Test (P,0.05).
doi:10.1371/journal.pone.0026282.g003

Table 1. Average excess P&I mortality rates per 100,000 in Japanese and US seniors aged 65–89 yrs, 1978–2006.

1978–2006
Avg. (SD)

1978–1994
Avg. (SD)

1995–2006
Avg. (SD) % change between time periods P-value

Japan Excess P&I 19.18 (15.9) 13.85 (11.0) 26.73 (19.0) 93% 0.034

Japan Adjusted Excess P&I 10.00 (8.7) 6.82 (5.8) 14.51 (10.3) 113% 0.027

USA Excess P&I 16.39 (7.7) 15.26 (8.3) 17.99 (6.9) 18% 0.445

USA Adjusted Excess P&I 16.94 (8.5) 16.25 (9.5) 17.91 (7.0) 10% 0.527

Standard deviations are tabulated in parentheses. Percent changes were calculated as the mean mortality rate in 1995–2006 (the period after discontinuation of the
Japanese schoolchildren vaccination program) minus that in 1978–1994 (the schoolchildren vaccination program period in Japan), divided by the mean mortality rate in
1978–1994. P-values were determined using Wilcoxon’s Rank Sum Test. Adjusted estimates were standardized to the US population structure of 2000 and corrected for
time trends in the baseline risk of mortality (see Methods).
doi:10.1371/journal.pone.0026282.t001

Vaccination and Excess Mortality, US and Japan
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periods, free of the effect of influenza, to adjust for time trends in

the background risk of death among seniors in 1978–2006 due to

differences in access to care, underlying co-morbidities or other

causes. Patterns identified in adjusted excess mortality estimates

were always in the same direction as those identified in crude

mortality estimates.

We considered two competing explanations for the increase in

excess influenza-related mortality observed in Japanese seniors

after the schoolchildren vaccination program was discontinued:

the growing impact of nursing homes and antiviral treatment.

While the number of ‘‘Nursing Homes for the Elderly’’ increased 5

fold between 1980 and 2006 in Japan, the percentage of three-

generation households decreased from 16.2 to 9.1% [30,31].

However, the overall proportion of elderly persons living in

nursing facilities remained low throughout the study period in

Japan and could not account for the substantial increases seen in

influenza-related mortality rates in recent years.

Oseltamivir use has increased substantially in Japan since

2003 in all age groups, making Japan the country with the

highest annual level of oseltamivir use per capita, comprising

.70% of the world’s consumption in 2009 [32,33]. The decline

in influenza-related mortality in the Japanese elderly observed

after 2000 may be due in part to the routine use of oseltamivir

and in part to increasing vaccination rates amongst the elderly,

other high-risk groups, and children aged 6–13 years (Fig. 2,

Table S1). While it is too soon to precisely evaluate to effect of

oseltamivir use on influenza-related mortality in the Japanese

population, high oseltamivir usage was limited to the last 3 years

of our study and would only bias our analyses towards null

hypotheses.

In conclusion, numerous studies have reported that school-

aged children have high influenza attack rates and play an

important role in the transmission of influenza within schools,

families and communities [34–38]. Importantly, children respond

well to vaccination and vaccinating this age-group is cost-

effective, regardless of indirect benefits to unvaccinated contacts

[39–41]. Here, we have shown that the Japanese schoolchildren

vaccination program was associated with significant reductions in

influenza-related excess P&I mortality among the Japanese

elderly. Our estimates of indirect vaccination benefits are

conservative because they focus on P&I mortality, a fraction of

the total mortality burden of influenza and because the Japanese

population has not entirely escaped influenza vaccination or

antiviral treatment since the schoolchildren vaccination program

was discontinued. Our findings fit well with an accumulating

body of theoretical and experimental evidence suggesting that

high vaccination coverage of children can contribute to

reductions in morbidity and mortality among non-immunized

community members [42–44].

While the societal structure of Japan is markedly different from

that of the US, we believe that our findings can extend to the US

population for several reasons. First, several community-scale

studies in the US have indicated that vaccinating schoolchildren

against influenza confers herd immunity in unvaccinated

community members [8–10,15]. Second, the introduction of

several pediatric vaccines has produced substantial herd protec-

tive effects on the population level, most notably the pneumo-

coccal vaccine [34]. In particular, the US-introduction of a

vaccine targeting seven types of pneumococcal disease in young

children in 2000 has substantially reduced the rates of carriage

and invasive disease amongst people aged .50 years [44]. Our

findings support vaccination of school-aged children, a group

included in the most recent ACIP recommendations, which

encourage yearly seasonal influenza vaccination for all persons

aged $6 months in the US [3]. While seasonal influenza vaccine

coverage remained low in US children aged 6 months – 17 years

during the 2008–2009 epidemic season, they reached ,44%

towards the end of 2009 [45,46]. It will be interesting to compare

influenza-related disease trends in the US with those in other

countries as vaccine coverage continues to increase in pediatric

populations.

Supporting Information

Figure S1 Schematic of the compartmental influenza
transmission model used to evaluate observed trends in
Japanese excess mortality. Note that the actual model is

structured into 15 age groups.

(DOC)

Figure S2 Reduction in influenza-related mortality
rates among Japanese elderly, results from an age-
structured model of influenza transmission. (A) Reduc-

tion in influenza-related mortality rates amongst the elderly

(blue-red), as a function of influenza vaccine coverage in

schoolchildren (y-axis) and effective reproduction number, Re,

(x-axis) as predicted by our influenza transmission model. Vac-

cine efficacy is set at 42% (B) Same as in A) but with varying

vaccine efficacy (y-axis); vaccination coverage in schoolchildren

is held at 70%.

(DOC)

Figure S3 Negative binomial model diagnostics. Panel A

depicts the model residuals v. predicted values, while panel B

depicts the observed data v. the model fitted values (y = x line

present for reference). See Table 2 of the main text for model

results and interpretation; see Eq. 2 above for a full description of

the statistical model.

(DOC)

Table S1 Age-specific influenza vaccination rates, Ja-
pan, 2000–2006.

(DOC)

Table 2. Relative risks of excess P&I death among seniors aged 65–89 in 1995–2006 compared to 1978–1994 in Japan and the US,
controlling for influenza subtype dominance, population aging, and trends in baseline risk of mortality.

Model Outcome
Adjusted RR (1978–1994
v. 1995–2006)

Adjusted Protective Effectiveness
of the Vaccination Program (%)

Number of Deaths Averted per Season due to
the Schoolchildren Vaccination Program

Japan Adjusted Excess P&I: 0.64 (0.49–0.83) 35.90 (16.67–50.74) 992 (355–1825)

USA Adjusted Excess P&I: 1.04 (0.87–1.24) 24.16 (223.46–13.04) _

The period 1978–1994 corresponds to the schoolchildren vaccination program in Japan, which was discontinued after 1994. Vaccine protective effectiveness estimates
were calculated as (1-1/RR)6100.
doi:10.1371/journal.pone.0026282.t002
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Table S2 Underlying cause of death codes used to
identify mortality due to pneumonia and influenza
(P&I: Pneumonia and Influenza, ICD: International
Classification of diseases).
(DOC)

Table S3 Crude and adjusted influenza-related excess
mortality rates per 100,000 among Japanese and Amer-
ican seniors aged 65–89 yrs, and dominant influenza
subtypes in circulation, 1978–2006. Adjusted mortality rates,

standardized to the US population structure of 2000 and adjusted

for time trends in the baseline risk of mortality, are displayed in

parentheses.

(DOC)

Table S4 Comparison of crude and adjusted excess P&I
mortality rates per 100,000 among Japanese and US
seniors in 1978–1994 with those in 1995–2006. Adjusted

rates take into account time trends in baseline mortality risk.

Percent changes were calculated as the mean mortality rate in

1995–2006 minus that in 1978–1994, divided by the mean

mortality rate in 1978–1994. P-values were determined using

Wilcoxon’s Rank Sum Test.

(DOC)

Table S5 Comparison of adjusted excess P&I mortality
rates per 100,000 between Japanese and American
seniors, aged 65–89. Standard deviations are tabulated in

parentheses. P-values were determined using Wilcoxon’s Rank

Sum Test.

(DOC)

Table S6 Sensitivity analysis including US and Japan
mortality data in the same model. We modeled age-

adjusted excess P&I estimates in Japan and the USA using

multivariate negative binomial regression. Adjusted excess P&I

estimates were standardized to the US summer mortality rate of

2000. We evaluated three different vaccination periods (Japan

1978–1994, schoolchildren vaccination; Japan 1995–2006, mixed

vaccination; USA 1978–2006, elderly vaccination), adjusting for

age, time trends in baseline mortality risk, and A/H3N2 subtype

dominance.

(DOC)

Table S7 Sensitivity analysis of time periods considered
in mortality trend comparisons. Comparison of crude and

adjusted excess P&I mortality rates among Japanese and US

seniors in 1983–1994 with those in 1995–2006. Adjusted rates take

into account time trends in baseline mortality risk. Percent

changes were calculated as the mean mortality rate in 1995–

2006 minus that in 1983–1994, divided by the mean mortality rate

in 1983–1994. P-values were determined using Wilcoxon’s Rank

Sum Test.

(DOC)

Table S8 Parameter estimates and standard errors of
the negative binomial model used to estimate the
reduction in influenza-related mortality among Japa-
nese seniors during the vaccination of schoolchildren
time period (1978–1994). Note that the 65–69 year old age

group is used as a reference, and all model terms are statistically

significant (P,0.05). See Eq. 2 above for a full description of the

statistical model.

(DOC)

Information S1 Supplemental methods.
(DOC)

Acknowledgments

This research was conducted in the context of the Multinational Influenza

Seasonal Mortality Study (MISMS), an ongoing international collaborative

effort to understand influenza epidemiological and evolutionary patterns,

led by the Fogarty International Center, National Institutes of Health

(http://www.origem.info/misms/index.php).

Author Contributions

Conceived and designed the experiments: VC CV LS GC. Analyzed the

data: VC CV LS GC. Contributed reagents/materials/analysis tools: MS

NS. Wrote the paper: VC CV LS KS-R MS GC MM NS.

References

1. Halloran ME, Longini IM (2006) Public health. Community studies for

vaccinating schoolchildren against influenza. Science 311: 615–616.

2. Harper SA, Fukuda K, Uyeki TM, Cox NJ, Bridges CB (2004) Prevention and

control of influenza: recommendations of the Advisory Committee on
Immunization Practices (ACIP). MMWR Recomm Rep 53: 1–40.

3. Fiore AE, Uyeki TM, Broder K, Finelli L, Euler GL, et al. (2010) Prevention and

control of influenza with vaccines: recommendations of the Advisory Committee

on Immunization Practices (ACIP), 2010. MMWR Recomm Rep 59: 1–62.

4. (2010) Seasonal influenza vaccination coverage among children aged 6 months-
18 years — eight immunization information system sentinel sites, United States,

2009–10 influenza season. MMWR Morb Mortal Wkly Rep 59: 1266–1269.

5. Simonsen L, Reichert TA, Viboud C, Blackwelder WC, Taylor RJ, et al. (2005)

Impact of influenza vaccination on seasonal mortality in the US elderly
population. Arch Intern Med 165: 265–272.

6. Thompson WW, Shay DK, Weintraub E, Brammer L, Bridges CB, et al. (2004)
Influenza-associated hospitalizations in the United States. JAMA 292:

1333–1340.

7. Goodwin K, Viboud C, Simonsen L (2006) Antibody response to influenza

vaccination in the elderly: a quantitative review. Vaccine 24: 1159–1169.

8. Monto AS, Davenport FM, Napier JA, Francis T (1969) Effect of vaccination of

a school-age population upon the course of an A2-Hong Kong influenza
epidemic. Bull World Health Organ 41: 537–542.

9. Monto AS, Davenport FM, Napier JA, Francis T (1970) Modification of an

outbreak of influenza in Tecumseh, Michigan by vaccination of schoolchildren.

J Infect Dis 122: 16–25.

10. Piedra PA, Gaglani MJ, Kozinetz CA, Herschler G, Riggs M, et al. (2005) Herd
immunity in adults against influenza-related illnesses with use of the trivalent-live

attenuated influenza vaccine (CAIV-T) in children. Vaccine 23: 1540–1548.

11. Jordan R, Connock M, Albon E, Fry-Smith A, Olowokure B, et al. (2006)

Universal vaccination of children against influenza: are there indirect benefits to

the community? A systematic review of the evidence. Vaccine 24: 1047–1062.

12. Ghendon YZ, Kaira AN, Elshina GA (2006) The effect of mass influenza

immunization in children on the morbidity of the unvaccinated elderly.
Epidemiol Infect 134: 71–78.

13. Rudenko LG, Slepushkin AN, Monto AS, Kendal AP, Grigorieva EP, et al.
(1993) Efficacy of live attenuated and inactivated influenza vaccines in

schoolchildren and their unvaccinated contacts in Novgorod, Russia. J Infect
Dis 168: 881–887.

14. Glezen WP, Gaglani MJ, Kozinetz CA, Piedra PA (2010) Direct and Indirect
Effectiveness of Influenza Vaccination Delivered to Children at School

Preceding an Epidemic Caused by 3 New Influenza Virus Variants. The
Journal of Infectious Diseases 202: 1626–1633.

15. Loeb M, Russell ML, Moss L, Fonseca K, Fox J, et al. (2010) Effect of influenza
vaccination of children on infection rates in Hutterite communities: a

randomized trial. JAMA 303: 943–950.

16. Reichert TA, Sugaya N, Fedson DS, Glezen WP, Simonsen L, et al. (2001) The

Japanese experience with vaccinating schoolchildren against influenza.
N Engl J Med 344: 889–896.

17. Sugaya N, Takeuchi Y (2005) Mass vaccination of schoolchildren against

influenza and its impact on the influenza-associated mortality rate among

children in Japan. Clin Infect Dis 41: 939–947.

18. Hirota Y, Kaji M (2008) History of influenza vaccination programs in Japan.
Vaccine 26: 6451–6454.

19. Dowdle WR, Millar JD, Schonberger LB, Ennis FA, LaMontagne JR (1980)
Influenza immunization policies and practices in Japan. J Infect Dis 141:

258–264.

20. Reichert TA (2002) The Japanese program of vaccination of schoolchildren

against influenza: implications for control of the disease. Semin Pediatr Infect
Dis 13: 104–111.

21. Inoue K (1999) Protecting Japan from influenza. Nat Med 5: 592.

22. Inouye S, Kramer MH (2001) Vaccinating Japanese schoolchildren against

influenza. N Engl J Med 344: 1946; author reply 1947–1948.

Vaccination and Excess Mortality, US and Japan

PLoS ONE | www.plosone.org 7 November 2011 | Volume 6 | Issue 11 | e26282



23. Fukuda K, Thompson WW, Cox N (2001) Vaccinating Japanese schoolchildren

against influenza. N Engl J Med 344: 1946–1947; author reply 1947–1948.
24. Yamazaki T, Suzuki T, Yamamoto K (2001) Vaccinating Japanese schoolchil-

dren against influenza. N Engl J Med 344: 1947; author reply 1947–1948.

25. Simonsen L (1999) The global impact of influenza on morbidity and mortality.
Vaccine 17 Suppl 1: S3–10.

26. Viboud C, Grais RF, Lafont BAP, Miller MA, Simonsen L (2005) Multinational
impact of the 1968 Hong Kong influenza pandemic: evidence for a smoldering

pandemic. J Infect Dis 192: 233–248.

27. Cohen C, Simonsen L, Kang J, Miller M, McAnerney J, et al. (2010) Elevated
Influenza-Related Excess Mortality in South African Elderly Individuals, 1998–

2005. Clinical Infectious Diseases 51: 1362–1369.
28. Rizzo C, Viboud C, Montomoli E, Simonsen L, Miller MA (2006) Influenza-

related mortality in the Italian elderly: no decline associated with increasing
vaccination coverage. Vaccine 24: 6468–6475.

29. Thompson WW, Shay DK, Weintraub E, Brammer L, Cox N, et al. (2003)

Mortality associated with influenza and respiratory syncytial virus in the United
States. JAMA 289: 179–186.

30. Sasaki M (2008) Families and their children in Japan: Demographical, marital
instability, and child-rearing stress. Available at: http://www2.aasa.ac.jp/

faculty/medwelfare/kiyoo/PDF/No4/JWM04-05.pdf. Accessed 27 May 2010.

31. Ministry of Health & Welfare White Paper: Annual report on health and
welfare. 1998–1999 social security and national life. Available at: http://www1.

mhlw.go.jp/english/wp_5/vol1/p1c3s3.html. Accessed 27 May 2010.
32. Ujike M (2010) Oseltamivir-Resistant Influenza Viruses A (H1N1) during 2007–

2009 Influenza Seasons, Japan. Emerg Infect Dis;Available at: http://www.cdc.
gov/eid/content/16/6/926.htm. Accessed 27 May 2010.

33. Sugaya N, Mitamura K, Yamazaki M, Tamura D, Ichikawa M, et al. (2007)

Lower clinical effectiveness of oseltamivir against influenza B contrasted with
influenza A infection in children. Clin Infect Dis 44: 197–202.

34. Glezen WP (2006) Herd protection against influenza. J Clin Virol 37: 237–243.

35. Glezen WP (2008) Universal influenza vaccination and live attenuated influenza

vaccination of children. Pediatr Infect Dis J 27: S104–109.
36. Glezen WP (2008) Clinical practice. Prevention and treatment of seasonal

influenza. N Engl J Med 359: 2579–2585.
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