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Abstract

The rates of immunologic and clinical progression are lower in patients with drug-resistant HIV compared to wild-type HIV.
This difference is not fully explained by viral load. It has been argued that reductions in T cell activation and/or viral fitness
might result in preserved target cells and an altered relationship between the level of viremia and the rate of CD4+ T cell
loss. We tested this hypothesis over time in a cohort of patients with highly resistant HIV. Fifty-four antiretroviral-treated
patients with multi-drug resistant HIV and detectable plasma HIV RNA were followed longitudinally. CD4+ T cell counts and
HIV RNA levels were measured every 4 weeks and T cell activation (CD38/HLA-DR) was measured every 16 weeks. We found
that the levels of CD4+ T cell activation over time were a strong independent predictor of CD4+ T cell counts while CD8+ T
cell activation was more strongly associated with viremia. Using spectral analysis, we found strong evidence for oscillatory
(or cyclic) behavior in CD4+ T cell counts, HIV RNA levels, and T cell activation. Each of the cell populations exhibited an
oscillatory behavior with similar frequencies. Collectively, these data suggest that there may be a mechanistic link between
T cell activation, CD4+ T cell counts, and viremia and lends support for the hypothesis of altered predator-prey dynamics as
a possible explanation of the stability of CD4+ T cell counts in the presence of sustained multi-drug resistant viremia.
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Introduction

Current therapeutic strategies for HIV-infected persons include

the use of antiretroviral therapy to fully inhibit viral replication, as

defined by achieving and maintaining undetectable plasma HIV

RNA levels. The vast majority of patients who are treatment naı̈ve

and able to adhere to a recommended regimen are able to achieve

durable and perhaps indefinite viral suppression. A poorly

described but significant subset, however, are not able to achieve

this outcome, either due to pre-existing resistance and/or the

inability to fully adhere to therapy. Most, but not all, of these

patients eventually develop drug resistance mutations and, hence,

have limited long-term options for complete viral suppression.

The natural history of incomplete or partial viral suppression

with combination therapy is complex. As compared to untreated

disease, those who remain on a stable regimen despite the presence

of drug-resistance mutations have slower rates of CD4+ T cell

decline and a lower risk of progressing to AIDS and/or death

[1,2,3]. This effect appears to be more strongly associated with

failure of protease inhibitor-based regimens than with failure of

non-nucleoside reverse transcriptase inhibitor based regimens

[1,4]. Although partial reduction in viral load clearly contributes

to the residual benefit of therapy [5], the delayed risk of disease

progression in treated versus untreated disease remains significant,

even after controlling for viral load [1,2].

Among untreated individuals, the level of viremia is only

partially predictive of the rate of disease progression, as defined by

the rate of CD4+ T cell loss and/or by the risk of progressing to

AIDS and death [6,7]. T cell activation (as defined by expression

of CD38 and HLA-DR) is an independent predictor of CD4+ T

cell loss and disease progression among untreated patients [8,9].

Theoretically, activated T cells may contribute to a poor prognosis

by supporting higher levels of viral replication and/or by causing

inflammation-associated damage to the immune system and other

organ systems. Given the central role of T cell activation in

untreated diseases our previous work explored the impact of drug-

resistance on the complex relationship between T cell activation

and viral load. We have found that, after controlling for the levels
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of viremia, CD8+ T cell activation was lower in those with drug

resistance than those with wild-type HIV. This effect appeared to

be more strongly associated with the presence of protease inhibitor

resistance rather than direct exposure to the immunomodulatory

effects of protease inhibitors [10].

To understand the role of the T cell activation, progressive

immunodeficiency, and drug resistant HIV, we performed detailed

immunologic and virologic measurements among a cohort of

treated patients with detectable viremia who were maintained on a

stable regimen pending more effective therapeutic options. The

overall objectives of this prospective cohort were to determine the

impact of replicative capacity, T cell activation and HIV-specific T

cell response on both viremia and peripheral CD4+ T cell counts

over time. In the current analysis, we describe how many of these

factors evolve over time. We found that CD4+ T cell activation

was most strongly associated with the CD4+ T cell counts while

CD8+ T cell activation was more strongly associated with viremia.

Spectral analysis [11] in a subset of subjects revealed evidence of

oscillatory behavior in CD4+ T cell counts, CD4+ T cell

activation, CD8+ T cell activation, and plasma HIV RNA levels.

Taken together, the data suggest a mechanistic link between T cell

activation, viremia and CD4+ T cell depletion and support the

hypothesis of altered predator-prey dynamics as a possible

explanation for the stability of CD4+ T cell counts even in the

present of sustained multi-drug-resistant viremia.

Materials and Methods

Subjects
All subjects were enrolled in the Partial Controllers on

Antiretroviral Therapy cohort (PCAT) [12]. All subjects provided

written informed consent. The study was approved by the

University of California, San Francisco Human Research

Protection Program Committee on Human Research, Laurel

Heights Panel. Eligibility criteria included having a detectable viral

load between 200 and 10,000 copies/mL while on a stable

optimized combination antiretroviral regimen. Subjects were

enrolled and followed in the period prior to the widespread

availability of integrase inhibitors, CCR5 inhibitors, and second

generation non-nucleoside reverse transcriptase inhibitors, and

had hence had limited options for complete viral suppression.

Because of concerns that high level viremia (.10,000 copies

RNA/mL) would pose substantial risk to the study participant,

subjects were encouraged to consider treatment modification once

viral loads increased above this level. We chose a threshold of

10,000 copies of HIV RNA/mL (using the bDNA method) for this

study because previous data suggested that viral loads above this

threshold might be associated with rapid CD4+ T cell loss. Given

this data, we felt that subjects and their health care providers

should have no perceived barriers to modifying therapy. For the

current analysis, subjects were censored if their HIV RNA levels

exceeded this threshold on two subsequent visits or if the

optimized antiretroviral therapy was modified or discontinued.

Immunologic and virologic measurements
Viral load and CD4+ T cell counts were measured every 4

weeks. T cell activation (CD38+/HLA-DR+) was measured every

16 weeks using cytokine flow cytometry, as previously described

[12]. HIV replicative capacity was also measured longitudinally,

using a modified version of an HIV phenotypic drug susceptibility

assay (Monogram Biosciences). Briefly, HIV RNA was extracted

from the subject’s plasma and the terminal 18 codons of the gag

gene, the entire pro gene, and a portion of the RT gene were PCR

amplified. The amplified gene segments were inserted into a viral

vector containing a luciferase gene. Following a single round of

viral replication in the absence of drug, luciferase activity was

measured and compared to that for a reference virus (NL4-3).

Statistical analysis
The primary variables considered for modeling CD4+ T cell

counts over time included CD4+ and CD8+ T cell activation,

CD4 nadir, duration of infection, HIV-specific T cell response,

viral burden, and viral replication capacity. Plotting revealed

significant skews in the distributions of CD4+ T cell counts,

CD4+ and CD8+ T cell activation, and plasma HIV RNA levels,

and these values were log10 transformed to meet model

assumptions. Given the less frequent measurements of immune

activation than CD4+ T cell counts, CD8+ T cell counts, and

viral load, we used multiple imputation to address the missingness

in the T cell activation and replication capacity data. Missing

data can lead to bias in estimates as well as a loss of power

[13,14,15]. The extent of the bias depends on the cause of the

missingness. Multiple imputation can be used when the missing

data are ‘‘missing at random’’, that is the probability of the

observation being missing for a particular subject does not

depend on the value of the marker, conditional on other observed

variables. In this case the assumption was justified in that it was

solely a cost issue related to the missingness and not an

underlying disease process. Multiple imputation has been used

successfully in a wide variety of fields of application from

astrophysics [16] to chemistry [17] to clinical research

[13,14,15,18]. Multiple imputation has not only been used in

regression settings but also used in spectral analysis [16,17,19].

Instead of filling in a single value for each missing value, such as

last observation carried forward (LOCF), multiple imputation

replaces each value with a set of draws from a random sample of

plausible values reflecting the uncertainty of the missing values

[18]. In this way, one creates multiple datasets, each with

different draws from the random sample of the missing values

resulting in multiple complete case datasets. Standard statistical

techniques can then be applied to each complete case imputed

dataset and the results are then combined for the final inference.

We used PROC MI in SAS version 9.2 for multiple imputation,

using the Markov Chain Monte Carlo (MCMC method) with

multiple chains. We discarded the first 8000 iterations as ‘‘burn

in’’ and used a total of 10000 iterations for inference. We used the

Jeffries (noninformative) prior and took the results of the

Expectation-Maximization (EM) algorithm as our starting point.

For the multiple imputed estimates, time-series and autocorrela-

tion plots showed that our MCMC sampler was mixing well and

that the estimates reached convergence. We then used linear

mixed models with random intercepts and slopes to assess the

association of T cell activation and viremia in CD4+ T cell counts

over time in each imputed dataset. An unstructured covariance

matrix was used to assess the serial correlation. This approach

allows one to model the association of continuous predictor

variables measured longitudinally on a continuous longitudinal

outcome variable while accounting for within-subject correla-

tions.

We also measured relative efficiency, which is a function of the

number of imputations, m, and the percent missingness of the data.

It is defined in units of variance as the differential utility of using m

(in this case m = 30) imputations instead of an infinite number of

imputations, where 100% is fully efficient. We conducted 30

imputations because results have shown that although the estimate

is unbiased, more imputations are needed than previously

suggested to attain good statistical power [20]. SAS Proc
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MIAnalyze was used for statistical inference of parameters from

the 30 imputed complete datasets.

Spectral analysis
Individual viral and immune cell dynamics were analyzed using

spectral analysis [11] in a subset of subjects. Subjects with at least

20 observation points for all compartments (i.e., CD4+ T cell

counts, HIV viremia, and T cell activation) were included for

analysis (N = 11). Spectral analysis can be used to detect cyclical

patterns in data, with the purpose of decomposing complex time

series with cyclical components into sinusoidal functions. In a

sense, performing spectral analysis on time series data can be

compared to putting these data through a prism that identifies the

underlying cyclical (sinusoidal) components. As a result, data that

might initially look like random noise can be meaningfully

interpreted in terms of underlying recurring cycles. The

decomposition is performed using the Fourier transform. The

time series can then be presented as a mixture of functions

expressed as y~amplitude � sin(2 � p � frequency � timezphase).
The phase is determined by the initial displacement of the wave at

time t = 0. In this case the y would be the population of interest such

as viremia. Amplitude is the maximum height of the wave (in

absolute value). Frequency is the reciprocal of the period which is

the length of time for the wave to repeat. This signal is thus

presented in the frequency domain, where frequency is expressed in

units of [1/time] and significant peaks are recorded. Raw data are

first de-trended (the mean and the linear fit are subtracted) and then

the Lomb-Scargle periodogram is constructed. This algorithm

generates a Fourier spectrum for data that are not equally spaced

[21]. Signals with peaks below the 50% critical limit were discarded.

For this analysis, spectral decomposition was used to determine

signal composition for HIV RNA levels, CD4+ T cell activation,

CD8+ T cell activation, and CD4+ T cell counts. From the analysis,

we determined each signal from noise, identified the presence of

oscillatory behavior, and drew conclusions about correlations

between the populations. The results show the averages of the

quantities of interest average across all imputations.

While spectral analysis can only examine one patient over time,

non-linear mixed models can examine all subjects simultaneously.

We therefore constructed a non-linear mixed effects model with a

random intercept to model log viremia over time. To model the

oscillatory trend, we used a mixture of two sine waves with

frequencies at 2p and 8p, as suggested by the results of the spectral

analysis, to account for any cyclical patterns in the data. We fit a

non-linear mixed effects model with random intercept model using

the first-order method of Beal and Sheiner [22] that included an

indicator for protease inhibitor use, CD8+ T cell activation,

baseline viremia, the oscillatory component and an interaction for

the oscillatory component and protease inhibitor use. Estimates

from the spectral analysis were used as the starting values.

Results

We examined 54 subjects with partially controlled antiretrovi-

ral-resistant viremia on a stable antiretroviral regimen. There were

50 men (93%) and 4 women. The median baseline CD4+ T cell

count was 303 cells/mm3 (IQR: 210–437) and the median log10

plasma HIV RNA level was 3.3 copies/ml (IQR: 2.5–3.7)

(Table 1). The baseline percent of activated CD38+HLA-DR+
CD4+ T cells was 6.4% (IQR: 5.0–8.9) and the baseline percent of

activated CD38+HLA-DR+ CD8+ T-cells was 21.1% (IQR:

15.1–30.0). The median self-reported CD4 nadir was 82 cells/

mm3 (IQR: 20–164). Forty (74%) of the subjects were failing on a

protease-inhibitor based regimen. Of those, 30 (75%) were failing

a boosted protease inhibitor regimen. The median duration of

follow-up was 44 weeks (IQR 18.1 to 71.0). Across all subjects, the

average rate of CD4+ T cell change was 21 CD4+ T cells/mm3/

month. Of interest, CD4+ T cell counts increased, on average, by

20 cells/mm3 from baseline in subjects taking boosted protease

inhibitors, and decreased by 33 cells/mm3 in subjects not taking

these drugs, although this difference did not reach statistical

significance.

As expected, at baseline there was a negative correlation

between log10 viral load and CD4+ T cell count (rho = 20.28,

p = 0.038). There was also a negative correlation between T cell

activation and CD4+ T cell counts with subjects with higher levels

of T cell activation having lower CD4+ T cell counts at baseline

(rho = 20.38, p = 0.006 for CD4+ T cell activation and

rho = 20.30, p = 0.03 for CD8 T cell activation). Log10 viremia

and both CD4+ and CD8+ T cell activation were strongly

correlated (rho = 0.35, p = 0.012 and rho = 0.52, p = 0.0001

respectively). The strong association between log10 viremia and

CD8 activation persisted across time.

Longitudinal predictors of CD4+ T cell counts and
viremia

We analyzed longitudinal CD4+ T cell counts using a mixed

effects model with a random intercept and slope. Correlation over

time was modeled using an unstructured covariance matrix. Not

surprisingly, CD4+ T cell counts declined over time (adjusted p-

value 0.0028). Across all subjects, higher levels of CD4+ T cell

counts were temporally associated with lower CD4+ T cell

activation, after adjusting for the log plasma HIV RNA levels. For

every percentage increase in CD4+ T cell activation, CD4+ T cell

counts declined by 2 cells/mm3 (adjusted p-value of 0.025;

Table 2). Similarly, higher replication capacity was associated with

lower CD4+ T cell counts (adjusted p-value 0.041). This effect of

Table 1. Baseline characteristics of the study group.

Baseline variable Median Interquartile range

Age in years 46 42–52

CD4 T+cell, cells/mm3 303 210–437

Plasma HIV RNA log 10 copies/ml 3.3 2.5–3.7

CD4 activation (%) 6.4 5–8.9

CD8 activation (%) 21.1 15.1–30.0

CD4 nadir, cells/mm3 82 20–164

Follow up (weeks) 44 18.1–71.0

N Percent

Gender

Male 50 93

Female 4 7

Protease Inhibitor (PI)

Boosted 30 55

RTV/LPV 23 43

RTV+other PI 7 13

Non-boosted 10 19

None 14 26

Non-nucleoside RTI 7 13

Nucleoside RTI 53 98

doi:10.1371/journal.pone.0021190.t001
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CD4+ T cell activation on CD4+ T cell counts was significant in

the complete case analysis (data not shown) and remained

significant across all multiply imputed datasets. Table 2 gives the

estimates from the final mixed effects model as well as the relative

efficiencies of the multiple imputation estimates.

Longitudinal predictors of viremia
We analyzed longitudinal plasma HIV RNA levels using a

mixed effects model with random intercepts and slopes and an

unstructured covariance matrix. Across all subjects, higher levels

of plasma HIV RNA levels were temporally associated with lower

CD8 T cell activation. For every percentage increase in CD8 T

cell activation, log transformed plasma HIV RNA levels increased

by 0.02 logs (adjusted P-value,0.0001; Table 3). There was no

consistent relationship between replicative capacity and plasma

HIV RNA levels. This effect of CD8 T cell activation on plasma

HIV RNA levels was significant in the complete case analysis (data

not shown) and remained significant across all multiply imputed

datasets.

Immunologic and virologic measures follow an
oscillatory pattern

Next, we examined the correlation structure between CD4+ T

cells, T cell activation and viral burden over time in eleven subjects

using spectral analysis. Spectral analysis allows for modeling the

time series of each population as a mixture of sine waves. Each

time series was decomposed into a collection of sine waves with

different frequencies, amplitude, and phases.

Table 4 lists the demographic characteristics of the subjects

included in this analysis. Subjects in this subset did not differ

significantly from subjects not included in this analysis in terms of

average level of T cell activation, viremia or CD4+ T cell count. In

these eleven subjects we found evidence of oscillatory patterns in

the CD4 compartment with subjects exhibiting 2–6 separate

waves. Figure 1 shows, for a representative patient, the results from

the spectral analysis in terms of T cell activation, log viremia and

CD4 counts over time. Using mixed effects models with a

compound symmetric correlation structure, we found that subjects

with higher levels of CD4+ T cell counts over time had fewer CD4

waves and these waves had lower amplitudes (p = 0.0100 and

p = 0.0144 respectively). Similarly, we found cyclical behavior in

the T cell activation compartments. Subjects with higher levels of

viremia had higher amplitudes of CD8 activation (p,0.0001) and

lower phase shifts (p = 0.0001) controlling for CD4 nadir. We

found a tight correlation between viremia amplitude and CD8+ T

cell activation amplitude (rho = 0.61, p = 0.04). Take together this

yields further evidence of the mechanistic linkage between viremia

and CD8 T cell activation. Figure 2 plots, for four representative

patients, log CD8 activation and log viremia over time.

Overall, we found strong evidence of complex dynamics, with

subjects exhibiting 0 to 7 separate sine waves and with different

frequencies for each component. One or greater sine waves is an

indication of the presence of oscillatory behavior in activated

CD4+ T cells, activated CD8+ T cells, plasma HIV RNA levels,

and total CD4+ T cells. Tables 5–8 list, for each subject and each

parameter the average of the wave parameters (frequency,

amplitude and phase) as well as the total number of waves in

the model for CD8 T cell activation, HIV viremia, CD4 activation

and CD4 T cell counts respectively. Two subjects did not exhibit

oscillatory behavior in viremia. These two subjects also had the

lowest CD4 nadirs in the sample with nadirs of 2 and 24 cells/

mm3). These subjects were also amongst those with the highest

maximum viremia. However these subjects did not differ

significantly from other subjects in terms of length of follow-up,

average CD4+ count or average viremia.

To examine the determinants of oscillatory behavior in these

subjects, we constructed a non-linear mixed effects model with

random intercepts. We found evidence of an interaction with

protease inhibitor use and oscillatory behavior. Subjects who were

not on a protease-inhibitor containing regimen had a stronger

Table 2. Parameters associated with CD4 T cell count loss among patients with partially-controlled drug resistant viremia using a
mixed effects model.

Effect Estimate Standard Error 95% CI P Relative efficiency

Intercept 437 31.8 (375, 500) ,0.0001 0.996

Time (weeks) 20.356 0.119 (20.59, 20.123) 0.0028 0.998

Replication capacity 20.365 0.174 (20.715, 20.015) 0.0412 0.975

CD4 activation 21.695 0.742 (23.168, 20.222) 0.0246 0.981

Log viral load 219.95 6.131 (232.05, 27.85) 0.0014 0.987

The model shows that CD4 T cell count decreased over time. Across all subjects higher levels of CD4 T cell activation were associated with lower levels of CD4 T cell
counts controlling for log plasma HIV-1 viremia. Higher replication capacity was also associated with lower CD4 counts.
doi:10.1371/journal.pone.0021190.t002

Table 3. Parameters associated with log HIV viremia among patients with partially controlled drug resistant viremia using a mixed-
effects model.

Effect Estimate Standard Error 95% CI P Relative efficiency

Intercept 2.81 0.122 (2.57, 3.05) ,0.0001 0.99

Time (weeks) 20.002 0.0017 (20.005, 0.001) 0.232 0.997

CD8 activation 0.018 0.0036 (0.010, 0.025) ,0.0001 0.976

The model suggests that increases in CD8 T cell activation was associated with increases in log HIV viremia.
doi:10.1371/journal.pone.0021190.t003

Oscillatory Patterns in Chronic HIV Infection

PLoS ONE | www.plosone.org 4 June 2011 | Volume 6 | Issue 6 | e21190



oscillatory signal than subjects on a protease-inhibitor containing

regimen (p = 0.04). In this model CD8+ T cell activation remained

a significant predictor of HIV viremia over time (p = 0.0007).

Table 9 lists the parameter estimates for this model.

Discussion

T cell activation is a central component of HIV and SIV

infection. Among untreated HIV-infected persons, measures of T

cell activation predict risk of subsequent disease progression

[23,24]. Among treated subjects, T cell activation is associated

with CD4+ T cell count changes during therapy, at least cross-

sectionally [10,25]. T cell activation rather than viral load appears

to be the primary characteristic that defines pathogenic versus

non-pathogenic SIV infection in non-human primate models [26].

Despite extensive investigation, the temporal associations between

immune activation, viral load, and peripheral CD4+ T cell counts

have not been fully defined. Here, we examined a unique cohort of

HIV-infected persons in which immune activation was thought to

have a strong independent effect on disease outcomes, and

measured changes in several relevant biologic outcomes over time.

We found that, among treated subjects with low levels of

detectable drug-resistant viremia (,10,000 copies/mL), higher

CD4+ T cell counts were predicted by lower levels of CD4+ T cell

Table 4. Demographic profile of patients included in the spectral analysis.

Patient

Maximum CD4
T cell count
(cells/mm3)

Average CD4
T-cell count
(cells/mm3)

CD4 nadir
(cells/mm3)

Maximum HIV-1
RNA (copies/mL)

Average HIV-1
RNA (copies/mL)

2004 310 228 2 4.65 2.92

3025 412 273 39 3.78 3.1

3035 319 225 60 3.66 3.24

3037 364 258 220 4.21 3.79

3040 481 365 90 4.27 3.97

3042 232 145 69 4.21 2.97

3077 445 293 285 3.84 3.35

3089 567 376 150 4.11 2.542

3102 420 254 24 4.86 3.95

3135 644 433 250 4.12 2.97

3153 462 356 274 4.78 4.2

doi:10.1371/journal.pone.0021190.t004

Figure 1. Complex oscillatory behavior in a representative patient. Changes in percent CD4 activation, percent CD8 activation and HIV
viremia over time using spectral analysis. Log HIV viremia is in red, CD8 activation is shown with dashed black lines and CD4 activation is shown with
the black solid line. Time is in days.
doi:10.1371/journal.pone.0021190.g001
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activation. In contrast, higher plasma HIV RNA levels were more

strongly predicted by higher levels of CD8 T cell activation. We

also observed that replication capacity, measured by an in vitro

assay, was associated with lower CD4+ T cell counts but not with

the level of viremia. Using a sophisticated statistical method that

seeks to define the temporal cause and effect association of these

Figure 2. Log viremia and Log CD8 activation over time in 4 patients. Log Viremia (lvl) is shown red and log CD8 activation is in black. Lines
were formed using a spline interpolation algorithm.
doi:10.1371/journal.pone.0021190.g002

Table 5. Spectral analysis estimated parameters for CD8 T cell activation.

CD8 T cell activation

Patient Number of waves Mean Frequency Std Dev Mean Amplitude Std Dev Mean Phase Std Dev

2004 3 0.059 0.039 8.710 1.274 3.163 0.518

3025 3 0.105 0.011 5.838 1.500 2.744 1.999

3035 5 0.067 0.038 5.038 1.833 1.795 1.463

3037 2 0.086 0.077 5.213 3.135 3.738 1.236

3040 4 0.061 0.043 4.543 5.630 2.167 0.658

3042 4 0.018 0.009 42.990 45.323 3.320 2.573

3077 4 0.078 0.062 31.924 21.029 4.064 1.675

3089 3 0.092 0.028 5.354 1.560 2.833 2.128

3102 4 0.073 0.024 16.464 9.540 2.350 1.476

3135 4 0.044 0.024 34.648 32.257 2.643 2.493

3153 3 0.073 0.022 42.089 36.380 2.755 2.333

Mean 3.55 0.07 0.03 18.44 14.50 2.87 1.69

Std Dev 0.82 0.02 0.02 16.07 16.40 0.67 0.70

For each individual, the mean and standard deviations for wave components for CD8 T cell activation is presented.
doi:10.1371/journal.pone.0021190.t005
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observations, we found evidence of complex oscillatory behavior in

these populations. This behavior was more evident among

individuals not receiving a protease-based regimen. This suggests

that the various measurements are linked to each other in an as yet

poorly defined mechanism, although the temporal changes might

be consistent with a previously hypothesized ‘‘predator-prey’’

association, as described below [27].

Our data regarding the relationship between CD4+ T cell

activation and CD4+ T cell counts is generally in agreement with

prior work in untreated HIV-infected persons. For example,

Catalfamo and colleagues reported that the degree of CD4+ T cell

activation (or proliferation) is driven by homeostatic responses and

that CD8+ T cell activation is mainly a direct pro-inflammatory

consequence of viral replication [28]. Of note, presently it is not

possible in these observational studies to clearly define the causal

pathway. Although some have argued that the higher levels of

CD4+ T cell activation in subjects with lower CD4+ T cell counts

reflects a homeostatic response to low CD4+ T cell counts [28],

others have argued that higher CD4+ T cell activation is

mechanistically involved in CD4+ T cell depletion. Support for

this latter perspective is based on several consistent observations,

including: (1) measures of T cell activation rather than viral load

predict outcome in the natural host of SIV [29], (2) measures of T

cell activation in humans predict subsequent disease outcome

independent of viral load [8,9,30], and (3) generalized T cell

activation in the absence of SIV/HIV infection can cause CD4+ T

cell but not CD8+ T cell depletion [31,32]. The striking and

consistent relationship between viral load and CD8+ T cell

Table 6. Spectral analysis estimated parameters for HIV viremia.

HIV Viremia

Patient Number of waves Mean Frequency Std Dev Mean Amplitude Std Dev Mean Phase Std Dev

2004 No oscillations

3025 4 0.086 0.059 1245.86 692.327 4.436 1.328

3035 4 0.013 0.018 505.27 438.186 1.785 1.175

3037 4 0.034 0.048 3086.03 1102.75 2.734 1.924

3040 4 0.052 0.032 2429.39 704.876 4.759 1.805

3042 2 0.092 0.039 2568.66 483.054 3.000 1.044

3077 5 0.099 0.0319 4333.25 5465.362 4.298 1.3959

3089 2 0.043 0.0521 5882.81 1411.156 5.943 0.1204

3102 No oscillations

3135 4 0.044 0.0366 8829.99 7456.89 2.727 0.8222

3153 4 0.086 0.0324 41015.96 26361 4.718 2.1039

Mean 3.67 0.06 0.04 7766.36 4901.73 3.822 1.30

Std Dev 1.00 0.03 0.01 12721.27 8431.66 1.322 0.61

For each individual, the mean and standard deviations for wave components for HIV viremia is presented.
doi:10.1371/journal.pone.0021190.t006

Table 7. Spectral analysis estimated parameters for CD4 T-cell activation.

CD4 T cell activation

Patient Number of waves Mean Frequency SD Mean Amplitude SD Mean Phase SD

2004 6 0.066 0.051 2.438 1.061 2.98 1.37

3025 7 0.059 0.042 4.61 2.475 3.216 1.906

3035 5 0.043 0.034 5.62 2.011 3.191 1.702

3037 2 0.043 0.034 6.18 4.994 3.678 0.965

3040 4 0.069 0.044 8.04 4.561 1.846 1.383

3042 3 0.092 0.027 5.54 1.823 4.219 2.062

3077 5 0.101 0.046 5.42 3.978 3.282 1.932

3089 4 0.053 0.042 3.53 1.48 2.449 2.095

3102 4 0.075 0.04 3.10 3.524 2.339 1.929

3135 4 0.052 0.028 4.27 2.184 2.677 2.826

3153 3 0.090 0.008 3.94 1.434 3.550 0.414

Mean 4.27 0.07 0.04 4.79 2.68 3.039 1.69

Std Dev 1.42 0.02 0.01 1.59 1.36 0.676 0.64

For each individual, the mean and standard deviations for wave components for CD4 T cell activation is presented.
doi:10.1371/journal.pone.0021190.t007
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activation observed in our study is consistent with a robust

literature suggesting that these two properties are highly associated

in untreated and treated disease [7,28]. Viral replication is almost

certainly causally associated with CD8+ T cell activation, as the

latter parameter decreases consistently in response to combination

therapy [33].

We observed no consistent association between replicative

capacity and viremia. This lack of an association may be due to

several factors, including the use of an assay that only incorporated

parts of the patient-derived viral genome. It is also possible (and

indeed we believe likely) that the true replicative capacity of the

virus in vivo may not directly predict viremia. Bonhoeffer, Coffin

and Nowak, for example, predicted that mutations which reduce

the capacity of the virus to infect its target cells would lead to

reduction in viremia, reduced CD4+ T cell death, expanded

numbers of CD4+ T cells and ultimately an increase in viremia

back towards the baseline level (with this increase supported by the

increased availability of target cells) [34]. Recently, in collabora-

tion with our group, Vaida and colleagues observed that

prospective treatment-mediated reductions in viral fitness resulted

had minimal effects on viremia but appeared to preserve CD4+ T

cells [3].

The oscillations that we have observed in a range of cell

populations are indicative of nonlinear dynamics and interactions

between the populations. Oscillations are found commonly in

many nonlinear dynamic systems, and the interactions between

HIV and the immune system are undoubtedly nonlinear [35,36].

There have been several studies that have noted this phenomenon.

Spouge, Shrager and Dimitrov describe oscillatory behavior of

HIV spread in tissue culture systems [37], while theoretical models

by Nowak and Bangham [38], Phillips et al [39] and Perelson,

Kirschner and De Boer [40] suggest oscillatory behavior may

occur in vivo as well. To our knowledge, ours is the first study that

demonstrates the presence of an oscillatory pattern using observed

longitudinal clinical data derived from a study designed in part to

address these issues.

A mechanistic model based on our data and prior studies is

needed to fully understand the significance of the oscillatory

associations between CD4+ T cell counts, viremia, and T cell

activation. Although such a model is outside the scope of this

paper, it is clear from our current data that, among reasonably

stable subjects with drug-resistant HIV, there exists complex cell/

virus interaction as indicated by the presence of sine waves at

multiple frequencies in the spectral analysis. The presence of two

and more frequencies of oscillation is a signature of more than one

equilibrium state between the virus and the cells of the immune

system. Furthermore, the existence of oscillations of high and low

frequencies within the same system is indicative of processes taking

place on different time scales. A variety of forces have been

identified as drivers of periodicity in natural systems. Dynamic

interactions between host and parasite populations cause oscilla-

tions in disease epidemics [41]. Climatic determinants have been

described as the force behind epidemics of dengue fever and

malaria [42,43,44]. Random noise is also capable of inducing

oscillations in deterministic systems [45]. Such systems are

commonly studied using spectral analysis, which is an important

tool in describing oscillatory behavior as it provides additional

Table 8. Spectral analysis estimated parameters for CD4 T cell count.

CD4 count

Patient Number of waves Mean Frequency SD Mean Amplitude SD Mean Phase SD

2004 2 0.026 0.022 29.93 17.371 3.921 3.328

3025 5 0.088 0.064 173.08 100.792 4.024 2.17

3035 5 0.082 0.039 41.82 25.996 2.702 2.03

3037 5 0.048 0.036 49.70 45.099 2.772 1.071

3040 4 0.045 0.033 94.78 57.969 3.909 1.803

3042 6 0.069 0.04 252.48 220.891 3.281 2.016

3077 3 0.054 0.031 107.63 78.17 2.178 2.56

3089 4 0.093 0.013 70.36 25.979 3.189 1.071

3102 3 0.082 0.01 41.22 17.746 5.017 1.258

3135 4 0.033 0.037 6636.00 7656 2.063 1.755

3153 4 0.081 0.044 157.81 106.193 3.628 1.762

Mean 4.09 0.06 0.03 695.89 759.29 3.335 1.89

Std Dev 1.14 0.02 0.01 1971.31 2288.15 0.881 0.66

For each individual, the mean and standard deviations for wave components for CD4 T cell counts is presented.
doi:10.1371/journal.pone.0021190.t008

Table 9. Parameters associated with log HIV viremia among a
subset of patients with partially controlled drug resistant
viremia using a non-linear mixed-effects model.

Effect Estimate
Standard
Error P

Intercept 0.0714 0.4032 0.863

Time (weeks) 0.00614 0.00947 0.1132

CD8 activation 0.8468 0.1739 0.0007

Baseline Viremia 0.6272 0.1171 0.0003

No protease inhibitor 0.2237 0.1128 0.0755

Cyclical component 20.0183 0.009 0.07

Cyclical component*No PI use 0.02522 0.011 0.0453

The model found evidence of an oscillatory signal in patients whose regimens
did not include a protease inhibitor.
doi:10.1371/journal.pone.0021190.t009
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insight into the complexity of system dynamics which could not be

gained from analysis solely in the time-domain.

One caveat is that this study is based on a small population of

patients who were selected because they had a steady-state viral

load on a partially suppressive stable regimen. Further, for the

spectral analysis and nonlinear mixed-models patients were

selected if they had at least 20 longitudinal observations. It was

necessary to have this many time points to be able to identify the

sometimes damped oscillatory behavior. Moreover, it is known

that co-morbidities such as cardiovascular disease and diabetes can

cause generalized immune activation. Although these patients did

not have a coronary heart disease or diabetes diagnosis, we did not

have data on markers that could indicate a preclinical condition.

Further we did not have data on other potential confounders such

as exposure to influenza, recent vaccinations or stress that could

have caused increases in immune activation. Further detailed

studies are needed. Although our study design does not allow for

strong conclusions regarding the cause and effect relationship of

activation and either viral load or CD4+ T cell counts, it does

provide novel insights into this relationship and suggests that it

may be altered by drug-resistant HIV. Along these lines,

Bonhoeffer and colleagues predicted that a treatment-related

decrease in viral fitness would result in a new dynamic between

viral load and target cells [27]. Specifically, any decrease in fitness

may act to preserve CD4+ T cell counts (due to reduction in

pathogenicity); these preserved CD4+ T cells could increase as a

consequence, although preservation of total body CD4+ T cells

may or may not be reflected in the number of circulating cells. The

critical role of target cell availability as a determinant of viral load

in treated disease has also been postulated as cause of viral blips

during treatment [46,47].
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