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Abstract

An understanding of the occurrence and comparative timing of influenza infections in different age groups is important for
developing community response and disease control measures. This study uses data from a Scandinavian county
(population 427.000) to investigate whether age was a determinant for being diagnosed with influenza 2005–2010 and to
examine if age was associated with case timing during outbreaks. Aggregated demographic data were collected from
Statistics Sweden, while influenza case data were collected from a county-wide electronic health record system. A logistic
regression analysis was used to explore whether case risk was associated with age and outbreak. An analysis of variance was
used to explore whether day for diagnosis was also associated to age and outbreak. The clinical case data were validated
against case data from microbiological laboratories during one control year. The proportion of cases from the age groups
10–19 (p,0.001) and 20–29 years old (p,0.01) were found to be larger during the A pH1N1 outbreak in 2009 than during
the seasonal outbreaks. An interaction between age and outbreak was observed (p,0.001) indicating a difference in age
effects between circulating virus types; this interaction persisted for seasonal outbreaks only (p,0.001). The outbreaks also
differed regarding when the age groups received their diagnosis (p,0.001). A post-hoc analysis showed a tendency for the
young age groups, in particular the group 10–19 year olds, led outbreaks with influenza type A H1 circulating, while A H3N2
outbreaks displayed little variations in timing. The validation analysis showed a strong correlation (r = 0.625;p,0.001)
between the recorded numbers of clinically and microbiologically defined influenza cases. Our findings demonstrate the
complexity of age effects underlying the emergence of local influenza outbreaks. Disentangling these effects on the causal
pathways will require an integrated information infrastructure for data collection and repeated studies of well-defined
communities.
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Introduction

A thorough understanding of the occurrence and comparative

timing of influenza infections in different age groups is important

for developing community response and disease control measures,

e.g. early social distancing measures, risk communication, and

vaccinations (WHO 2009). However, the relationship between age

and disease transmission patterns within populations is difficult to

measure. Viboud et al (2006) reported that working-age adults are

responsible for the between-community transfer of influenza

infection during outbreaks [1]. Some studies have attributed the

local spread of influenza outbreaks to high attack rates among

children and adolescents, suggesting the need to target disease

mitigation interventions within this age group [2,3,4]. The

Houston Family Study reported different age distributions for

seasonal H1N1 and H3N2 infections, noting that more than 50%

of H1N1 infections were detected among 10–34 year olds [5].

Some studies have identified young children as leading the spread

of infection [6], while other studies have identified adolescents and

young adults as the age groups most likely to drive local spreads

[7]. Other studies have even observed little age-specific difference

in the timing of infection onset [8].

Local surveillance is needed to assess community-level influenza

activity, as mixing between regions appears to be too weak a

variable to infer causality in the direction and timing of spread [9].

The challenge for such surveillance is not to find the causal agent

of the disease, but to detect outbreaks and address their proximal

and distal causes. Proximal causes of influenza infection include

those that influence the probability of exposure to the virus, while

distal determinants arise when exposure does not necessarily

progress to disease [10]. The age-related impact associated with

proximal causes, such as close human-to-human contact patterns
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and personal hygiene habits in stable communities, can be

expected to change slowly over time. In contrast, the age-related

impact on the distal causal pathway, reflecting the interplay

between the biological virus type characteristics and the

immunological status of the host, can be observed in the

between-outbreak variations in age-related influenza morbidity.

This study uses an open cohort design to investigate the

occurrence of differences between age groups with regard to the

proportion of individuals receiving medical care for influenza and

their comparative time of diagnosis during outbreaks. The study

uses data from an electronic health data repository covering the

entire population in a Scandinavian county. Clinical diagnosis of

influenza is used as the case definition. Specifically, the aim is to

investigate whether age was a determinant for diagnosis of

influenza in the county during the period 2005–2010, either alone

or in interaction with an epidemic outbreak caused by a particular

circulating virus type. A secondary goal was to investigate if age

was associated with the within-outbreak point in time of infection

onset.

Methods

The study was performed in Östergötland County (population

427.000) (Table S1) located in South-Eastern Sweden, during the

influenza seasons 2005–06 to 2009–10. The number of individuals

in this population clinically diagnosed daily with influenza was

used as a measure of influenza activity, and the number of days

that elapsed from the start of an influenza outbreak to the time for

diagnosis was used as a measure of the comparative time of

infection onset. The start and end time of each outbreak was

defined as eight incident cases during a floating seven–day period.

Östergötland county consists of thirteen municipalities, of which

two (Linköping and Norrköping) account for about two thirds of its

population. A European highway and the main train connection

between Stockholm and Copenhagen run across the county,

which, outside urbanized areas, consists mainly of farmland.

Employees at several large companies and one university situated

in the county also use two local airports for business travel to

international destinations. Comparing the demographic charac-

teristics of Östergötland’s municipalities with the corresponding

statistics for the three metropolitan regions in Sweden (Stockholm,

Västra Götaland, and Skåne counties; 108 municipalities), as well

as the remaining seventeen counties (169 municipalities) (Infor-

mation S1), reveals that the demography in Östergötland is quite

similar to that of non-metropolitan Sweden. However, the

municipalities of Östergötland tend to have a higher share of

young people, as well as a lower share of foreign born, compared

to the municipalities in other non-metropolitan counties. Within

the county, the municipality of Linköping stands out, exhibiting

the lowest mean age, the highest education level, and a substantial

amount of people commuting there to work.

For those individuals for whom seasonal influenza vaccination is

found medically indicated (the elderly and immunosuppressed

individuals), the vaccine is administered by a physician during an

office visit free of charge. According to public health records, each

year about 60% of the population above 64 years of age receives

the seasonal influenza vaccine. The general population can get the

vaccine for a charge of approximately $45 from their primary care

centre. Unlike the seasonal vaccines, during the 2009 A/H1N1

outbreak the pandemic vaccine was provided free of charge to the

general population as a part of a national mass vaccination

campaign. This campaign was administered in supplementary

mass vaccination sites at hospitals and public health clinics

throughout the county.

Ethics Statement
The study design was based on administrative public health

databases established for the purpose of systematically and

continuously developing and securing the quality of service, and

where according to Swedish legislation (SFS 2008:355) personal

identification data had been removed from the records.

Data collection
Two data sources were used for the study. Annual aggregated

data on the sex, age, and residence (urban, rural) of the population

were collected from Statistics Sweden and grouped into nine age

groups (0–9 years, 10–19 years, etc. up to 80+years). Age and sex

data from individuals clinically diagnosed with influenza were

identified from the data repository connected to the electronic

health record systems at Östergötland County Council [11]. The

repository collects data from primary care, hospital care, and

clinical laboratories. However, data from the clinical laboratories

were only available from the period 2009-01-01 to 2010-09-15.

Influenza cases were identified by the ICD-10 codes for influenza

(J10.0, J10.1, J10.8, J11.0, J11.1, J11.8). For individuals having

received an influenza diagnosis at both primary and secondary

levels of care, only the latter record was used for the analyses. Data

from the microbiological laboratory were not used for case

identification, but solely for validation purposes.

Data analyses
Descriptive statistical methods were applied to the clinical data

to help represent influenza activity in the county during the study

period. The Relative Illness Ratio (RIR), i.e. the ratio of the

percentage of individuals with an influenza diagnosis in a given

age group to the percentage of the general population belonging to

the same age group, was computed for each age group and

outbreak (circulating virus type) using the formula

RIRi~ Ci=Cð Þ= Ni=Nð Þ,

where Ci is the number of influenza cases in age group i, C is the

number of influenza cases in total, Ni is the population in age

group i, and N is the total population in Östergötland. RIR values

from seasonal and pandemic influenza outbreaks were compared

using a method based in normal approximation of the Poisson

distribution. The tests were two-tailed, with a 5% risk of type I

error.

In the next step of the analysis, a logistic regression analysis was

carried out to compute whether the probability for an individual to

be diagnosed with influenza was determined by the variables age

and outbreak (circulating types of influenza virus); main effects and

interactions between these. In this study, the analyses were

structured to allow comparisons of coefficients and odds ratios

with a neutral reference variable corresponding to a computed

average. Two separate analyses were carried out, including and

excluding the A pH1N1 outbreak in 2009, respectively, to

examine what distinguished the pH1N1 outbreak from the

seasonal influenza outbreaks. Finally, the outbreaks (circulating

virus types) were tested in pairs to examine interactions between

age group and outbreak with regard to the probability of being

diagnosed with influenza.

To investigate whether the time of infection onset during

outbreaks was determined by age, an analysis of variance

(ANOVA) based on the day for diagnosis was performed in the

subpopulation having received an influenza diagnosis. Mean

differences in time of infection onset were then calculated for each

age group. The A pH1N1 outbreak in 2009–10 had two peaks;

Age as a Determinant for Influenza Dissemination
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separate analyses were performed for each of these. Finally, we

investigated associations between the mean time of diagnosis and

the RIR for the age group during the outbreaks. The correlation

between age group effects in the analysis of time of diagnosis and

age group regression coefficients in the analysis of proportion of

individuals with an influenza diagnosis was calculated for all six

outbreak peaks.

The level of statistical significance was set to p,0.05. To denote

the strength of correlations, we used limit values suggested by the

Cohen Scale [12]. This scale defines small, medium and large

effect sizes as 0.10, 0.30, and 0.50 respectively.

In a validation step of the analysis, the case data defined by

clinical diagnoses was validated against case data from the

microbiological laboratories. In these analyses, both data sets

were separately adjusted for week-day effects on care resource

utilization. The correlations between the number of cases reported

each day in the clinical and laboratory data were analyzed with 0–

6 day lag. Also, the age-related risk for receiving an influenza

diagnosis was computed from both data sets and compared. The

analyses were performed using Minitab Statistical Software version

16.1.1 (Text S1) and reported according to the STROBE

statement for observational studies [13].

Results

Five influenza outbreaks with corresponding main circulating

virus types were identified (Figure 1). The influenza activity

accumulated into five outbreaks lasting between:

N 2006-01-01–2006-04-20 (circulating virus types B, A/H3 and

H1N1),

N 2007-01-31–2007-04-11 (A/H3N2),

N 2008-01-21–2008-04-30 (B and A/H1),

N 2008-12-24–2009-03-30 (A/H3N2), and

N 2009-08-21–2009-12-22 (A pH1N1).

The outbreaks differed with regard to intensity, i.e. the risk for

residents to receive an influenza diagnosis. The highest intensity

was recorded for the A H2N3 outbreak in 2008 (1.44 of the

average risk (95% C.I. 1.30–1.60) and second highest intensity

during the A pH1N1 outbreak in 2009–10 (1.23 (95% C.I. 1.08–

1.40)). The lowest intensity (0.64 (95% C.I. 0.54–0.75)) was

recorded for the mixed B, A H3, and A H1N1 outbreak in 2006.

Age as determinant of receiving an influenza diagnosis
Up to a ten-fold age-group difference in cumulative incidence of

influenza cases was observed in the outbreaks recorded during the

study period (Table S2). For instance, 2.32 cases per 1000

individuals were diagnosed with influenza in the group 10–19

years old during the A pH1N1 outbreak in 2009 compared to 0.20

cases per 1000 individuals for the age group 70 years and older

during the same outbreak. Extending this comparison across all

five outbreaks, individuals 30–39 years old demonstrated the

highest risk of receiving an influenza diagnosis (1.99 times the

average risk; 95% C.I. 1.79–2.22), followed by those 0–9 years of

age (1.83 (95% C.I. 1.63–2.05)). The lowest risk was observed for

individuals 70–79 years old (0.35 (95% C.I. 0.27–0.46)), and the

oldest group 80 years of age and above (0.25 (95% C.I. 0.17–

0.37)).

RIR-curves comparing the A pH1N1 outbreak in 2009 to the

mean for the four seasonal outbreaks are displayed in Figure 2.

Larger proportion of influenza cases were attributed to the ages

10–19 (p,0.001) and 20–29 years old (p,0.01) during the A

pH1N1 outbreak than during the seasonal outbreaks, while the

proportion of cases observed in the age groups 0–9 years (p,0.05),

50–59 years (p,0.05), and 60–69 years (p,0.01) were larger

during the seasonal outbreaks. Corresponding curves for each

seasonal outbreak are displayed in Figure 3. It is noteworthy that

higher- than- expected proportions of cases were distributed to the

middle-aged groups (30–39 and 40–49 years) during all seasonal

outbreaks except the A H3 and A H1N1 outbreak in 2006.

In the logistic regression analysis that covered all five outbreaks

and included combined terms, a statistically significant interaction

(p,0.001) between age and outbreak (circulating virus type) was

observed, indicating a difference between outbreaks (circulating

virus types) regarding age effect on influenza morbidity. However,

also when only seasonal influenza outbreaks were included in the

analysis, an interaction was observed between age and outbreak

(p,0.001). It was thus not the case that the risk associated with an

age group was the same during the seasonal outbreaks. A pair-wise

post-hoc analysis showed that the interaction between age and

outbreak was statistically significant for all but one of the pairs,

namely for the A H3N2 outbreak in 2007 and the B and A H1

outbreak in 2008. For all other outbreak pairs, the age effects on

proportions of individuals diagnosed with influenza differed

between the outbreaks.

Comparative time for diagnosis in age groups
There was a statistically significant difference between the

outbreaks regarding when age groups received a diagnosis in

relation to the mean for the outbreak (p,0.001). A post-hoc

analysis showed a tendency for the young age groups, in particular

the group 10–19 years old to lead the outbreaks with the A H1

type circulating virus (Table 1). The A H3N2 outbreaks displayed

little variations in timing, with the age group 30–39 years old

leading the outbreak in 2006–07 and the group 10–19 years old

leading the outbreak in 2008–09. There was a strong correlation

(r.0.5) between the mean time of diagnosis for an age group and

its RIR only during the A H3 and A H1N1 outbreak in 2005–06

(Table 2). For all other outbreaks, the correlations were moderate

to small.

Validation of clinical case data
The validation analysis, where both data sets were separately

adjusted for week-day effects, showed a strong correlation between

the number of clinically diagnosed influenza cases per day and the

corresponding number of cases verified daily by microbiological

analyses during the validation period. The strongest correlation

(r = 0.625; p,0.001) was observed between the clinically and the

microbiologically verified cases with a 2-day lag. The risk of

receiving an influenza diagnosis estimated from the clinical cases

and the microbiologically-verified cases showed similar patterns

with risk decreasing with age. In both data sets, a statistically

significant difference was observed only between the three

youngest and the two oldest age categories (Table S3).

Discussion

We found that the age group-related cumulative incidence of

influenza cases differed both between the A pH1N1 and the

seasonal outbreaks and in-between the seasonal outbreaks, and

that the outbreaks differed with regard to when the age groups

received diagnoses. There was modest correlation between the

mean time of the diagnosis for an age group and its RIR during

outbreaks. These findings exhibit the complexity of age effects on

the proximal and distal causes in the emergence of local influenza

outbreaks. Regarding the proximal causes, we did not collect data

on individual-level social contacts or personal hygiene. However,

Age as a Determinant for Influenza Dissemination
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assuming that the community remains socially stable and that the

effect from differences in population immunity remains level over

multiple outbreaks, exposure to infectious individuals stands out as

perhaps the most important determinant of long-term influenza

morbidity in the different age groups. Analogous to previous long-

term studies [14], we found that the highest risk of receiving an

influenza diagnosis during the 5-year study period was for

individuals 30–39 years old. Interpretation of the distal causes

suggests a lower degree of preexisting specific immunity, which

can help explain overrepresentation of younger age groups among

the pandemic cases in comparison with seasonal influenza cases

[15]. In 2009, specific immunity from memory T-cells could also

have been present in of the population due to shared antigenic

epitopes between A pH1N1 virus and recent seasonal influenza A

H1N1 viruses and vaccine strains [16]. In our data of the A

pH1N1 outbreak in 2009 , we noted (Figure 2) higher relative

illness rates among school-age children, adolescents and young

adults compared to the seasonal outbreaks. These observations

complement previous reports on the seasonal evolution of

influenza A virus. Rambaut et al. [17] identified a weaker

antigenic drift in H1N1, leading to a global co circulation of

multiple H1N1 lineages and weaker A H1N1 bottleneck effects

between seasons compared to those of A H3N2. If influenza A

H1N1 does preferentially target a younger population, lower

antigenic pressure and less-severe bottlenecks in the viral

population, are to be expected.

Consistent with a recent Canadian study based on microbio-

logically verified influenza cases [9], we observed that the A

pH1N1 outbreak cases in 2009 peaked earlier among children and

youth aged 10–19 years, although the timing of cases was not

statistically different for the age groups. Several studies have

identified schoolchildren as the drivers of the local spread of

influenza, prompting considerations of influenza vaccination for

all schoolchildren and the use of school closures to mitigate

outbreak effects [18–19]. Both our findings and the Canadian

results do not support the inclusion of younger school-age children

(,9 years) in the lead group for influenza virus transmission

during pandemics or seasonal outbreaks. Not all studies agree on

the likely benefits of closing schools [20], and our results suggests

that the effect of age on timing may be smaller than predicted by

previous models. However, a shortcoming of our study is that

school closures during and around outbreaks was not taken into

regard. This weakness may particularly have influenced the

analyses of the age-related timing of influenza morbidity. In

Figure 1. Influenza outbreaks in Östergötland county 2006–2010. Influenza cases (ICD-10 codes 10.0–11.8) per day in Östergötland county
2005–2010. The influenza activity as accumulated into five outbreaks lasting between 2006-01-01–2006-04-20 (circulating virus types B, A/H3 and
H1N1), 2007-01-31–2007-04-11 (A/H3N2), 2008-01-21–2008-04-30 (B and A/H1), 2008-12-24–2009-03-30 (A/H3N2), and 2009-08-21–2009-12-22 (A
pH1N1).
doi:10.1371/journal.pone.0031746.g001
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Figure 2. RIR diagrams for pandemic and seasonal influenza outbreaks in Östergötland county 2006–2010. The RIR diagrams (95%
Confidence Intervals) represent the A pH1N1 outbreak in 2009 and mean values for the seasonal outbreaks 2006–2010, respectively. * p,0.05
**p,0.01 ***p,0.001 ¤ Too few observations to allow statistical analysis.
doi:10.1371/journal.pone.0031746.g002

Figure 3. RIR diagrams for seasonal influenza outbreaks in Östergötland county 2006–2009.
doi:10.1371/journal.pone.0031746.g003
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addition, it must be considered that the age-related variations in

morbidity and timing of diagnosis can have been associated to

population demography. A recent study that compared the

transmission characteristics of the pH1N1 virus in different

countries concluded that countries with higher proportions of

children (under 20 years) had higher estimated R0 values and

morbidity rates [21]. In light of these observations, the role of

youth and young adults as potential drivers of seasonal and

pandemic influenza outbreaks can still be considered important.

Although our results question whether younger school-age

children lead epidemic waves of all influenza types, interventions

targeting young children may still have an impact on the size of the

epidemic.

We observed that larger proportions of influenza cases were

attributed to the ages 10–19 and 20–29 years old during the A

pH1N1 outbreak than during the seasonal outbreaks, while the

proportions of cases observed in the age groups 0–9 years, 50–59

years, and 60–69 years were larger during the seasonal outbreaks.

Variability in influenza activity by age in a single community was

early noted in a study by Monto et al. [22], where also infection

with type A H1N1 was detected at low frequency in adults. Several

decades later, we contend that the age-related variability of

influenza activity still warrants more and extended studies, and

that the single community design remains suitable for investigation

of the complex interactions between the proximal and distal causes

of influenza morbidity. Although our study population was limited

to one community, it is representative for Sweden with regard to

basic sociodemographic parameters. The setting is thereby

appropriate for study of the influence on influenza dissemination

from factors traditionally studied in epidemiology, for instance

demographic population structures [21] and social deprivation

[23], and also for using novel methods such as densely

parameterized community models and cross-validation by simu-

lations [24–27].

Our study design still has several important shortcomings. First,

the recorded influenza cases reflect only a small subset of the

actual symptomatic cases, the majority of which is not expected to

seek medical care [28]. Cases requiring admission to the intensive

care unit or with a fatal outcome were also not identified. In

addition, we have no data on seroconversion in the population

during the study period. Seroprevalence studies evaluating the

temporal changes in the prevalence of antibodies against the A

pH1N1 virus in 2009 can clarify the evolution of the disease

amongst different age groups. A British study that applied

statistical modeling to evaluate seroprevalence data reported that

during the second wave of the A pH1N1 outbreak (September

2009 to February 2010), the cumulative incidence of infection was

higher in the age group of 5–14 years, followed by the age group of

1–4 years, and those of 15–24 and 25–44 years [29]. In parallel,

Hong Kong researchers tested nearly 15,000 serum samples

collected in during the first wave of the 2009 pandemic for

antibodies to A pH1N1 [30]. They found that, if these serological

data had been available weekly in real time, they would have been

able to obtain reliable estimates of influenza morbidity by one

Table 1. Mean time (day) for diagnosis (95% C.I.) for age groups during influenza outbreaks in Östergötland county 2005–2009
with reference to the total mean for the outbreak.

Outbreak (influenza type)

2005–06 (B, A/
H3 and H1N1) 2006–07 (A/H3N2) 2007–08 (B and A/H1) 2008–09 (A/H3N2)

2009 (pH1N1), 1st
wave

2009 (pH1N1), 2nd
wave

Age (yrs) n
Mean day
(95% C.I) n

Mean day
(95% C.I) n

Mean day (95%
C.I) n

Mean day
(95% C.I) n

Mean day
(95% C.I) n

Mean day
(95% C.I)

0–9 66 213 (218 –27) 76 0 (26–5) 56 26 (212–0) 85 1 (24–6) 11 1 (210–12) 70 1 (24–5)

10–19 76 221 (226–215) 48 0 (27–6) 26 23 (212–6) 42 21 (28–7) 27 23 (210–4) 97 21 (24–3)

20–29 33 29 (217–21) 46 2 (25–9) 39 21 (29–6) 62 1 (25–6) 33 1 (26–7) 69 0 (24–4)

30–39 43 3 (24–10) 82 23 (28–2) 106 1 (24–6) 123 0 (24–4) 51 21 (26–4) 96 2 (21–6)

40–49 42 6 (21–13) 76 1 (25–6) 101 26 (211–21) 141 3 (21–7) 45 22 (28–3) 74 0 (24–4)

50–59 31 28 (216–1) 58 21 (27–5) 89 0 (25–5) 134 1 (23–5) 21 2 (26–10) 64 21 (26–3)

60–69 30 27 (215–2) 31 3 (26–11) 46 0 (27–7) 58 5 (21–11) 17 3 (26–11) 24 21 (28–6)

70–79 7 16 (22–33) 11 22 (216–12) 9 0 (216–16) 19 23 (214–8) 3 4 (217–25) 4 5 (213–24)

80+ 2 31 (22–65) 9 2 (214–17) 5 15 (26–36) 13 26 (219–7) 1 24 (241–32) 3 25 (226–16)

doi:10.1371/journal.pone.0031746.t001

Table 2. Correlation (95% C.I.) between mean time (day) of diagnosis and RIR for age groups during influenza outbreaks in
Östergötland county 2005–2009.

Outbreak (influenza type)

2005–06 (B, A/H3 and
H1N1) 2006–07 (A/H3N2) 2007–08 (B and A/H1) 2008–09 (A/H3N2)

2009 (pH1N1) 1st
wave

2009 (pH1N1) 2nd
wave

n r (95% C.I.) n r (95% C.I.) n r (95% C.I.) n r (95% C.I.) n r (95% C.I.) n r (95% C.I.)

330 20.80 (20.96–20.30)437 20.32 (20.81–0.43) 477 20.45 (20.86–0.31) 677 0.52 (20.22–0.88) 209 20.24 (20.78–0.50) 501 0.03 (20.65–0.68)

doi:10.1371/journal.pone.0031746.t002
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week after, one to two weeks before, and three weeks after the

pandemic peak for 5–14 year olds, 15–29 year olds, and 30–59

year olds, respectively. They conclude that age-stratified serologic

data together with clinical surveillance data could be used to

provide reliable real-time estimates of morbidity in an emerging

influenza pandemic. The addition of seroprevalence data thus

remains a major challenge to future administration of surveillance

routines in local community settings.

Apart from differences in the characteristics of the virus, several

non-biological factors could account for differences in influenza

surveillance data in the pandemic compared with the seasonal

influenza outbreaks. These include public health organizations

awareness, use of diagnostic methods, public knowledge of

influenza influencing healthcare-seeking behavior, and greater

sensitivity of health care professionals in pursuing a diagnosis of

influenza. A particularly relevant consideration for our study refers

to potential differences in vaccination coverage of different age

groups of the general population between the pandemic and

seasonal influenza periods. In the study county, the elderly were

provided vaccine during the seasonal outbreaks, and the results of

this study regarding disease incidence for these age groups should

therefore be interpreted with care. For most of the A pH1N1out-

break examined in the context of this study, the specific influenza

vaccine was not available, and the vaccination coverage of the

general population was low. However, the degree in which these

parameters could have differentially affected different age groups

in the pandemic compared with seasonal influenza periods, and

thus confounds our comparative analysis, is difficult to estimate.

In this open cohort study, we found an interaction between age

and outbreak, indicating a difference between circulating virus

types regarding age effects that persisted for seasonal outbreaks

only; in particular, the proportion of cases from the age groups 10–

29 years old was larger during the A pH1N1 outbreak in 2009

than during the seasonal outbreaks. In addition, there was a

tendency for the young age groups, in particular the group 10–19

years old, to lead outbreaks with influenza type A H1 circulating,

while A H3N2 outbreaks displayed little variations in timing. We

believe that these findings are generalizable to similar communities

with a rectangular age structure. In designing future studies,

researchers should carefully consider the role of age within the

causal pathway in light of both social and behavioral factors and

the biologic characteristics of the circulating influenza virus. The

local community environment can modify the interaction between

pathogen and host, sometimes influencing both proximal and

distal portions of the pathway. For example, social factors, such as

socioeconomic status, education and housing/neighborhoods may

influence both the exposure to the virus and the probability of

developing disease if exposed. Disentangling the age effects in

these proximal and distal causal pathways is one of the most

important challenges facing infectious disease epidemiologists: this

will require an integrated information infrastructure for data

collection and repeated studies of well-defined communities.

Integration of investigative resources in space and time that

enable epidemiological, also including seroconversion data, and

prognostic (simulation) studies of the same communities are

warranted. Such integrated studies would strengthen the knowl-

edge we have on the occurrence and comparative timing of

influenza infections in different age groups as a basis for

developing community response and disease control measures.
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land county, the Swedish metropolitan counties, and the rest of

Sweden.

(DOC)

Text S1 Details of statistical methods.

(DOC)

Author Contributions

Conceived and designed the experiments: TT OE EAG MS HE. Analyzed

the data: OE AS. Contributed reagents/materials/analysis tools: TT LV.

Wrote the paper: TT OE AS EAS MS EH JE OD. Revised the manuscript

and provided intellectual content: OE AS EAG MS EH JE OD LV HE.

References

1. Viboud C, Bjørnstad ON, Smith DL, Simonsen L, Miller MA, et al. (2006)
Synchrony, waves, and spatial hierarchies in the spread of influenza. Science 312(5772): 447–451.

2. Monto AS, Davenport FM, Napier JA, Francis T, Jr. (1969) Effect of vaccination
of a school-age population upon the course of an A2-Hong Kong influenza

epidemic. Bull World Health Organ 41(3): 537–542.

3. Wallinga J, Teunis P, Kretzschmar M (2006) Using data on social contacts to

estimate age-specific transmission parameters for respiratory-spread infectious
agents. Am J Epidemiol 164(10): 936–944.

4. Glass LM, Glass RJ (2008) Social contact networks for the spread of pandemic

influenza in children and teenagers [electronic article]. BMC Public Health 2008;8: 61.

5. Glezen WP, Keitel WA, Taber LH, Piedra PA, Clover RD, et al. (1991) Age

distribution of patients with medically-attended illnesses caused by sequential
variants of influenza A/H1N1: comparison to age-specific infection rates, 1978–

1989. Am J Epidemiol 133(3): 296–304.

6. Brownstein JS, Kleinman KP, Mandl KD (2005) Identifying pediatric age

groups for influenza vaccination using a real-time regional surveillance system.
Am J Epidemiol 162(7): 686–693.

7. Schanzer D, Vachon J, Pelletier L (2011) Age-specific differences in influenza Aepidemic
curves: do children drive the spread of influenza epidemics? Am J Epidemiol 174(1): 109–17.

8. Sebastian R, Skowronski DM, Chong M, Dhaliwal J, Brownstein JS (2008) Age-
related trends in the timeliness and prediction of medical visits, hospitalizations

and deaths due to pneumonia and influenza, British Columbia, Canada, 1998–

2004. Vaccine 26(10): 1397–1403.

9. Schanzer DL, Langley JM, Dummer T, Aziz S (2011) The Geographic
Synchrony of Seasonal Influenza: A Waves across Canada and the United

States. PLoS ONE 6(6): e21471. doi:10.1371/journal.pone.0021471.

10. Miller WC (2010) Infectious disease (in) epidemiology. Epidemiology 21(5): 593–4.

11. Timpka T, Eriksson H, Gursky EA, Strömgren M, Holm E, et al. (2011)
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