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Abstract

The study of infectious agents, their pathogenesis, the host response and the evaluation of newly developed
countermeasures often requires the use of a living system. Murine models are frequently used to undertake such
investigations with the caveat that non-biased measurements to assess the progression of infection are underutilized.
Instead, murine models predominantly rely on symptomology exhibited by the animal to evaluate the state of the animal’s
health and to determine when euthanasia should be performed. In this study, we used subcutaneous temperature as a non-
subjective measurement to follow and compare infection in mice inoculated with Francisella tularensis, a Gram-negative
pathogen that produces an acute and fatal illness in mice. A reproducible temperature pattern defined by three
temperature phases (normal, febrile and hypothermic) was identified in all mice infected with F. tularensis, regardless of the
infecting strain. More importantly and for the first time a non-subjective, ethical, and easily determined surrogate endpoint
for death based on a temperature, termed drop point, was identified and validated with statistical models. In comparative
survival curve analyses for F. tularensis strains with differing virulence, the drop point temperature yielded the same results
as those obtained using observed time to death. Incorporation of temperature measurements to evaluate F. tularensis was
standardized based on statistical models to provide a new level of robustness for comparative analyses in mice. These
findings should be generally applicable to other pathogens that produce acute febrile disease in animal models and offers
an important tool for understanding and following the infection process.
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Introduction

The ability to translate basic research findings for infectious

diseases often relies on animal models to serve as surrogates for

human illness. Mice are one of the most common animal models

used to study infectious disease as they are susceptible to a similar

range of microbial infections as humans. The field of infectious

disease research lacks a robust substitute to animal models (e.g.

living systems) for the study of pathogenesis, innate and adaptive

immune responses, and efficacy of preventive or therapeutic

interventions of disease. It is therefore critical that the study of

infectious agents in mice and other animal models is performed in

both an ethical and non-biased manner.

The use of non-subjective measurements to follow the course of

disease in mice and that do not require a biological sample (e.g.

heart rate, temperature, oxygen levels, weight) has not been well

explored. Disease progression in mice is commonly assessed by

symptoms such as piloerection, hunched posture, lack of eating

and drinking, and slow response to stimulus; all of which are

subjective indicators of disease state. Similarly, studies of fatal

illness in murine models due to infectious diseases typically do not

use death as an endpoint, and instead, animals are euthanized

based on investigator interpretations of clinical symptoms or at

specific intervals throughout the study. These approaches presume

that individual animals are in the same state of infection when

euthanized, thereby potentially introducing a bias or masking

differences for survival analyses and other measurements, such as

bacterial or viral burdens and immunological markers of disease.

Given the central role of murine models to the study of infectious

diseases, use of objective measures as surrogates of death and

disease state is necessary to allow for standardization within and

among analyses.

Several lines of evidence suggest that changes in temperature

may serve as a non-biased indicator of infection status in mice [1–

3]. Onset of a fever is a common symptom of many viral and

bacterial infections. Hypothermia has been shown to correlate

with toxicity and/or death in animals infected with a number of

different pathogens including Klebsiella pneumonia, Streptococcus

pneumonia, Pseudomonas aeruginosa, Staphylococcus spp., Influenza virus

and Candida spp. [1–7], However, these previous studies did not

employ statistical modeling to establish temperature profiles or

defined measurements as determinants of disease progression or

death.

In this study, subcutaneous body temperature was used to define

and compare disease progression in mice intradermally infected
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with the bacterial pathogen, Francisella tularensis. F. tularensis is the

etiologic agent of tularemia, with the onset of fever in humans

being one hallmark of this disease [8]. This pathogen was chosen

for the current work as it produces an acute fatal illness in mice.

Moreover, virulence in mice has previously been shown to differ

based on the infecting F. tularensis subspecies (tularensis and

holarctica, also known as type A and type B, respectively) and

subpopulation (A1a, A1b, and A2) [9] , thereby allowing for

temperature to be explored in relation to ethical endpoints of

survival. Temperature variances through the course of disease

defined stages of infection and a single temperature measurement,

termed drop point, was identified as an ethical, non-subjective and

statistically valid correlate of death. The data also demonstrate

that mice infected with the same F. tularensis strain did not progress

through the infection simultaneously, thus underscoring the need

for objective measurements of the infection process. The

temperature model described here provides a new and robust

tool for researchers using murine models to study the pathogenic-

ity of bacteria that cause acute febrile infections, as well as for

testing the efficacy of new drugs and vaccines developed against

these agents.

Results

Phases of F. tularensis infection based on mouse
subcutaneous temperature

Temperature curves for mice infected with F. tularensis A1a,

A1b, A2 and type B (n = 14 mice per F. tularensis group) were

generated and analyzed (Figure 1). Diagnostic plots created from

the 56 individual temperature curves suggested that the time series

is autoregressive with dependencies at lags of 1 time period

(2 hours) and 12 time periods (24 hours). The lag at 2 hours

indicates successive temperature measurements are correlated

while the lag at 24 hours indicates temperature measurements

taken at the same time each day are correlated. The method of

Barry and Hartigan [10] identified two change points (a time point

at which some fundamental characteristic such as the mean

process or variance structure of the time series changes) in the

temperature time series for all 56 F. tularensis infected mice. A

representative temperature curve with the two change points,

(CP1 and CP2), and intervening phases (P1, P2 and P3) is shown

in Figure 2.

Comparison of mouse subcutaneous temperature in P1

indicated that the subcutaneous temperature of F. tularensis

infected mice fell within the tolerance interval (35.3uC to

38.6uC) nearly 99% of the time. Temperature fluctuation during

this phase ranged from 35uC to 39uC and was consistent with the

temperature of uninfected animals. Mice were asymptomatic

throughout this phase, therefore, P1 was termed the ‘‘normal

phase’’. The second phase (P2) of F. tularensis infection began with

a rise in temperature that was sustained over the time course of

this phase. In P2 the subcutaneous temperature of F. tularensis

infected mice fell within the tolerance limits only 33% of the time.

Mice showed slight clinical symptoms, primarily huddling within

their enclosure, but remained responsive and continued to eat and

drink throughout most of this phase. Due to the elevated

temperature (.38uC) maintained by infected mice during this

period, P2 was termed the ‘‘febrile phase’’. The last temperature

phase of F. tularensis infection consisted of a sudden drop from

elevated temperatures with temperatures continuing to drop until

death of the mouse. Thus, P3 was termed the ‘hypothermic

phase’’.

In addition to the three phases of F. tularensis infection

demarcated by temperature CP1 and CP2, other similarities were

noted among the temperature responses in mice infected with F.

tularensis. Autocorrelation plots indicated strong evidence of a

diurnal effect on temperature during the normal phase of F.

tularensis infection. The temperature fluctuation during this phase

(35uC to 39uC) correlated directly to mouse activity over a 24 h

period. The daily temperature cycle was much less pronounced in

the febrile phase, although this could be because the length of the

febrile phase was generally much shorter (mean length of 38 to

42 h) than the normal phase (mean length ranging from 77 to

138 h) (see Table 1), but is more likely due to the decrease in

mouse activity attributable to F. tularensis infection. The hypother-

mic phase averaged 10 to 15 h and the mice did not present daily

cyclical behavior.

The temperature pattern of infection was similar for all mice, as

all mice underwent P1 to P3 (Figure 1). The mean length of each

phase differed based on the infection group (F. tularensis A1a, A1b,

A2 or type B) (Table 1). It was also observed that mice infected

with a single strain did not succumb to infection or reach a

particular phase or change point at the same time (Figure 1,

Table 1). Mice infected with different strains of the same group

were only in the same phase for 33% (2 out of 6 days), 14.3% (1

out of 7 days), 12.5% (1 out of 8 days) and 30% (3 out of 10 days)

of the time for A1a, A1b, A2 and type B, respectively (Table 2).

Time to death predictions based on temperature change
To determine whether temperature data serves as a correlate to

death, the mean temperature during the normal phase, the mean

temperature during the febrile phase, CP1, or CP2, for F. tularensis

group (A1a, A1b, A2 and type B) were used in the linear mixed-

effect model to predict time to death. The mean temperature

during the normal and febrile phase were found to be uncorrelated

with time to death, whereas CP1 and CP2 (Figure 3A) both

correlated with the observed time to death. CP2 was pursued

further as a time to death predictor as it occurred later in the

progression of infection and therefore provided information for the

infection through P2. The differences (in hours) between the

observed and predicted times of death based on CP2 are shown in

Figure 3B. The maximum error of prediction as compared to

observed time to death is about 10 h with 71% of the predictions

being within 5 h of the observed time to death. The square root of

the mean square prediction error (RMSPE) for a leave-one-out

validation is 3.89 h; for a leave-five-out validation, it is 3.92 h; and

when half of the data set is left out (leave-28-out), the RMSPE is

4.09 h. Compared to the RMSPE for the full set of data (leave-

zero-out) of 3.58 h, these suggest a strong predictive value of CP2

for time to death.

Identification and definition of drop point for use as a
surrogate endpoint

As determination of CP2 required complex statistical analyses,

temperature curves where further analyzed to elucidate an easily

identifiable point in the infection that could be readily applied as a

surrogate for time to death. With only two exceptions (n = 56 mice)

that were due to misreads by the probe, CP2 was found to be the

first temperature measurement following the febrile phase to fall

below the mean temperature of the normal phase (Figure 2).

Therefore, this temperature change was termed ‘‘drop point’’. The

drop point differed slightly for each mouse given that it is directly

dependent on the mean of the normal phase. Further investigation

of the length and frequency of temperature monitoring necessary

to determine drop point based solely on the mean temperature of

the normal phase was performed. Calculating the 1st percentile of

the distribution of the length of P1 (mean length of time for P1 was

91.3, 76.5, 97.1 and 138.4 h in A1a, A1b, A2 and type B infected

Mouse Temperature Model of F. tularensis Infection

PLOS ONE | www.plosone.org 2 September 2012 | Volume 7 | Issue 9 | e45310



mice, respectively) indicated that the temperature of mice infected

should be monitored for at least 56.6 h for A1a, 21.9 h for A1b,

22.3 h for A2, and 53.7 h for type B in order to accurately identify

the drop point (Table 1). To determine the frequency of

temperature monitoring necessary, the percent agreement be-

tween CP2 (based on joint likelihood analysis of time series plots)

Figure 1. Temperature curves. Mice (n = 14 mice for each of the four F. tularensis infection groups) infected in round 1 and round 2 with F.
tularensis groups (A1a, A1b, A2 and type B) are shown. Mice were infected with F. tularensis and temperature was monitored every 1–2 hours until
mice expired.
doi:10.1371/journal.pone.0045310.g001

Figure 2. A representative mouse subcutaneous temperature curve in response to infection with F. tularensis type B is shown. P1, P2
and P3 represent phase 1 (normal phase), phase 2 (febrile phase) and phase 3 (hypothermic phase), respectively. Black dots on the temperature curve
labeled CP1 and CP2 represent change point 1 and change point 2, respectively.
doi:10.1371/journal.pone.0045310.g002

Mouse Temperature Model of F. tularensis Infection
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and drop point (the first temperature below the mean temperature

of the normal phase) was computed for 5000 of temperature data

for each of the 56 mice infected with F. tularensis. When

temperature was sampled every 2 h, CP2 and drop point analyses

identified the same time point 96% of the time. When temperature

was sampled at 4, 6 and 12 h intervals, the agreements were

95.4%, 94.9%, and 92.1%, respectively. These results suggest that

monitoring frequency should be no less than every 6 h to

appropriately identify the drop point.

Comparative virulence based on predicted vs. observed
time to death

We previously showed that the parametric survival curves

(modeled according to a Weibull distribution) for mice infected

with F. tularensis A1a, A1b, A2 or type B are statistically different

from one another in scale (i.e. mean and variability of time to

death) and/or shape (i.e. symmetry of pattern of death) using

observed time to death as the endpoint [9]. Therefore we

investigated whether survival curves based on predicted time to

death using CP2 or drop point yielded statistically similar results

when compared with observed time to death. The differences

observed among F. tularensis infection groups were the same as

those obtained from observed time to death experiments when

parametric survival curves were generated based on either CP2

(data not shown) or drop point (Figure 4A). Specifically, the scale

parameter of survival curves differed significantly (p,0.008)

between A1b infected mice and those of A1a, A2 and type B

infected mice as well as between A1a and A2 infected mice. The

survival curve for mice infected with A1a differed significantly

(p,0.008) in shape from the survival curves of mice infected with

A1b, A2 and type B. Although the prototypic F. tularensis virulent

strain Schu S4 was not included in this study, it should be noted

that this strain is classified as an A1a strain [11–12] Survival curves

Table 1. Length of infection phase for mice infected with each F. tularensis group (A1a, A1b, A2 and type B).

Phase Length Measureda F. tularensis group

A1a A1b A2 type B

Normal Mean length 91.3 76.5 97.1 138.4

Range of length (60.0, 108.0) (34.0, 114.0) (36.0, 160.0) (76.0, 186.0)

1st percentile distribution 56.60 21.90 22.30 53.70

5th percentile distribution 68.50 35.60 39.20 77.80

10th percentile distribution 74.50 44.00 50.20 91.6

Febrile Mean length 40.30 39.10 37.70 42.40

Range of length (28.0, 50.0) (28.0, 56.0) (30.0, 50.0) (28.0, 62.0)

aAll lengths were measured in hours.
doi:10.1371/journal.pone.0045310.t001

Table 2. Number of mice in each phase over time.

F. tularensis infection groupa Phase Time (hours)

24 48 72 96 120 144 168 192 216 240 264

A1a Normal 14 14 13b 7 0 0 0 0 0 0 0

Febrile 0 0 1 7 11 2 0 0 0 0 0

Hypothermic 0 0 0 0 1 6 0 0 0 0 0

Expired 0 0 0 0 2 6 14 14 14 14 14

A1b Normal 14 11 9 4 0 0 0 0 0 0 0

Febrile 0 3 4 5 7 3 0 0 0 0 0

Hypothermic 0 0 1 0 2 3 1 0 0 0 0

Expired 0 0 0 5 5 8 13 14 14 14 14

A2 Normal 14 12 9 9 5 1 0 0 0 0 0

Febrile 0 2 5 0 4 6 3 1 0 0 0

Hypothermic 0 0 0 3 0 2 2 1 0 0 0

Expired 0 0 0 2 5 5 9 12 14 14 14

type B Normal 14 14 14 10 10 9 4 0 0 0 0

Febrile 0 0 0 4 1 1 6 8 4 0 0

Hypothermic 0 0 0 0 2 0 0 1 1 1 0

Expired 0 0 0 0 1 4 4 5 9 13 14

aInfection data from rounds 1 and 2 were combined.
bBold and underlined numbers represent mice that are not in the same phase at a particular time.
doi:10.1371/journal.pone.0045310.t002
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based on CP2 were statistically the same as the survival curves

based on drop point (data not shown). These results indicate that

predicted time to death based on CP2 or drop point can readily

substitute as a non-biased surrogate endpoint for time to death

experiments.

Experimental determination and utilization of drop point
for survival curves

To further assess the utility of using drop point as an ethical

endpoint for survival curve analysis, mice (n = 7) were infected

with F. tularensis A1b strain MA00-2987, the same strain used in

previous observed time to death experiments [9], and mouse

temperature was monitored every two hours over the mean length

of the normal phase for A1b (21.9 hours). The mean temperature

of the normal phase was determined for each mouse and mice

were euthanized once the drop point temperature was observed. A

survival curve using drop point as the endpoint was generated.

This was then compared to a F. tularensis MA00-2987 survival

curve using drop point data calculated from a previous observed

time to death experiment [9]. No significant differences (p = 0.89

Figure 3. Predicted time of death (based on change point 2) versus observed time of death. A) The correlation between predicted time of
death and observed time of death are shown for all mice (black dots) infected with F. tularensis groups (A1a, A1b, A2 and type B) in both round 1 and
round 2. The solid black line represents 100% correlation. B) The observed time of death minus the predicted times of death are shown for all mice
(black dots) infected with F. tularensis groups (A1a, A1b, A2 and type B) in both round 1 and round 2.
doi:10.1371/journal.pone.0045310.g003

Mouse Temperature Model of F. tularensis Infection
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Figure 4. Comparison of fitted survival curves. A) Survival curves (fitted for all data from round 1 and round 2) are shown for mice infected with
F. tularensis groups (A1a, A1b, A2 and type B) using drop point (solid lines) and observed time of death (dashed lines). The time at which each mouse
expired (solid circles) or reached drop point (open circles) was reached is shown below the graph. B) Survival curve comparison between two
infections performed at different times using the same A1b strain MA00-2987. The first MA00-2987 infection is denoted as (NNN — NNN). During this
infection, mice were allowed to expire and drop point was subsequently identified and used as the endpoint for generating the survival curve. The
second MA00-2987 infection is denoted as (——). Mice were euthanized at drop point during this infection for generation of the survival curve. The
time at which each mouse reached drop point is shown below the graph as squares (1st round) or circles (2nd round).
doi:10.1371/journal.pone.0045310.g004

Mouse Temperature Model of F. tularensis Infection
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for scale parameter; p = 0.95 for shape parameter; log-likelihood

ratio p = 0.99) were observed in these two survival curves

(Figure 4B), thus demonstrating the accuracy and robustness

across experiments as well as the feasibility of using the drop point

temperature as a surrogate endpoint for death.

Discussion

Animal studies provide essential information in the evaluation of

novel drugs and vaccines for human infectious diseases, and the

robustness of the model impacts the quality and utility of the

resulting data. Elevated temperature is a phenotype common to

many infectious diseases and is noted as a correlate of pathogenesis

[13]. The current study applied statistical modeling to advance the

use of temperature measurements such that a surrogate marker of

death for F. tularensis infection in mice was defined. Two surrogate

endpoints for death based on temperature were identified. The

first of these termed CP2 occurred consistently between the febrile

(P2) and hypothermic phases (P3) of disease, but could only be

defined by linear mixed-effect modeling. Thus, CP2 could not be

determined in real-time during the course of an experiment and

could not be applied as a surrogate of death. Inspection of

temperature curves, however, indicated that CP2 closely correlat-

ed to the first temperature measurement at the end of the febrile

phase (P2) falling below the mean temperature of the normal

phase (P1), and thus was termed ‘‘drop point’’. It was noted that

mice at the drop point were responsive to stimuli and still taking

food and water. Independent survival curves generated for F.

tularensis strains with varying virulence and based on CP2 or drop

point were statistically indistinguishable from those obtained using

observed time to death. The experimental feasibility of determin-

ing and using drop point as an accurate indicator of death was also

shown through survival curve comparisons that showed no

difference between mice infected with F. tularensis Alb strain

MA00-2987 euthanized at drop point and mice previously infected

with the same strain for which drop point was calculated after they

were allowed to expire. Together these results demonstrate that

the easily determined drop point can be applied as an ethical, non-

biased and accurate surrogate endpoint for death in mice infected

with F. tularensis. Given that fever is a characteristic symptom of

tularemia [8], this approach can be further developed and

modified for use in other animal models, and for different

inoculation routes and doses. Further, the application of statistical

modeling to temperature profiling should be applicable to the

study of other acute infectious agents that cause febrile illness.

The data generated through our studies not only demonstrated

that the drop point was a statistically valid surrogate endpoint for

death, but also revealed that temperature profiling can be used to

follow the variability in disease progression between infected

animals to a level not previously accomplished. A previous

assessment of the virulence of eight diverse F. tularensis strains in

the C57BL/6 mouse model based on time to death reveled that

animals succumbed to infection between 82 and 242 h and the

variance in time to death for a single strain was between 51 and

129 h [9]. The evaluation of body temperature of C57BL/6 mice

intradermally infected with the same eight strains of F. tularensis

revealed three temperature phases (normal, febrile and hypother-

mic) demarcated by two change points (CP1 and CP2) that

occurred regardless of the strain. However, as was observed in the

variance of time to death [9], mice advanced through the stages of

infection as defined by temperature at dramatically different rates.

This variability was not only between strains, but there was a

notable variance for animals infected with the same F. tularensis

group, with less than 34% congruency with respect to the number

of days in which mice were within the same temperature phase.

Such variation among mice infected with F. tularensis is not unique

to this study [14]. In fact, previous studies show that bacterial

burdens analyzed for F. tularensis infected mice that were

euthanized based on a given day post infection differed by as

much as 7 Log10 CFU/organ [14–17]. Differences in disease

progression as indicated by our subcutaneous temperature profiles

would be consistent with variance in other measures of disease

progression. Further, the majority of animal studies performed

with F. tularensis collect and test biological samples at specific

intervals (24, 48, 72 h, etc.) [14–16,18]. Thus, with an acute

disease and one that is significantly influenced by the route of

infection and minor variations in the infecting inoculums, the

practice of collecting biological samples at specific time intervals

rather than at defined points of disease likely contributes to the

variability in the biological analyses of disease. Temperature

monitoring therefore, provides a reproducible picture of infection

progression; a feature critical for comparative animal studies

within and between laboratories, and one that could be applied to

normalize sample collection or biological data.

A non-biased temperature measurement of infection in animal

models is advantageous in that it is minimally invasive, requiring

the subcutaneous implantation of a probe via injection. A

biological sample is not required from the animal and measure-

ments are easily taken without disrupting or causing stress to the

animals. Such a system has value in guiding the experimental

administration of therapeutics as well as sample collection. As

demonstrated by Bast et al. temperature provides a measure of

pneumococcal pneumonia severity in mice, and when used in the

evaluation of moxifloxacin and levofloxacin efficacy this group

demonstrated that animals receiving antibiotics at temperatures

$32uC fared better than those receiving antibiotics at tempera-

tures of ,30uC [19]. When combined with appropriate statistical

modeling, telemetry based measurements that include other

physiological parameters such as blood pressure, biopotential

(ECG, EEG, and EMG), heart rate and temperature offer an

extraordinary tool to maximize animal resources and normalize

experimental data for acute infectious diseases such as that caused

by F. tularensis. Additionally, as telemetry technology advances,

automation of this system for use in mice will allow drop point and

other measurements identified to be readily used as surrogate

endpoints for death.

Materials and Methods

Ethics Statement
All animal procedures were approved by the Division of Vector-

Borne Diseases Institutional Animal Care and Use Committee

(protocol number 08-012) and performed in accordance with the

guidelines on the care and use of laboratory animals [20].

Mice and experimental protocol
Specific-pathogen free 8–9 week old female inbred C57BL/6

mice (The Jackson Labortory, Bar harbor, ME) were used. Mice

were implanted a week prior to F. tularensis infection with IPTT-

300 transponders (BioMedic Data Systems Inc., Seaford, DE)

programmed with mouse identifiers. Mice were anesthetized by

inhalation with isoflurane and transponders were implanted below

the dermis in the upper back region as per the manufacturer’s

instructions. Mouse subcutaneous temperature was monitored

using the DAS-6007 probe (BioMedic Data Systems Inc.) once a

day prior to infection and every 1 to 2 hours following infection

until the mice expired. Control mice injected with saline were used

to monitor normal mouse subcutaneous temperature throughout

Mouse Temperature Model of F. tularensis Infection
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the study. Mice were given food and water ad libitum, and an

exercise wheel was provided in every cage. Infection of mice with

strains representing each of the four F. tularensis groups (A1a, A1b,

A2 and type B) was accomplished by inoculation of 10–20 CFU

intradermally (50 ml) via the tail dermis and colony forming units

in each inoculum were verified as previously described [9]. For

temperature model development, mice were allowed to expire.

Mice (n = 7 in each group) were infected in 2 rounds. The first

round consisted of infection with one strain representing each of

the four F. tularensis groups (A1a, A1b, A2 and type B). The second

round was a repeat of the first round using a different set of strains.

A final animal infection was performed to test the temperature

model. In this case mice were infected with F. tularensis strain

MA00-2987 (n = 7) as described and temperature was monitored

every two hours. The mean temperature of the normal phase was

calculated once mice entered the febrile phase and mice were

euthanized at their drop point. Two criteria needed to be satisfied

to conclude a mouse had entered the febrile phase: first, the length

of time passed must be greater than the 5th percentile of the

distribution of the length of the normal phase, and second, the

temperature must remain above the cumulative mean temperature

for 12 consecutive hours. All animal experiments were conducted

in an ASBL3 facility.

Strains and culture conditions
F. tularensis strains (n = 8) used in this study originated from

human tularemia cases [9]. Strains were grown from frozen stocks

(270uC) on cysteine heart agar supplemented with 9% sheep

blood (CHAB) at 35uC for 48 h, followed by subculture onto

CHAB for 24 h at 35uC. All F. tularensis strains were typed using

pulsed-field gel electrophoresis (PFGE) as previously described

[11,21].

Subcutaneous temperature model of F. tularensis
infection

Time series plots of temperatures were generated using Spotfire

S+ v8.1 (TIBCO Software, Inc.). Autocorrelation and partial

autocorrelation plots were created for different contiguous subsets

of the data in order to determine approximate structure of the

moving average and autocorrelation components of the time

series. To identify the number of change points (different segments

of the time series), the method described by Barry and Hartigan

[10] was implemented. To identify the location of the change

points, the joint likelihood of the time series segments was

constructed. Temperatures were assumed to be statistically

independent among the segments. The mean process in all but

the final segment was assumed constant (but different). The mean

process in the final segment was modeled by a second degree

polynomial function of time. The variances of the segments were

allowed to differ by segment, but were assumed constant within

each segment. The joint likelihood of the data was maximized over

a grid of change point values.

For temperature comparisons between control and infected

mice the marginal mean and variance of the distribution of

temperatures in the control mice were estimated using a linear

mixed-effects model accounting for mouse effects and AR1

correlation among temperatures within mice. Diagnostics, includ-

ing quantile-quantile plots were used to verify the assumption of

normality. Using the marginal mean and variance, a 95%

tolerance interval for temperatures in the control mice was

constructed. By construction, a temperature sequence consistent

with that found in the control mice should fall within the tolerance

limits 95% of the time. This tolerance interval was mapped onto

the temperature sequences of the infected mice to determine if

normal phase temperatures and febrile phase temperatures in

infected mice were consistent with temperatures in control mice.

Time to death prediction
Using a linear mixed-effect model, time to death was modeled

as a function of temperature data (time of change points, mean

temperature during normal phase, and mean temperature during

febrile phase). F. tularensis group (A1a, A1b, A2 and type B) was

included as a random effect. Standard diagnostics, including

residual analysis, were employed to ensure a valid model. The

model was fit using data from all infections, and a cross-validation

on the model was performed leaving out subsets of size one to 50%

of the data and calculating the RMSPE (an estimate of the average

number of hours by which the predicted times of death differed

from the observed times of death).

Duration and frequency of monitoring times needed to
accurately estimate the mean of the normal phase

Distribution plots of the lengths of the normal phase were made

and Weibull densities were fit to these lengths for each F. tularensis

group. The 1st, 5th, and 10th percentiles for each distribution

were then estimated. Using the estimated models from the original

data [9] we simulated 5000 new sets of temperature data for each

mouse. Under sampling frequencies of 2, 4, 6, and 12 h and

sampling to the 5th percentile, the proportion of times among all

simulations in which the sample mean temperature during the

normal phase was higher than the sample minimum temperature

during the febrile phase was computed.

Comparative virulence
As described previously [9], survival times were modeled

according to a Weibull distribution (allowing both the scale and

shape parameters to differ) using predicted time to death and drop

point as endpoints. Standard diagnostics including residual plots

and goodness of fit tests were used to validate the model fits. The

survival curves generated here were compared to those created

using observed time to death [9]. Differences in the parameter

estimates (shape and scale) of the survival curves were considered

statistically significant if p,0.008, with this level of significance

determined using the Bonferroni adjustment for multiple compar-

isons.

Acknowledgments

The authors would like to thank Sarah Sheldon and Sara Reese for their

technical help and Animal Care Staff for their support with the animals.

Funding was provided by National Institutes of Health, National Institute

of Allergy and Infectious Diseases grant number U54AIO65357-01.

Author Contributions

Conceived and designed the experiments: CRM JWY BMY JTB MES

JMP. Performed the experiments: CRM JWY BMY. Analyzed the data:

CRM MJD JMP. Contributed reagents/materials/analysis tools: MJD.

Wrote the paper: CRM MJD JTB JMP.

References

1. Kort WJ, Hekking-Weijma JM, TenKate MT, Sorm V, VanStrik R (1998) A

microchip implant system as a method to determine body temperature of

terminally ill rats and mice. Lab Anim 1998, 32: 260–269.

2. Soothill JS, Morton DB, Ahmad A (1992) The HID50 (hypothermia-inducing

dose 50): an alternative to the LD50 for measurement of bacterial virulence.

Int J Exp Pathol 73: 95–98.

Mouse Temperature Model of F. tularensis Infection

PLOS ONE | www.plosone.org 8 September 2012 | Volume 7 | Issue 9 | e45310



3. Wong JP, Saravolac EG, Clement JG, Nagata LP (1997) Development of a

murine hypothermia model for study of respiratory tract influenza virus
infection. Lab Anim Sci, 47: 143–147.

4. Spellberg B, Ibrahim AS, Edwards JE Jr, Filler SG (2005) Mice with

disseminated candidiasis die of progressive sepsis. J Infect Dis 192: 336–343.
5. Stiles BG, Campbell YG, Castle RM, Grove SA (1999) Correlation of

temperature and toxicity in murine studies of staphylococcal enterotoxins and
toxic shock syndrome toxin 1. Infect Immun 67: 1521–1525.

6. Vlach KD, Boles JW, Stiles BG (2000) Telemetric evaluation of body

temperature and physical activity as predictors of mortality in a murine model
of staphylococcal enterotoxic shock. Comp Med 50 :160–166.

7. Warn PA, Brampton MW, Sharp A, Morrissey G, Steel N, et al. (2003) Infrared
body temperature measurement of mice as an early predictor of death in

experimental fungal infections. Lab Anim 37: 126–131.
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