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Abstract

Background: Traditional virtual screening method pays more attention on predicted binding affinity between drug
molecule and target related to a certain disease instead of phenotypic data of drug molecule against disease system, as is
often less effective on discovery of the drug which is used to treat many types of complex diseases. Virtual screening against
a complex disease by general network estimation has become feasible with the development of network biology and
system biology. More effective methods of computational estimation for the whole efficacy of a compound in a complex
disease system are needed, given the distinct weightiness of the different target in a biological process and the standpoint
that partial inhibition of several targets can be more efficient than the complete inhibition of a single target.

Methodology: We developed a novel approach by integrating the affinity predictions from multi-target docking studies
with biological network efficiency analysis to estimate the anticoagulant activities of compounds. From results of network
efficiency calculation for human clotting cascade, factor Xa and thrombin were identified as the two most fragile enzymes,
while the catalytic reaction mediated by complex IXa:VIIIa and the formation of the complex VIIIa:IXa were recognized as the
two most fragile biological matter in the human clotting cascade system. Furthermore, the method which combined
network efficiency with molecular docking scores was applied to estimate the anticoagulant activities of a serial of
argatroban intermediates and eight natural products respectively. The better correlation (r = 0.671) between the
experimental data and the decrease of the network deficiency suggests that the approach could be a promising
computational systems biology tool to aid identification of anticoagulant activities of compounds in drug discovery.

Conclusions: This article proposes a network-based multi-target computational estimation method for anticoagulant
activities of compounds by combining network efficiency analysis with scoring function from molecular docking.
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Introduction

The formation of a fibrin clot at the site of an injury to the wall

of a blood vessel is an essential part in stop blood loss after vascular

injury. The reactions that lead to the formation of fibrin clots are

commonly described as the clotting cascade, in which the product

of each step is an enzyme or cofactors necessary for the following

reactions to proceed effectively[1]. The clotting cascade can be

divided into three parts, the extrinsic pathway, the intrinsic and

the common pathway[2]. The extrinsic pathway begins with the

release of tissue factor at the site of vascular damage and leads to

the activation of factor X. The route provides an alternative

mechanism to activate factor X, from the activation of factor XII.

The common pathway is composed of steps linking the activation

of factor X to the formation of a multimeric, cross-linked fibrin

clot. Each of these processes includes not only a cascade of events

that generate the necessary catalyst for the formation of clots, but

also many positive and negative regulatory events.

As a result of advances of computational techniques and

hardware solutions, virtual screening has dramatically speeded up

modern lead identification and lead optimization. Ligand-based

and structure-based virtual screening are two most important

methods used in current computer aided drug design[3]. Ligand-

based methods such as chemical similarity analysis[4] and

pharmacophore modeling[5] mainly focused on the features of

the active ligands structure. With high performance output,

ligand-based virtual screening was widely used to screen large

compound database. However, the fundamental problem of the

methods is that definition of what constitutes an active scaffold is

highly subjective[6]. Synergized with X-ray crystallography, NMR

spectroscopy and isothermal titration calorimetry (ITC), structure-

based virtual screening has been used to complement experimental
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high-throughput screening (HTS) methods to improve the

efficiency and efficacy of discovering lead inhibitors[7–11].

Structure-based screens typically the molecular docking to fit

small organic molecules into targets of known structure, evaluate

them for structural and chemical complementary. In last few

years, investigators have also turned to predict new substrates for

enzymes or receptors of unknown function (such as the membrane

proteins) and to predicting potent small molecules based on multi-

targets.

With emergences of new paradigms in multi-target drug

discovery for several complex diseases, multi-target virtual

screening has been presented and executed to discover the

regimen which could target many different proteins and could

be of low cost, efficacy and better tolerance. However, the

importance and role of target in many complex disease systems

were not explicitly considered in the reported literatures about

multi-target virtual screening. Moreover, as most traditional

virtual screening method, more attention was paid on binding

affinity between drug molecule and target instead of phenotypic

data of drug molecule against disease system[12].

With the progress of system biology and bionetwork, we know

that the biological potency of an ideal drug may not merely

determined by the inhibition of a single target, but rather by the

rebalancing of several proteins or events, which contribute to the

etiology, pathogeneses, and progression of a complex disease [13–

26]. The available methodologies of in silico screening based on a

single target seem not effective in studying ligands’ effects on

biological process comprehensively for some cases[27,28]. In the

current work, a novel approach was developed by integrating the

predictions based on multi-target docking studies through

biological network efficiency analysis to estimate the biological

potency[26,29–31]. The work flow was shown in Figure 1. The

satisfactory predictions of our model were validated by the

experiments. Similar model to predict the biological potency of

drugs quantitatively by combining the multi-target virtual

screening and biological network calculation together have not

been yet reported in the past references. This novel model could

be a powerful tool for combinatorial drug discovery and the

development of multi-target drugs.

Methods

1 Constructions of the docking library
The docking library for multi-target virtual screening against

clotting cascade comprises 1177 compounds from 24 Traditional

Chinese Medicines (TMCs) that were widely used as components

of recipes against cardiac system diseases. These TCMs include 23

original plants and 1 original animal (their information can be

found in the Supporting Information S1). All compounds

identified in these TCMs were collected from Chinese Herbal

Drug Database developed in our group[32] and other litera-

tures[5,33–35]. In addition, some active synthetic compounds

against coagulation cascade available to our laboratory were

included in the docking library, for example, seven argatroban

intermediates. The structures of these compounds were construct-

ed and minimized with the MMFF force field[36] in Discovery

Studio molecular simulation system (DS, Accelrys Inc.). In

minimization, the threshold of root mean square deviation

(RMSD) of potential energy was set to 0.001 kcal?Å-1?mol-1.

The optimized structures of all compounds were saved as sdf and

mol2 formats, respectively, for further docking study and were

included in the Supporting Information S1.

2 Network-Based dual-step hierarchical Computational
Estimation

Fourteen proteins authorized as drug targets by US Food and

Drug Administration (FDA) were used in the virtual screening based

on docking simulations. These targets include coagulation factor

Xa, thrombin, coagulation factor IXa, tissue factor:coagulation

factor VIIa complex, coagulation factor VIIa, fibrin, kallikrein,

tissue factor, prothrombin, von Willebrand factor, coagultaion

factor VIII, coagulation factor XI, fibrinogen, and coagulation

factor XIII. To reduce computational cost while not degrade the

calculation accuracy, two docking approaches, including Ligandfit

and Autodock, were successively employed to dock candidates to

the binding sites of these receptors in accordance with the order of

their docking simulation accuracies in network-based dual-step

hierarchical virtual screening. Top ten percent of hits from the

previous step were used for the next step. In every steps of serial

virtual screening, one candidate was estimated and ranked based on

its influence on the network efficiency of clotting cascade network

instead of the scoring functions of these binding poses on one target

as used in conventional virtual screening methods.

(a) Docking and scoring with Ligandfit. The crystal

structures of fourteen targets were retrieved from the Protein Data

Bank (PDB entries: 1FJS[37], 1TA2[38], 1RFN[39], 1W0Y[40],

1YGC[41], 2HLO, 2ANW[42], 1TFH[43], 1K22[44], 1AUQ[45],

3CDZ[46], 2F83[47], 1FZG[48] and 1GGT[49]). Hetero atoms

were removed from the receptors, and then hydrogen atoms were

added and wrong valence shells were corrected using Discovery

Studio. For receptor/ligand complex with crystal structure, the

binding site was defined as the grid points around the ligand which

were unoccupied by receptor atoms, whereas for a receptor without

crystal complex structure, potential binding sites were found based

on the shape of the receptor. Ligandfit protocol in Discovery Studio

was used to dock ligands into the specified site by the following steps:

(1). conformational search of candidate ligand for docking, (2).

ligand/site shape matching, (3). positioning the selected ligand

conformation into the binding site, and (4) rigid body energy

minimization of the candidate ligand pose/conformation using the

DockScore energy function and updating the saved list of ligands

with the candidate pose. Except maximum poses retained was set to

1, and default values were adopted for the other parameters. The

Piecewise Linear Potential 1 (PLP1) was selected for subsequent
Figure 1. The work flow of our virtual screening approach.
doi:10.1371/journal.pone.0014774.g001
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calculation of network efficiency shift of all compounds based on our

previous work about the comparison of several empirical scoring

functions[50].

(b) Docking and Scoring with Autodock. The AutoDock4.01

program was used for the second step of the dual-step hierarchical

virtual screening because of the better performance of its scoring

function over those of the others for several target proteins[51].

First, polar hydrogen atoms were added and non-polar hydrogen

atoms were merged by the Hydrogen module in AutoDock Tools

(ADT) for fourteen targets after water molecule were removed.

Then, Kollman united atom partial charges were assigned. The grid

map of the docking simulation was established by a 61661661

cube centered on the target active site as defined in Ligandfit, with a

spacing of 0.375 Å between the grid points. When every ligand was

docked to a target, the Lamarckian genetic algorithm were used

optimize the conformation of ligand in the binding pocket. The set

of parameters was listed as following: the size of the population was

150. The number of energy evaluations was set to 1.756107 as the

run terminates. For clustering the conformations, the root mean

square deviation tolerance was 2.0. Twenty independent docking

runs were carried out for every ligand. Other parameters were set to

default. For the targets of which crystal complex structures were

determined, every ligand in complexes was picked up and

sequentially docked back into its initial active sites respectively in

order to assess the reliability and accuracy of docking by Autodock

program.

3 Network construction and analysis
(a) Network construction. The network was constructed

using the information from Reactome knowledgebase[52]. The

clotting cascade pathway has been chosen to build the network.

The enzymes which participate in the pathway were proposed as

nodes and arrows between nodes represent the connections. The

direction of the arrow means that the enzyme in the end of the

arrow enhances the formation of the enzyme located in the front.

(b) Network statistics. The damage induced by the attacks on

the network is characterized by the network efficiency (NE), which is

defined as the sum of the reciprocals of the shortest path lengths

between all pairs of nodes[53]. Due to a global topological property

of a network which could be applied to measure the integrity of the

network, the network efficiency was assumed to be used as a measure

for drug efficiency[54]. The NE of a graph G is measured by the

shortest paths between pairs of nodes with the expression:

NE~
X

i= j [G

1

dij

where dij is the length of the shortest path between node i and j and

the sum is over all N(N 21)/2 pairs of nodes with total number N of

nodes in the graph G. If the network is weighted, dij is the path with

the minimum weight. The initial line values of every edge were

arbitrarily set to 10. To give relative network efficiency, this quantity

NE is divided by the initial network efficiency. Thus we considered

the network efficiency of the initial network as 100% and measured

the relative network efficiency after each attack. We have chosen the

clotting cascade network as the network models.

(c) Network efficiency calculation. The network efficiency

was calculated for each compound. The compounds’ effects to the

network rely on the docking scores. We supposed that the

compound could inhibit the target well while the docking scores

were relatively high. For a ligand, we transformed its docking

scores with a target to line values of all directly downstream edges

of the target in the network and then calculated the network

efficiency. In other word, the line values of all edges, which point

to the other targets from this target, were re-assigned based on the

docking score between the compound and the target. The docking

score threshold was set to 0, so any docking score which was

positive was fixed to 0. For each docking target, the ligand with the

highest binding energy was chosen as the reference standard. We

defined that the most potent ligand would knock the target by

99.95%. Therefore, the ligand could make the value of the lines

that come out of the target enzyme as 200. As the reference ligand

docking score should make the line values to 200, the factor 2.3

was used to achieve this purpose. That was because the 2.3th

Table 1. Results of clotting assays and network efficiency.

Test compounds DAPTT ratio DPT ratio DTT ratio sum Decrease of Network efficiency

salvianolic acid a 0.121 0.175 0.296 0.592 11.78

salvianolic acid b 0.375 0.132 0.265 0.771 11.97

rutin 0.057 0 0.783 0.84 12.69

quercetin 0 0.122 0.455 0.577 11.48

liensinine 0.206 0 0.113 0.319 11.42

fangchinoline 0.215 0.022 0.161 0.398 11.62

folic acid 0.268 0.007 0.167 0.442 10.96

L-glutamine 0.068 0.098 0.035 0.2 8.74

Argatroban intermediate 1 0.384 0.065 0.112 0.56 10.63

Argatroban intermediate 2 0.368 0.049 0.182 0.599 10.26

Argatroban intermediate 3 0.243 0.081 0.126 0.45 11.47

Argatroban intermediate 4 0.305 0.138 0.161 0.604 11.94

Argatroban intermediate 5 0.167 0.033 0.196 0.395 10.9

Argatroban intermediate 6 0.294 0.122 0.231 0.648 12.05

Biological activity results of relative APTT (Activated Partial Thromboplastin Time), PT (Prothrombin Time) and TT (Thrombin Time), sum of the three ratios of times and
calculated decrease of network efficiency after treated of fourteen compounds. The relative ratios were calculated by the sample time minus the relevant vehicle control
time and then divided by the relevant vehicle control time.
doi:10.1371/journal.pone.0014774.t001
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power of 10 is equal to 200 and that was where the factor 2.3 come

out from. Therefore, the ligand could make the value of the lines

that come out of the target enzyme as 200. BEs represents the

binding free energy of the most potent ligand, BE represents the

binding free energy of other ligands, and LV is the line values of

the edges come out of the target in the network. The line values of

the edges which did not come out of the target enzyme were

defined as 10. The line values of the edges in the network were

calculated with the expression:

LV~10
BE
BEs

|2:30

Therefore, different ligand would show different effect on the

target. For each ligand the network efficiency was then

recalculated using the redefined line values. The network

efficiency of each ligand was ranked by the decrease of the

network efficiency. The more the network efficiency decreases, the

more potent the ligand is. The procedure of network efficiency

calculation was written in C language using Dijkstra Algorithm.

4 Experimental validations
Among these compounds, we chose fourteen compounds which

could be purchased for the further experimental validations. The

compounds used in the experiments were: fangchinoline, folic

acid, rutin, quercetin, liensinine, salvianolic_acid_A, salvianoli-

c_acid_B and six argatroban intermediates. The structures of these

compounds were showed in the table 1.

Activated partial thromboplastin time (aPTT), prothrombin

time(PT) and thrombin time(TT) assays were performed using a

model LG-PABER-I coagulometer (Steellex Scientific Instrument

Company, which also provided the used plasma and clotting

reagents) in compliance with manufacturers’ recommendations.

All test chemicals with the exception of heparin sodium were

solutized and subsequently serial ten-fold dilutions were prepared

with dimethyl sulfoxide (DMSO) to yield a range of concentrations

(12,1.2,0.12,and 0.012610-3 moles?L-1). Heparin sodium solu-

tions (9.06104 I.U.?L-1) were prepared by dissolving in normal

saline (NS). The above series of solutions (DMSO and NS as

references) were diluted with pooled normal human plasma (1:60

vol:vol), and the mixed plasma were evaluated with aPTT, PT and

Figure 2. The network constructed according to the clotting cascade pathway. The red nodes represent the enzymes participate pathway
and the lines between the nodes reflect the relationships between the enzymes of the clotting cascade pathway. The network contained 41 nodes
(enzymes) and 55 edges (relationships between enzymes).
doi:10.1371/journal.pone.0014774.g002
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TT values, which associate with anticoagulant potential of test

chemicals. All reactions were performed in duplicate and data is

expressed in clot time (second).

Results and Discussions

The constructed network (Figure 2) contains 41 nodes and 53

edges (arrows). The nodes cover most of the important enzymes

that participate in the clotting cascade, such as thrombin, factor X,

factor V, TF, etc. We removed each node and calculated the

network efficiency to determine the importance of the enzyme.

The results show that the nodes corresponding to factor Xa,

thrombin and factor VIIIa:factor IXa are identified as the top

three critical targets. The deletion of factor Xa could reduce the

network efficiency greatly, from 17.822 to 8.894. And knock out of

thrombin from the network could reduce the network efficiency

from 17.822 to 10.542. Our predictions are in good agreement

with the reported results[55,56]. For example, the approved drug

Arixtra is a synthetic and specific inhibitor of activated factor X

(Xa) indicated for the prophylaxis of deep vein thrombosis, which

may lead to pulmonary embolism. That means the inhibition of

factor Xa is an ideal way for thrombosis treatment, which is

consistent with our prediction. As a crucial role in physiological

and pathological coagulation, thrombin can be considered a very

successful drug target because numerous direct thrombin inhib-

itors, e.g., Hirudin, Bivalirudin, Lepirudin, Desirudin, Argatroban,

Melagatran and Dabigatran are in clinical use or undergoing

clinical development as antithrombosis agents[57]. In order to test

the clotting cascade network, we randomly deleted one enzyme in

the network and compute the correspondence network efficiency.

Deletion of enzyme with most network efficiency drop could be

considered as the most important targets. The results showed that

deletion of thrombin and Factor Xa would take most effect to the

network efficiency. That meant thrombin and Factor Xa were

predicted as the most important targets by network efficiency

calculation. This prediction was in accordance with practical

knowledge. Therefore, our clotting cascade network could mainly

reflect the real biological process. After the clotting cascade

network testing, docking validations also should be carried out.

To quantitatively compare the differences of the positions and

orientations of five ligands from targets with complex structures

between experimental and computational conformations, all

RMSD (root mean square deviation) between experimental and

computational conformations of these ligands in these complexes

were calculated. RMSD of coagulation factor Xa, thrombin,

prothrombin and tissue factor/factor VIIa are 1.811, 1.890, 1.702

and 1.943, respectively. Among all five values, only RMSD of

factor VIIa is larger than 2 Å and is 2.489, but it is acceptable after

analyzing the positions and orientations of functional groups in the

ligand. (The details are stated in the Supporting Information S1.)

These results indicate that docking by Autodock program in our

study is reliable and accurate enough for further analyses.

In the experimental section of this study, three clinical used

blood clotting assays: aPTT, PT and TT were carried out to reveal

the biological activities of the 14 test compounds. The activated

partial thromboplastin time (aPTT) mainly reflects the intrinsic

pathway which is part of the clotting cascade. The prothrombin

time (PT) is measure of the extrinsic pathway of coagulation. The

Thrombin Time (TT), is a blood test which measures the time it

takes for a clot to form in the plasma from a blood sample in

Figure 3. Comparison the predicting ability of the network-
based multi-target computational estimation scheme with
single-target docking scoring function. A) The correlation
(r = 0.671) between the integrated fourteen compounds biological
activities and the decreases of network efficiency induced by these
compounds. The decrease of network efficiency is calculated from the
multi-target docking scoring. B) The correlation (r = 0.648) between the
fourteen compounds biological activities and the docking scores with
coagulation factor Xa. C) The correlation (r = 0.602) between the
fourteen compounds biological activities and the docking scores with

thrombin. The biological activities of the fourteen compounds are
illuminated in the Supporting Information S1.
doi:10.1371/journal.pone.0014774.g003
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anticoagulant which had added an excess of thrombin. However,

the three assays could not correlate to any single-target. As the

three assays individually reflect part of the clotting cascade, we

considered sum of the three experimental measurements could

represent the whole effects of clotting cascade. Therefore, we

correlate the network efficiency to the sum of the three

experimental measurements.

Then, we conducted multi-target docking for fourteen com-

pounds. Each compound was initially docked and then ranked by

the predicted binding energy to obtain the line values in the network.

After that, the network efficiency for each compound was calculated.

We compared the performances of two docking approaches,

Autodock and Ligandfit, and found that the decrease of the network

deficiency based on the predictions given by Autodock can give

better correlation with the experimental data (r = 0.671) than that

based on the predictions given by Ligandfit (r = 0.47).

In order to test the probability for large scale screening of this

method, we evaluated the runtime of the docking approach and

Figure 4. The Drug-Target network. Circles represent the enzymes in the clotting cascade pathway and the boxes represent the hit compounds
(rutin, salvianolic acid a, salvianolic acid b, fangchinoline, quercetin, liensinine, folic acid). Each ligand is assumed to connect with its target if it can
form strong interactions with the target. Their interactions are expressed by the connecting edges.
doi:10.1371/journal.pone.0014774.g004
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the network efficiency calculation which were the most time

consuming procedures in this method. Take this study for

example, docking procedures for one compound mainly cost less

than 10 minutes per target per CPU thread. Runtime of network

efficiency calculation was relay on the number of targets in the

network. The runtime complexity for the worst-case scenario of

the network efficiency calculation is O(n2) while the ‘‘n’’ is the

number of targets in the network. The network size could be

extended to hundreds of nodes and thousands of edges. That

would large enough for current disease pathway. For the typical

14 target network in this study, calculating the network efficiency

for 14 compounds based on docking data only cost less than 2

seconds on a single CPU core. If our method was running on a

cluster which contain 64 CPUs (128cores, 256 threads), the

throughput could attain to more than 30 000 compounds per day.

Therefore, it is a feasible approach for large scale screening.

To reveal the importance of the network efficiency, we compared

the predictions by the network efficiency analysis based on the

single target docking and those based on the multi-target docking.

When computed by applying the single target docking scores, the

correlation coefficients of the estimated potency and the experi-

mental data for factor Xa and thrombin, which are supposed as

very important enzymes in clotting cascade[56,58,59,60], were

0.648 and 0.602 (Figure 3B and Figure 3C), respectively. However,

the correlation between the predicted network efficiencies and the

experimental data was improved by applying the multi-target

docking scores (r = 0.671) (Figure 3A). It suggests that overall

consideration of the contribution of the biological network might be

better than only consideration of the contribution of single target for

the accurate predictions of the biological activities. The single target

docking cannot capture the biological effects of the ligands

comprehensively, and the multi-target docking is really necessary

to characterize the complicated binding process of ligands with

multiple targets involved in biological network.

Additionally, we analyzed the potency of the hit compounds (In

order to emphasis on the hit compounds screening from

Traditional Chinese Medicine, six argatroban intermediates were

not include in the analysis.) through the network connectivity. In

Figure 4, a ligand is assumed to connect with its target if it can

form strong interactions with the target. The compound rutin,

which connects with 14 targets, is the most potent compound

according to our experiments. Other hit compounds, such as

liensinine and folic acid, which have less connecting neighbors,

show limited biological activities. It seems that the compounds

which can connect with more targets have higher activities

because the potent compounds interact not only with a single

target but also with a series of important targets in the clotting

cascade pathway. Therefore, the technique which combines multi-

target docking and biological pathway network analysis can

predict the effects of ligands to the whole biological pathway more

efficiently.

An analysis of the pharmacology literature was used to assess the

whole homeostasis property of the compound with a larger

decrease value in network efficiency. Previous reports[61,62]

suggested that rutin protected stroke and inhibited thrombosis.

Salvianolic acid B is also confirmed effective on modulating

hemostasis properties of human umbilical vein endothelial

cells[63]. Salvianolic acid A is found protective against cerebral

and myocardial ischemia and reperfusion[64]. These findings

indicate that network efficiency analysis combined with molecular

docking scoring function can be used to successfully screen natural

product databases of potential drugs in silico to identify molecules

with anticoagulant activity.

Generally speaking, current virtual screening methods mainly

focus on single drug-target interaction. The correlation coefficients

between the estimation and the experiment values were based on

compounds’ effects of single target inhibition. However, com-

pounds’ effects on single target inhibition hardly correlated to the

whole effects on such biological pathway process. At the same

time, a few other studies also tried to relate drug effects via

pathway alterations. Mitsos et al. have described a phosphopro-

teomic-based approach to identify drug effects by monitoring

drug-induced topology alterations[65]. They started with a generic

pathway made of logical gates and performed fitting via an Integer

Linear Program (ILP) formulation. While in our study, we

constructed our screening network based on clotting cascade and

applied the Network Efficiency (NE) for ligand efficiency

prediction. Herein, this method reflected the compound’s effects

on the biological pathway and correlated to the phenotype data

which could provide different opinions on pathway based virtual

screening.

Like all virtual screening scoring method, our approach has

many advantages as well as some limitations. One of obvious

advantages of the method is that it specifically considers the role of

every target in the whole coagulation cascade process and assigns

the weightiness on every target by biological network analysis. The

other advantage is that the affinity evaluation in the method is not

limited to molecular docking and scoring, as used in this study.

Other binding energy prediction methods could also be used, such

as pharmacophore, quantitative structure-activity relationship or

comparative molecular field analysis. It is also assumed that the

consideration of flexibility of the targets in molecular docking

might improve the accuracy of the network efficiency. The

relevant work how flexible docking and precise binding free energy

computational methods affect the accuracy of the network

efficiency is under way. Given the fact that the x-ray structures

of fourteen enzymes in existing networks have been determined,

molecular docking and scoring function are well suited for the

human coagulation cascade system. A clear disadvantage of this

technique is that its accuracy enormously depends on the

reliability of network construction and the veracity of binding

affinity assessment.

In summary, we developed a model that combines multi-target

docking and network efficiency calculation for the predictions of

the potency of ligands with reasonable accuracy. The method

integrates the scores given by the multi-target docking scores by

the network efficiency analysis according to the targets’ impor-

tance in a biological pathway or process. The network efficiency

analysis based on the multi-target docking can evaluate the

ligands’ potency more comprehensively than the traditional single

target docking and show better prediction accuracy. It remains to

be determined how the size and complexity the biological network

take effect to the biologically relevant, and the relevant work is

under way.

Supporting Information

Supporting Information S1

Found at: doi:10.1371/journal.pone.0014774.s001 (0.23 MB

DOC)
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