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Abstract

Background: Phylogenetic study of protein sequences provides unique and valuable insights into the molecular and
genetic basis of important medical and epidemiological problems as well as insights about the origins and development of
physiological features in present day organisms. Consensus phylogenies based on the bootstrap and other resampling
methods play a crucial part in analyzing the robustness of the trees produced for these analyses.

Methodology: Our focus was to increase the number of bootstrap replications that can be performed on large protein
datasets using the maximum parsimony, distance matrix, and maximum likelihood methods. We have modified the PHYLIP
package using MPI to enable large-scale phylogenetic study of protein sequences, using a statistically robust number of
bootstrapped datasets, to be performed in a moderate amount of time. This paper discusses the methodology used to
parallelize the PHYLIP programs and reports the performance of the parallel PHYLIP programs that are relevant to the study
of protein evolution on several protein datasets.

Conclusions: Calculations that currently take a few days on a state of the art desktop workstation are reduced to
calculations that can be performed over lunchtime on a modern parallel computer. Of the three protein methods tested, the
maximum likelihood method scales the best, followed by the distance method, and then the maximum parsimony method.
However, the maximum likelihood method requires significant memory resources, which limits its application to more
moderately sized protein datasets.
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Introduction

Increases in the quantity of molecular sequence data available

for analysis, with over 1,000 complete genomes available at

NCBI’s Genome Project Resource, has brought with it both the

ability and need to perform phylogenetic analyses on larger, more

complex data sets. These large-scale phylogenetic studies provide

unique and valuable insights into the molecular and genetic basis

for important medical and epidemiological problems such as drug

resistance [1], molecular receptor function [2] as well as important

questions about the origins and development of physiological

features in present day organisms [3,4].

These studies use a multiple sequence alignment to represent

the evolutionary history of a protein, gene, chromosome, or

genome. This alignment is represented as a matrix to reconstruct a

phylogenetic tree. This tree would ideally be a binary tree with

unequal branch lengths. With molecular data the nodes represent

speciation/mutation or duplication events, and the branch lengths

the time of evolution. A recent paper [5] compared 31 orthologs

across 191 species using an automated procedure to reconstruct

the tree of life. The tree reconstruction used a ‘‘supermatrix of 8090

positions for 191 species’’. Both of these tasks – constructing an

optimal multiple sequence alignment and searching for the

optimal phylogenetic tree – are known to be NP-complete [6].

The major methods of phylogenetic tree search are Distance

Matrix based methods, Maximum Parsimony, Maximum Likeli-

hood (ML), and Bayesian methods. The four methods are

computationally intensive, particularly the ML, and Bayesian

methods using Markov Chain Monte Carlo (MCMC) techniques

to determine posterior probabilities (PP). Because the numbers of

trees to be searched increases in a factorial manner with the

number of sequences included in the multiple sequence alignment,

alternate approaches that use heuristic methods to accelerate the

search for the optimal tree have been explored. These heuristic

searches produce reliable results, but without the certainty of

arriving at the optimal solution.
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In order to determine the reliability of a phylogeny and to make

inferences about the evolutionary history derived from the tree the

main methods are Bayesian posterior probabilities and percent

support for tree nodes using resampling methods, i.e. bootstrap

percentages (BP). Also bootstrapped percentage posterior proba-

bilities (BP-PP) have been advocated as providing a better

estimator than PP alone, which often yield a number of false

positives [7]. Consensus phylogenies based on the bootstrap and

other resampling methods are a crucial part of the new analyses

that attempt to infer macroevolutionary events [8], as well as the

required input for many new statistical analyses [9]. Resampling

procedures use substantial computer resources and require

significant turnaround time even for modest traditional datasets

in molecular phylogenetics. Typically this entails an additional

factor of 100–1000 or more in the running time owing to the

bootstrap iterations. Today, typical BP in many large trees range

from 100% to 50%, sometimes even lower. By increasing the

number of bootstrap replicates, one can obtain a more reliable

measure of the variance of the phylogenetic bootstrap p-value

[10]. In order for the error in a binary phylogeny BP with values at

50–100% to be less than 65% at 95% confidence, at least 400

replications must be used. For a 62% error at least 2,000–2,500

replications are required at these BPs. For 61% error at 90% BP

approximately 3,500 replicates are needed. By increasing the

number of bootstrap replicates, one can obtain a more reliable

measure of the variance of the phylogenetic bootstrap p value [10].

Yet, limitations on computational resources are often cited in the

literature as barriers to using the bootstrap method in large-scale

phylogenetic studies [7,11,12]. With the rapidly expanding interest

and need for these calculations, parallel versions of the software

used to carry out the resampling calculations becomes a critical

need.

While resampling itself requires a linear increase in the amount

of computer time necessary for a particular calculation, the

increased dataset size made possible by the new data collection

methods causes the needed computer time to increase substantially

as well. First, to find the optimal or at least a near optimal tree

requires exploring or sampling the space of all possible trees which

increases factorially with the number of sequences, while

computing the pairwise distances between the sequences in the

(resampled) data increases as the square of the number of

sequences. This is by itself a significant factor since the increase

in dataset size associated with the new data collection methods can

be over an order of magnitude. Further, with more sequences and

the factorial increase in the number of possible trees it is desirable

to make a corresponding increase in the number of resampled

datasets examined. Thus, the calculations under consideration can

reach into weeks and even months for turnaround time on modern

single processor workstations. As stated by Williams, Bader, Moret

and Yan, ‘‘depending on a user’s current needs, an analysis can be short (i.e.,

24 hours) or it could run for several months’’ [13]. Sometimes

calculations are not carried to their full extent because of the

number of times a program must be run. For example, Douady,

Delsuc, Boucher, Doolittle and Douzery state in their paper: ‘‘For

computing time reasons (i.e., running 2,500 times MrBayes), BPBay were only

computed for the 25 data sets showing the greatest contrast between BPML and

PP’’ [7]. (MrBayes is a program for computing trees using

Bayesian MCMC, and BPBay, BPML are bootstrap percentages for

posterior probabilities and maximum likelihood respectively). In

more recent work Talavera and Castresana (2007) were testing the

G-Blocks program for trimming alignments and how the

phylogenies improved, and they wrote: ‘‘Due to heavy computational

requirements of the bootstrap analyses, the number of simulations was reduced

to 150’’ [14]. The only way to carry out such calculations on the

number of datasets required to make robust statistical claims in a

reasonable amount of time is parallelization.

Parallel and/or distributed algorithms for ML and Bayesian

methods have been developed in the last few years and include

DPRml [15], MultiPhyl [16], pIQPNNI [17], parallel MrBayes

[18], ClustalW-MPI [19], TREE_PUZZLE [20], and RaxML

[21,22,23,24]. Most of these methods address the issues of

computational complexity and of the tree search only. The

program RaxML is one of the most developed. It provides

heuristic construction of the phylogenetic tree using Maximum

Parsimony. Then it goes through a maximum likelihood

optimization of the tree [21,22]. It provides very good likelihood

estimates [23]. Extremely large datasets using nucleic acid

sequences have been used for constructing ML phylogenetic trees

using this approach. Recently the developers added a heuristic

bootstrap calculation that appears to perform well in the cases

used to benchmark that software [24]. A recent paper carried out

the phylogenomic analysis of the cystatin superfamily [25]. They

used RaxML [23] and the Neighbor-Joining algorithm from

MEGA4 [26]. They found that ‘‘the NJ method with uncorrected

distances was found to produce better resolution of evolutionary relationships in

the cystatin superfamily than the more complex ML method’’ [25]. Russo,

Takezaki and Nei [27] showed that the efficiencies of the NJ, ME,

MP and ML methods in obtaining the correct tree were nearly the

same when amino acid sequence data were used. The most

important factor in constructing reliable phylogenetic trees

appeared to be the number of amino acids or nucleotides used.

As a final consideration it should be noted that although the ML

methods appear to be more accurate in reconstructing a

phylogeny, there may exist several trees for a given set of aligned

sequences that maximize the likelihood of the phylogeny [28].

Our group is interested in the evolutionary history of proteins

and how to integrate this history with sequence and structural

information to understand function and mechanisms of enzymes

and other proteins. For example we have studied the aldehyde

dehydrogenase family evolution, structure and function with

computationally intensive methods [29,30,31]. For our specific

purposes, proteins are the more appropriate molecules to use for

the study of phylogenies [32]. Furthermore, Russo, Takezaki and

Nei [27] showed that when sequences diverge using the protein

sequence yields more accurate reconstructions of the true

phylogeny. Because the protein families that we study typically

have dozens or hundreds of members, we have the specific need to

carry out phylogenetic studies on protein families of these sizes.

Furthermore, in our studies we desire the ability to compare trees

from a variety of different methods using a common bootstrapped

dataset. These factors led us to parallelize the resampling

calculations using the protein-oriented routines of the PHYLIP

phylogenetic suite.

The PHYLIP package is one of the most comprehensive sets of

tools freely available for use in phylogenetic studies [33].

According to the release notes of the package, PHYLIP has been

distributed since 1980, and has over 20,000 registered users. The

PHYLIP package can be used with protein (and nucleic acid)

sequences and includes distance matrix methods, parsimony

methods, and maximum-likelihood methods to search for

phylogenetic trees using both heuristic and exact algorithms.

PHYLIP also includes routines that allow for a variety of

resampling techniques that include bootstrapping, jackknifing,

and permutation of characters. It also allows for consensus trees to

be reconstructed from the resampled data analyses by use of strict

consensus or several variants of majority rule consensus. Since

bootstrapping of datasets in the PHYLIP suite is a separate

process, the same bootstrapped dataset can be used as input into

MPI-PHYLIP
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different phylogenetic methods, enabling the comparison of trees

created by different methods from a common bootstrapped

framework.

This paper reports our initial parallelization of the computa-

tionally intensive bootstrap calculations discussed above on

datasets of various sizes using the PHYLIP suite of phylogenetic

software. Our parallel code enables the phylogenetic study using a

statistically robust amount of bootstrap replicates for large protein

families using the distance and parsimony methods as well using a

statistically robust amount of bootstrap replicates for moderate

sized protein families using the maximum likelihood method

implemented in PHYLIP.

Results

The test datasets (containing 1,000 bootstrap replicates

generated with the PHYLIP seqboot program) used to illustrate

the performance of the parallel codes are: 1) a 375 residue, single-

gene alignment of cytrochrome B from the mitochondrial genome

from thirteen species of plasmodium (1/13); 2) a 375 residue,

single-gene alignment of cytrochrome B from the mitochondrial

genome from twenty five species of plasmodium (1/25); 3) a 1139

residue, three-gene alignment consisting of the cytrochome B,

cytochrome oxydase 1, and cytochrome oxydase 3 genes from the

mitochondrial genome from twenty five species of plasmodium (3/

25); 4) a 389 residue single gene alignment of 60 ABCG

transporters from a variety of species (1/60); and 5) a 356 residue,

single gene alignment from a set of 121 g-protein alpha inhibitory

subunits from fungi (1/121). These bootstrapped datasets are

available as supplemental files. In addition to these test datasets,

the Tree-of-Life dataset of Ciccarelli, Doerks, von Mering,

Creevey, Snel and Bork (2006) was used as an example of a large

post-genomic dataset. The dataset includes 191 species and is 8089

columns long.

Code performance for the parallel-bootstrap PHYLIP protpars,

protdist, and proml programs (called MPIprotpars, MPIprotdist,

and MPIproml), run with the default program parameters on the

test datasets is summarized in Tables 1 and 2. The timings shown

in the tables were run on the SGI Altix 4700 shared-memory

NUMA systems at the Pittsburgh Supercomputing Center. The

PSC ALTIX systems are configured with blades holding two

Itanium 2 Montvale 9130M dual core processors. Each core had a

clock rate of 1.66GHz and the four cores on each blade shared 8

Gigabytes of local memory. Due to the constraints and limitations

of these systems dataset (1/60) was only run once with the

maximum likelihood method and datasets (1/121) and the Tree-

Of-Life dataset were not run using the maximum likelihood

method.

Memory Requirements
The protein parsimony and distance calculations require a

minimal amount of memory, even for the larger calculations. All of

these test cases required less than 100 Megabytes of memory. On

the other hand, the maximum likelihood calculations all required a

substantial amount of memory. The test cases required approx-

imately 2.5Gb (1/13), 7Gb (1/25), and 16Gb (3/25) of memory

per core on the Altix systems. It is important to note that while the

Altix NUMA architecture permits global memory sharing, it is

accomplished (through decreased efficiency) at the expense of idle

cores. To perform maximum likelihood calculations efficiently

would require hardware configured with substantially more

memory per processor than the configuration cited in this paper.

In addition a full exploration of the memory management schema

used by the maximum likelihood code is needed to further

understand this issue and evaluate if improvements such as those

undertaken by the fastdnaml code [34] may be possible in the

proml code.

Scaling
The figures in this paper show the efficiency and effective

speedup of the parallel implementation on the test datasets. Both

efficiency and effective speedup in the figures are defined in

terms of the four processor run. The efficiency at n processors is

Table 1. Benchmark Results for Parallel PHYLIP programs.

Program Genes Sequences Alignment Length Max Memory (Gb) Elapsed Time

4 8 16 32 64

MPIproml 3 25 1139 16 143130 72456 35863 18938 9968

1 25 375 7 130452 66116 34580 17285 9645

1 13 375 2.5 20004 10342 5335 3025 1618

MPIprotdist 1 121 356 ,0.1 42416 21233 11806 5507 2941

1 60 389 ,0.1 11239 5626 2852 1485 818

3 25 1139 ,0.1 5542 2786 1419 757 460

1 25 375 ,0.1 1884 947 484 259 174

1 13 375 ,0.1 493 250 130 75 57

MPIprotpars 1 121 356 ,0.1 33518 17105 8815 5115 3040

1 60 389 ,0.1 9645 5033 2610 1479 843

3 25 1139 ,0.1 1418 760 408 262 229

1 25 375 ,0.1 451 256 157 118 119

1 13 375 ,0.1 89 50 33 28 34

Program is the parallel version PHLIP program. Genes refers to the number of genes present in the alignment. Sequences refers to the number of sequences present in
the alignment. Alignment Length refers to the length of the underlying multiple sequence alignment being analyzed. Max Memory is the maximum memory consumed
by the parallel program listed as a per-processor value in gigabytes. Elapsed Time is the elapsed time in seconds for the parallel code to run on the Altix system for the
number of cores shown.
doi:10.1371/journal.pone.0013999.t001

MPI-PHYLIP
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defined as:

En~
t4|4

tn|n

where n is the number of processors utilized and t is the wallclock

time of the run. The effective speedup (in processors) at n

processors is defined as:

Sn~En|n

The CPU intensity of the algorithm and the size of the dataset

both have a rather obvious effect on the scaling of the code. Figure 1

shows the efficiency of the parallel implementation of the

parsimony code, while Figure 2 shows the efficiency of the distance

code. Of these two methods, the distance method is more efficient

and scales better than the parsimony method on the test datasets.

This is not surprising given that the distance method is in general

more CPU intensive than parsimony on protein family datasets.

Table 1 shows in detail the results obtained for the datasets tested

except for the the Tree-of-Life dataset. For small datasets with only

a few dozen species, the parsimony code scales well only to about

8–16 processors while the distance code on these same small

datasets scales well to about 32–64 processors. For larger datasets,

which would require more computation, both of these methods

will scale to substantially more processors. With the larger datasets

(1/60 and 1/121) the parsimony codes scales only to 70%

efficiency using 64 processors, while the distance code scales to

approximately 90% efficiency. This means that we are effectively

using 44 processors for the parsimony calculations and 58

processors for the distance calculations (Figure 3). Improvements

in the parsimony algorithm would be required to improve

efficiencies. It is important to note that calculations that take a

few days on these datasets using a state-of-the-art desktop

workstation are reduced in time to a calculation that can be

performed over lunchtime in a state-of-the-art cluster. Table 2

shows the results for the Tree-of-Life dataset. We can see that both

the distance and parimony codes scale only to 128 processors with

this dataset. The Tree-of-Life dataset, the largest used in this

paper, required less than two days of computational time for 1,000

bootstrap replicates using 128 processors.

Figure 4 shows the scaling of the maximum likelihood method on

test cases (1/13), (1/25), and (3/25) compared with the scaling of

the same test cases using the distance and parsimony methods. A

single maximum likelihood calculation on the (1/60) dataset using

32 processors for computing and the memory from 480 processors

on the Altix system took approximately 25.5 hours and 30 Gb of

memory per compute processor (data not shown). Due to the

excessive resources required for the calculation, we did not explore

the largest dataset with the likelihood approach. Again, the more

CPU intensive method (likelihood) scales better than either the

distance or the parsimony codes given the same bootstrapped

dataset. But it should be noted that the distance code approaches

the efficiency of the maximum likelihood approach with the large

datasets that are barely accessible by the latter method due to the

time required because of the physical memory configuration of the

system. While resource limitations, particularly memory preclude

us from examining the scaling of the likelihood method with larger

datasets further in this paper, we are confident that the likelihood

method will continue to scale well beyond the number of

processors shown in this paper when larger datasets are used.

However, simply the ability to perform likelihood calculations on

moderately sized protein datasets in a reasonable amount of time is

very beneficial in fulfilling the needs of research groups such as

ours that is interested in studying protein phylogenies.

Methods

Our focus in this project was to use parallelization to effectively

increase the number of bootstrapping replications that could be

Table 2. Benchmark Results for Tree-Of-Life Dataset.

Program Sequences
Alignment
Length Elapsed Time

64 128

MPIprotdist 191 8089 109394 62606

MPIprotpars 191 8089 209762 123284

Program is the parallel version PHLIP program. Sequences refers to the number
of sequences present in the alignment. Alignment Length refers to the length
of the underlying multiple sequence alignment being analyzed. Elapsed Time is
the elapsed time in seconds for the parallel code to run on the Altix system for
the number of cores shown.
doi:10.1371/journal.pone.0013999.t002

Figure 1. Scaling of MPIprotpars. Scaling of the parallel implementation of the PHYLIP parsimony code (MPIprotpars) on the five test datasets
discussed in this paper. The vertical axis indicates the percentage efficiency compared to the four core run while the horizontal axis indicates the
number of processors used.
doi:10.1371/journal.pone.0013999.g001

MPI-PHYLIP
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performed on large protein datasets. Specifically, we wanted to

create a parallel implementation that:

N Required minimal changes to the original PHYLIP source

code, but still allowed a substantial speedup in the processing

of large bootstrapped datasets.

N Made use of the MPI message-passing library which would

enable the parallel implementation to work on a wide variety

of computer architectures.

N Used a methodology could be transferred to other computa-

tionally intensive routines in the PHYLIP Package, such as the

routines in the package that are relevant to the study of

evolution at the nucleotide level.

How much code to modify is always an issue when porting an

existing widely used serial code to a parallel platform. From a code

maintenance standpoint, having the parallel and serial versions of

the code maintained from a common source will help to ensure

that the latest enhancements in the serial code are also available in

the parallel code. On the other hand, to gain maximum parallel

efficiency codes often need to be extensively re-written, often in a

way that forces the development of special parallel versions that

are not fully compatible with the serial code. We wanted to avoid

this situation as the PHYLIP package is actively being developed

and enhanced, and we had a strong desire to minimize any future

incompatibilities that the parallel code would have with the serial

code.

Also driving the parallelization methodology decision were the

coding practices used in the PHYLIP package. From a

programming perspective, one of the nice features of the PHYLIP

package is its consistency in programming style across the

package’s 30+ component programs that make up the PHYLIP

suite. This coding style makes it easy to apply knowledge learned

from examining the source code that makes up one program in the

package into another. The use of multiple input and output files

and the extensive use of global variables in the package also

contributed to the selection of the parallel approach.

The PHYLIP package sets program parameters and options by

reading from the standard input and by reading in data sets from

an input file and optionally categories and weights from separate

files. Data read from standard input and the input files are read

into numerous global variables that are referenced by multiple

functions in the package. It is the extensive use of these global

variables that hinders parallelizing the code without an extensive

rewrite. However, the manner in which bootstrapping is

implemented in the PHYLIP package makes an alternative

Figure 3. Speed-up of parallel bootstrapped phylogeny calculations. Speedup of the parallel implementation of the PHYLIP codes
(MPIprotdist, MPIprotpars and MPIproml) on the largest dataset used for each method discussed in this paper. The vertical axis indicates the effective
number of processors compared to the four-processor run while the horizontal axis indicates the number of processors used.
doi:10.1371/journal.pone.0013999.g003

Figure 2. Scaling of MPIprotdist. Scaling of the parallel implementation of the PHYLIP distance code (MPIprotdist) on the five test datasets
discussed in this paper. The vertical axis indicates the percentage efficiency compared to the four core run while the horizontal axis indicates the
number of processors used.
doi:10.1371/journal.pone.0013999.g002

MPI-PHYLIP
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parallel approach possible without an extensive recoding.

Conceptually, inside each of the PHYLIP programs that makes

use of bootstrapped datasets is a loop that looks similar to the

following:

For each bootstrap dataset:

(1) Read the bootstrap dataset from input file into global

variables

(2) Perform the tree reconstruction calculation

(3) Write the results to output file

Thus, the code is essentially using global variables as scratch

space: loading each dataset into this global space, using this global

space to store intermediate results and then writing out the final

results from this global space to the output file. Each independent

tree-reconstruction bootstrap calculation is performed under the

same parameters. In order to parallelize the code, one only needs

to ensure that each processor receives the same input parameters,

works on unique datasets, and write the results in a coordinated

fashion to a common output file. This can be easily implemented if

each of the parallel processors being utilized has access to a file

system.

To keep the code consistent with the serial version, we

developed data primitives in MPI to distribute parameters and

input file data to the processors. These data primitives are

contained in an auxiliary file used in the parallel implementation

called MPICopyfile.c. There are two minor restrictions placed on

the parallel code that is not in the original PHYLIP codes. Those

restrictions are: 1) that the default input and output filenames that

the PHYLIP package expects (infile, outfile, outtree, etc.) must be used

and 2) that the program input must be placed in a file named stdin.

These minimal restrictions are necessary because of the way that

these files are distributed to the processors. While the program is

running, each node accesses its own input file and writes the data

to its own output file. Prior to termination the output files are

collected into a single output file. The general parallelism used in

this implementation is as follows:

(1) The lead processor distributes the stdin file to all processors

(2) The lead processor distributes the input file to all processors

(3) Each processor advances the input file pointer to a chunk of

unique bootstrapped data based on the MPI processor

number and the total number of bootstrapped datasets.

(4) Each processor evaluates its unique bootstrapped data:

a) The unique dataset is read from the local input file into global

variables

b) The parsimony, distance, or maximum likelihood calculation

is performed

c) The results are written to a local output file

(5) The lead processor collects the results from all the processors

and writes the data into single output file. The lead processor

collects any additional output files produced by the method in

the same manner.

This general parallelism is implemented exclusively in the files

MPIprotdist.c, MPIprotpars.c and MPIproml.c, which are mod-

ifications to the original protdist.c, protpars.c, and proml.c, files as

well as the auxiliary file containing the data primitives (MPIco-

pyfile.c). No other source codes in the PHYLIP package were

modified to create the parallel implementations.

How to install and run the software
The coding approach described above enables the parallel

PHYLIP code to be run on virtually any UNIX computer in which

the MPI library is available and has been installed. A Makefile and

instructions are included in the distribution to compile and link the

software on platforms where the standard MPI compiler wrappers

(ie. mpicc) have been installed as well as the Altix system. To install

the distribution, first download the compressed tar file (MPIsrc.-

tar.gz) from the web site (File S1). Next uncompress the file using

the gunzip command (‘‘gunzip MPIsrc.tar.gz’’) and unpack it with

the tar command (‘‘tar xvf MPIsrc.tar’’).

To compile and link the software on platforms where the

standard MPI compiler wrappers (ie. mpicc) have been installed,

change your working directory to the MPIsrc/src subdirectory (via

‘‘cd MPIsrc/src’’). Next, copy the Makefile.mpicc file to a file

called Makefile (‘‘cp Makefile.mpicc Makefile’’). Then use the

make command to build compile and link the code with the

appropriate MPI library (‘‘make all’’). In general we have found

that only minor modifications to the compile and link lines in the

Makefile are required to run the code on parallel platforms that do

not use the standard MPI wrappers (including the Altix platform

used to run the test cases.) To compile on the Altix platform simply

copy the Makefile.Altix file to a file called Makefile (‘‘cp

Figure 4. Scaling of MPIproml. Scaling of the parallel implementation of the PHYLIP maximum likelihood code (MPIproml) compared with the
parallel distance (MPIprotdist) and parallel parsimony (MPIprotpars) methods. The vertical axis indicates the percentage efficiency compared to the
four core run while the horizontal axis indicates the number of processors used.
doi:10.1371/journal.pone.0013999.g004

MPI-PHYLIP
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Makefile.Altix Makefile’’). Then use the make command to build,

compile and link the code with the appropriate MPI library

(‘‘make all’’).

In the test directory of the distribution are several input files that

can be used to test the installation. The files ending in ‘‘.boot’’ are

bootstrapped input files, the files ending in ‘‘.stdin’’ are the

program input files and the files ending in ‘‘.job’’ are UNIX (PBS)

script files that can be used to run the parallel versions of the

programs.

The bootstrapped datasets used for the performance measures

described in this paper are located in the ‘‘paper’’ subdirectory of

the distribution (Files S2, S3, S4, S5 and S6).

To make full use of the parallelized routines described in this

paper, the serial PHYLIP suite is also recommended to be installed

to be able to generate bootstrapped datasets and to analyze the

output files produced by the parallel programs.

Availability. Users can download a tar file containing the

parallelized PHYLIP routines described in this paper from the

website www.nrbsc.org/downloads/. The serial version of the

PHYLIP suite is available from Joseph Felsenstein’s website:

http://evolution.genetics.washington.edu/phylip/

Future code optimizations. The current parallel implemen-

tation is reliant on each processor having access to a file system

because each processor needs to read and write its own unique

data. In general, it is the file input and output that limits the

scaling of the code. With adequate per-processor memory

available, the possibility of using internal (memory) files to store

the input data might be an obtainable optimization that may

improve the scaling of the codes on moderate sized datasets. In

lieu of using internal files, the potential exists to internalize the

physical creation of the bootstrap dataset instead of relying on the

external seqboot program. Internalizing the bootstrap creation

would simultaneously reduce the amount of message passing data

that needs to be distributed as well as greatly reducing the volume

of data that needs to be read by the programs.

The output files produced by each of the programs vary

substantially and typically are much larger than the input files.

The case for using internal files for these datasets is less clear. For

example, the size of the largest output file from the (1/121)

distance runs described in this paper is 149Mb, (or about three

times as large as the largest input file) and the largest parsimony

output file is over 5.8 Gb or about 100 times as large as the largest

input file. While compression algorithms may be used to reduce

the physical size needed to store this output data, compression is

accomplished at the cost of increased CPU time. Even with

compression, the amount of memory required to store these

output files internally may be prohibitively large enough to render

this potential optimization infeasible for output datasets on

datasets of the size that we are interested in studying.

In addition, a full exploration of the memory management

schema used by the maximum likelihood code is needed to further

understand the amount of memory used by the code. Any

improvement that can be made in this area will increase the size of

datasets that can be examined by the method as memory is the

principal limitation of the code that we encountered in our studies.

We know that improving the memory management of the original

PHYLIP dnaml code is one of the major optimizations of the

fastdnaml code [34], thus if these optimization techniques are also

relevant to the protein maximum likelihood code, substantial

improvements in memory usage and program performance may

be possible. However, the proml code differs substantially in many

key ways from the fastdnaml code most notably being the hidden

markov model features described in Felsenstein and Churchill

[35]. Thus, while it may be unclear if the fastdnaml memory

improvements are possible, the techniques are at least something

to explore.

Future research directions. We have shown that parallel

computing can enable the use of very large number of bootstrap

replicates for the study of moderate sized protein phylogenetic

datasets when using the robust maximum likelihood method in

relatively short time frames (typically less than 48 hours). Large

protein datasets are similarly addressed using the parsimony and

distance methods. We have also illustrated how a valuable legacy

code in the biosciences can be effectively parallelized with minimal

code changes. Future work will include explorations on the

maximum likelihood code’s memory management schema, code

optimizations including more efficient file handling and the

exploration of the supertree approach to maximum likelihood

[12]. Furthermore, although the MPI version of the codes for

analyzing DNA sequences have been implemented and are

available, they should be thoroughly characterized and

optimized in future work.

In the post-genome era the availability of vast amounts of data

from genomes, transcriptomes, proteomes, and metabolic net-

works has opened new avenues to study life and evolution. A

detailed understanding of the phylogenies implicated by the genes,

proteins, networks, and organisms is crucial to this endeavor. The

majority of the phylogenetic methods being applied are focused on

the nucleic acid composition of genes, genomes, and transcrip-

tomes, thus will have difficulties to account for constraints on the

gene products in the physical realm such as protein structure,

biophysics, and function issues among others. In general the

signal-to-noise-ratio of methods based on protein characteristics

will be better than methods like the 16S-RNA-phylogenies. This

effect is due to the stable conservation of protein structure and

architecture when compared to the coding sequence. An

additional advantage is that longer evolutionary time-scales will

become accessible for study. As noted by Yang, Doolittle and

Bourne [36] proteins such as metabolic enzymes, cytoskeleton-

proteins, or histones can be expected to evolve even more slowly

making longer time scales amenable to evolutionary studies. As

expressed by Mayr [37], evolution during selection acts upon

advantageous changes of the phenotype and not necessarily upon

changes in the genotype. The phenotype is, however, to a large

extent determined by the encoded proteome. Protein-based

approaches are more concerned with this advantage. Further-

more, they appear to produce more reliable phylogenies than

those based on nucleic acids [27].

We have been studying large protein superfamilies with several

hundred members [30]. The recent work on the cystatin

superfamily found over 2100 members of this protein across all

the kingdoms [25]. These large protein datasets can only be

studied in a reasonable amount of time using the methods

described here. For Example, we have carried out the distance

calculation for the Tree-of-Life dataset [5], which includes 31

protein families from 191 species, in 17.4 hours using the MPI-

Protdist code with 1,000 bootstrap replicates. Carrying out 1,000

bootstrap replicates serially on datasets this large can take months

of computational time, and re-running the phylogenies when one

adds a new subfamily or additional sequences can become an

extreme burden. With the new parallel methods, phylogenies on

datasets such as these can be computed over a few days.

The exploration of phylogenies with new information theoretic

approaches such as the Jensen-Shannon divergence [38] to look

for functionally important residues and sites, key residues that

define protein subfamilies (Nicholas, unpublished results), as a

distance measure for protein domain phylogenies [39], or the

combinatorial entropy measure to group protein alignments into

MPI-PHYLIP
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subfamilies and map the defining residues to structures [40] has

become an important complement to phylogenetic studies that

requires studying large protein families to be able to understand

the evolution of structure and function within them. The software

presented in this paper will significantly improve our capability to

carry out this kind of research.

Supporting Information

File S1 MPI Source Code for the Parallel PHYLIP methods (in

.tar.gz format).

Found at: doi:10.1371/journal.pone.0013999.s001 (1.11 MB GZ)

File S2 Test dataset (containing 1,000 bootstrap replicates) from

a 356 residue, single gene alignment from a set of 121 g-protein

alpha inhibitory subunits from fungi (1/121).

Found at: doi:10.1371/journal.pone.0013999.s002 (6.47 MB GZ)

File S3 Test dataset (containing 1,000 bootstrap replicates) from

a 389 residue single gene alignment of 60 ABCG transporters from

a variety of species.

Found at: doi:10.1371/journal.pone.0013999.s003 (6.51 MB

CDX)

File S4 Test dataset (containing 1,000 bootstrap replicates) from

a 375 residue, single-gene alignment of cytrochrome B from the

mitochondrial genome from thirteen species of plasmodium.

Found at: doi:10.1371/journal.pone.0013999.s004 (0.70 MB GZ)

File S5 Test dataset (containing 1,000 bootstrap replicates) from

a 375 residue, single-gene alignment of cytrochrome B from the

mitochondrial genome from twenty five species of plasmodium.

Found at: doi:10.1371/journal.pone.0013999.s005 (1.02 MB GZ)

File S6 Test dataset (containing 1,000 bootstrap replicates) from

a 1139 residue, three-gene alignment consisting of the cytrochome

B, cytochrome oxydase 1, and cytochrome oxydase 3 genes

from the mitochondrial genome from twenty five species of

plasmodium.

Found at: doi:10.1371/journal.pone.0013999.s006 (3.14 MB GZ)
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