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Abstract

Background: Glioblastoma multiforme (GBM) is an umbrella designation that includes a heterogeneous group of primary
brain tumors. Several classification strategies of GBM have been reported, some by clinical course and others by
resemblance to cell types either in the adult or during development. From a practical and therapeutic standpoint, classifying
GBMs by signal transduction pathway activation and by mutation in pathway member genes may be particularly valuable
for the development of targeted therapies.

Methodology/Principal Findings: We performed targeted proteomic analysis of 27 surgical glioma samples to identify
patterns of coordinate activation among glioma-relevant signal transduction pathways, then compared these results with
integrated analysis of genomic and expression data of 243 GBM samples from The Cancer Genome Atlas (TCGA). In the
pattern of signaling, three subclasses of GBM emerge which appear to be associated with predominance of EGFR activation,
PDGFR activation, or loss of the RAS regulator NF1. The EGFR signaling class has prominent Notch pathway activation
measured by elevated expression of Notch ligands, cleaved Notch receptor, and downstream target Hes1. The PDGF class
showed high levels of PDGFB ligand and phosphorylation of PDGFRb and NFKB. NF1-loss was associated with lower overall
MAPK and PI3K activation and relative overexpression of the mesenchymal marker YKL40. These three signaling classes
appear to correspond with distinct transcriptomal subclasses of primary GBM samples from TCGA for which copy number
aberration and mutation of EGFR, PDGFRA, and NF1 are signature events.

Conclusions/Significance: Proteomic analysis of GBM samples revealed three patterns of expression and activation of
proteins in glioma-relevant signaling pathways. These three classes are comprised of roughly equal numbers showing either
EGFR activation associated with amplification and mutation of the receptor, PDGF-pathway activation that is primarily
ligand-driven, or loss of NF1 expression. The associated signaling activities correlating with these sentinel alterations
provide insight into glioma biology and therapeutic strategies.
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Introduction

Glioblastoma (GBM) is the most common malignant brain

tumor and is characterized by intratumoral heterogeneity, invasive

growth pattern and poor response to treatment.[1–4] While GBM

comprises approximately 25% of all brain tumors in adults, in

absolute numbers it is still an uncommon cancer. This low

absolute incidence combined with high morbidity, poor response

rates and short survival times pose practical problems for clinical

trial execution, particularly if therapy is anticipated to target a

molecularly-defined subset of tumors. The current first-line

treatment for GBM is radiation with alkylating chemotherapy

(Temozolomide) given concurrently and then continued after

radiation. This uniform first-line treatment approach contrasts

with the wealth of molecular data on mutations, genomic

aberrations and transcriptomal features in GBM which indicate

potential therapeutic targets and resolve apparently distinct

subclasses of these tumors.[3] We designed this investigation of

signal transduction pathway activation in GBM with the

expectation that tumor subclasses based on differential activation
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of glioma-relevant pathways would be of paramount utility for

interpreting responses to therapies targeting these pathways, and

potentially applicable for stratifying patients in clinical trials.

Historically, two subtypes of GBM were distinguished based on

histologic grade at clinical presentation. Primary GBMs present

initially as grade 4 tumors while secondary GBMs present as lower

grade gliomas and progress to GBMs over time.[5] Although

primary and secondary GBM differ in the frequency of molecular

abnormalities seen, they draw largely from a common palette of

events: amplification and activating mutations in EGFR, over-

expression of PDGF and its receptors and loss of the tumor

suppressors INK4a/ARF, p53 and PTEN are well-documented,

recurrent mutations in these tumors.[1] Recent large-scale efforts

to characterize the glioblastoma genome have identified additional

recurrent alterations in genes not previously implicated in glioma,

such as ERBB2 and IDH1 mutation in primary and secondary

GBM respectively, and a significant incidence of mutation and

genomic loss of NF1.[6–8] While there is hope that further

sequencing will yield new therapeutic targets, it should be noted

that single-agent therapy trials of inhibitors directed to the two

most commonly altered receptors have not been successful in

unselected populations.[9,10] At least in some cases this may be

due to failure of RTK inhibition to impact downstream or parallel

signal transduction pathway activation.[11]

The importance of signal transduction activity downstream of

tyrosine kinase receptors in glioma biology is emphasized by the fact

that these pathways are abnormally active in these tumors and causal

in their formation in mice.[12,13] Therefore, there is significant

interest in whether molecular subclasses of GBM might be identified

based on distinct signaling characteristics, and whether such

subclasses could be used to refine patient stratification in clinical

trials or help interpret treatment responses. Several studies have

subdivided GBMs by expression array analysis measuring total

cellular mRNA levels.[14–19] However, because of differential

translational efficiencies, total mRNA levels do not always correlate

with protein levels. Moreover, most signaling activity is achieved by

post-translational modifications of existing proteins such as Notch

cleavage, phosphorylation of kinases, or stabilization of proteins such

as beta catenin. To further complicate matters, signal transduction

activity may affect, through feedback mechanisms, the translational

efficiencies of mRNAs encoding proteins with effects on the

oncogenic phenotype.[20,21] Therefore, direct measurements of

active signaling components at the protein level are critical to fully

characterize the signal transduction state of the cell. Such

measurements have been made on glioma samples and have shown

correlation between the levels of active pathway components.[20,22]

In this study, we have measured the relative protein levels of

signaling molecules within pathways thought to be crucial to

glioma biology among a panel of gliomas. This represents a more

extensive proteomic analysis of signaling pathway members than

has previously been done, and reveals three patterns of signaling

pathway activation. Distinct patterns were each associated with

EGFR and PDGF pathway activity while a third was associated

with low levels of NF1 protein. We present an analysis of genomic

features among tumors in each group, and show how these

proteomically-defined subclasses of GBM compare with genomic

subclasses arising from integrated analysis of primary GBM in data

from The Cancer Genome Atlas.

Results

Specimens and protein analysis
27 glioma surgical samples were identified from a database of

patients operated on at MSKCC and consented to the IRB-

approved protocol. Clinical and pathologic characteristics are

summarized in Table 1. Pathology included 20 GBM, 2 anaplastic

astrocytomas, 4 oligodendrogliomas of which 2 were anaplastic

tumors, and one tumor characterized as high grade glioma with

glioneuronal elements. 11 GBM were recurrent after treatment

(RT +/2 temozolomide) and two of these were secondary GBM.

The age range was from 32 to 74 (median 53).

Protein extracts from these tumors were analyzed by western blot

for the activity of various signaling pathways related to glioma

formation or stem cell character, totaling 55 antibodies for proteins

in total and active forms (Table S1). Antibodies were selected based

on known performance. Briefly, PDGF pathway activity was

measured by PDGF ligand (PDGFB), PDGFRa, PDGFRb and

phospho-PDGFRb. EGFR activity was assessed by antibodies

specific for EGFR and phospho-EGFR. The downstream pathways

interrogated included Ras, Akt, Notch, Wnt and SHH. The Akt

pathway was interrogated by PTEN, total AKT, phospho-AKT and

RHEB. Activation of mTOR was measured by phospho-S6

ribosomal protein (p-S6RP). The Ras pathway was interrogated by

BRAF and total/phospho-MEK and ERK. Notch pathway activity

was measured by the Notch ligands Delta (DLL1) and Jagged

(JAG1), full length Notch receptors 1 and 2, cleaved Notch 1 and 2

and downstream Notch target HES1. The Wnt pathway was

assessed by beta catenin levels and the SHH pathway by SHH levels.

NF1 was assayed in preserved lysates at a later date, after mutations

were reported for this gene in GBM.[7,8] Quantified bands for 55

antibodies were normalized against actin or tubulin. HEB, Notch1

and Notch2 antibodies each generated two bands which were

independently quantified. Therefore a total of 58 protein forms were

quantified and normalized. Relevant western bands selected by size

are summarized in Figure S1A, S1B, S1C, S1D, and quantified

values normalized against actin are given in Table S2A, S2B, S2C.

Principal Component Analysis and unsupervised
clustering identify three patterns of signaling in GBM

As expected, overall activation of signal transduction pathways

differed markedly between the glioma samples and the normal brain

reference. While some pathways such as PI3K and MAPK were

active nearly uniformly among gliomas, we sought to investigate

whether relative differences might distinguish subclasses among the

samples with GBM pathology. The overall pattern of protein

expression and activation was first assessed by Principal Component

Analysis (PCA). Quantified western data for 57 protein forms were

standardized across the set of GBM samples for analysis (n = 20).

We excluded p53 from analysis because common inactivating

mutations can be associated with increased or decreased protein

levels. For clarity in the figure, NF1 was represented as ‘‘NF1 loss’’

(zero minus standardized expression), reflecting the role of NF1 as

an inhibitor of RAS signaling. The first two PCA components

together accounted for the majority of variation in protein levels

(Figure S2). A cloud plot showing the first two principal components

is shown in Figure 1A and revealed three patterns of total and

activated protein levels. One component (PC2) distinguished

proteins which were correlated with EGFR total protein versus

those correlated with PDGFB levels. The other component (PC1)

distinguished a third group of proteins anti-correlated with EGFR

and PDGFB. Elevated levels of these proteins were associated with

low levels of Neurofibromin 1 protein (‘‘NF1 loss’’ in Figure 1A).

In order to evaluate the significance of this three-way classifica-

tion, we performed unsupervised k-means analysis on the same

standardized data from the 20 GBM samples and evaluated the fit

and stability over a range of cluster sizes. K-means for cluster sizes

from 2–8 was run for 10,000 iterations, leaving out 15% of the data

with each iteration (i.e. three randomly chosen samples left out).

Signaling Subclasses of GBM
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Consensus matrices were evaluated for cluster assignment stability

both visually and by cophenetic correlation (see Figure S3A). As

predicted from PCA, the correlation of protein levels was well-

described by 3-way clustering (Figure 1B). Considering only those

proteins which co-cluster in .95% of k-means iterations, three

‘‘core’’ protein groups were identified. These protein groups were

named according to the strong separation by PCA of EGFR, PDGF

and NF1 levels, with consideration that alterations in these three

genes are common in glioblastoma and each is pathogenic in

genetically-engineered mouse glioma models:

EGFR core. This cluster of 15 proteins features high levels of

total and phospho-EGFR. Prominent Notch activity is represented

in this group by high levels of the active cleaved form of Notch 1

(Notch 1 ICD) as well as of ligands Jagged (JAG1) and Delta-like 1

(DLL1) and of the downstream Notch transcriptional target HES1.

Wnt signaling is suggested by increased (stabilized) B-catenin

levels. Other proteins relatively increased in this core group are

EIF4EBP1, EIF4E, RHEB, phospho-BAD, INI1, La/SSB, FGF2,

and phospho-Rb1. There was a trend for higher phospho-Akt

levels, though this did not reach significance (p = 0.08).

PDGF core. This cluster is comprised of 17 proteins including

PDGFB, phospho-PDGFRb and phospho-NFKB1. PTEN levels

are higher in this group and relatively increased Ras activity is

evidenced by elevated total and phosphorylated MEK and ERK.

Levels of MTOR and downstream targets S6K and p-S6K were

better-correlated with the PDGF core than the EGFR core,

though levels were high in tumors of both classes. Other PDGF-

associated proteins were SHH, HEB 1/2 (TCF12, associated with

oligodendrocyte development), BRAF, p-FOXO1 and TSC1.

NF1 Core. This group is defined by higher levels of 5

proteins: IRS1, IGFBP5, YKL40 and VEGF. As suggested by

PCA analysis, the group is also strongly associated with low levels

of NF1 (plotted as the inverse protein level, ‘‘NF1 loss’’). Sporadic

elevation of MYC, NMYC, and KRAS-GTP was also seen in this

group. Compared to the other classes, GBM samples showing

NF1-core expression pattern showed relatively suppressed levels of

total- and phospho-proteins in the PI3K and MAPK pathways.

These differences were relative, however, and evaluation of the

Western bands shows that high levels of phosphorylation were

common in nearly all tumors (see Figure S1).

Identification of proteomic tumor classes by signaling
pattern

The 44 core proteins identified in the previous analysis were

then used to cluster the larger set of 27 glioma samples. K-means

clustering of samples was performed as before, leaving out 15% of

Table 1. Patient and tumor characteristics.

ID Age M/F Survival (weeks) from resection Survival (weeks) from diagnosis Pathology Prior Treament

GBM.1 74 F 4 4 GBM –

GBM.2 66 F (6) (35) GBM RT

GBM.3 71 F 12 34 GBM RT

GBM.4 70 F 46 46 GBM –

GBM.5 39 M 32 45 GBM RT

GBM.6 67 F 150 150 GBM –

GBM.7 42 M 138 138 GBM RT

GBM.8 56 M 27 60 GBM RT + temozolomide

GBM.9 40 M 14 206 Secondary GBM PCV

GBM.10 52 M 35 35 GBM –

GBM.11 71 M 32 32 GBM –

GBM.12 53 F 5 44 GBM RT + temozolomide

GBM.13 47 M 35 38 GBM, oligoastrocytoma features –

GBM.14 59 M 21 47 GBM RT + temozolomide

GNT.15 68 M 51 69 High grade glioneuronal tumor RT

GBM.16 38 M 15 94 GBM RT

GBM.17 60 F 49 49 GBM –

GBM.18 32 F (3) (84) GBM RT, high dose thiotepa

GBM.19 49 M 85 85 GBM –

GBM.20 71 M 212 + 212 + GBM –

AO.21 64 F (218) (218) anaplastic oligodendroglioma –

ODG.22 52 F (6) (475) oligodendroglioma –

AA.23 46 F (76) (544) anaplastic astrocytoma high-dose thiotepa

AO.24 45 M 194 + 198 + anaplastic oligodendroglioma –

ODG.25 42 F 153 + 153 + oligodendroglioma –

AA.26 47 F 35 254 anaplastic astrocytoma RT

GBM.27 74 M 7 55 GBM RT + temozolomide

Demographic and pathologic description for 27 study patients. Survival is shown from time of resection of study tumor: ‘‘+’’ = still alive and parentheses mark patients
lost to follow-up. For recurrent tumors, prior treatment and survival from initial diagnosis.
doi:10.1371/journal.pone.0007752.t001

Signaling Subclasses of GBM
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proteins (7 out of 44) with each of 10,000 iterations. As expected in

this supervised approach, three-way clustering was the best fit and

all but three glioma samples showed stable clustering into signaling

classes associated with EGFR, PDGF and NF1-loss (Figure S3B).

Figure 2 summarizes how tumors are clustered by core signature

proteins, and how these groups relate to tumor histopathology and

genotype derived from aCGH profiling and resequencing of

EGFR.

Tumors with GBM histopathology were evenly distributed

among the three core groups, six in each group. The only known

secondary GBM clustered with the NF1-loss group. Two

anaplastic astrocytomas (AA23 and AA.26) were found to cluster

disparately with the PDGF and NF1 groups, respectively. Two of

the four oligodendrogliomas clustered with the PDGF group: one

low-grade (ODG.25) and one anaplastic (AO.24). Interestingly,

one of the two low-grade oligodendrogliomas clustered with the

EGFR group (ODG.22) and did in fact harbor high-level EGFR

amplification. One anaplastic oligodendroglioma (AO.21) showed

no distinct proteomic pattern and remained unclassified. There

was a trend for untreated tumors in the EGFR tumor group (6

untreated vs. 1 treated) and for treated tumors in the PDGF group

(3 untreated, 6 treated) but this was neither significant for GBM

(p = 0.11) nor for all tumors (p = 0.09). Testing protein levels

individually between treated and untreated GBM, PDGFB was the

most significantly different and was higher in treated GBM

(p = 0.009) and in treated tumors overall (p = 0.028) although

neither was significant after correction for multiple testing.

24 of the 27 tumors for which sufficient tissue was available were

analyzed by array-CGH (Agilent Whole Genome 244K) and

resequencing of EGFR, PTEN and TP53. Array-CGH profiles

were analyzed for copy number aberrations commonly described

in GBM: focal amplification of EGFR, MET and PDGFRA; gain of

chr7 without focal amplification; loss of chr10 or 10q23 region

spanning PTEN; loss and/or homozygous deletion of 9p21

including Ink4a/ARF.[1,23,24] Figure 2 summarizes the finding

of focal amplification of MET and EGFR, gain of chromosome 7,

homozygous deletion spanning the Ink4a/ARF locus, and loss at

PTEN locus. Complete ACGH profiles are depicted in Figure S4.

EGFR proteomic tumor class. Six of the seven tumors in

this class showed EGFR-region amplification and four showed

point mutations in the extracellular domain (ECD) previously

described in GBM as activating mutations: A289V (GBM.10 and

GBM.6), T263P (GBM.8), G598V (GBM.1) and R108K

(GBM.6).[25] The only tumor in the EGFR signaling cluster

that did not show focal EGFR amplification was found to harbor

amplification of a narrow region including MET. Neither

overexpression nor significant phosphorylation of EGFR protein

was seen in this case. All tumors in the EGFR proteomic tumor

class had deletion of the Ink4a/ARF locus compared with only 3/

17 (18%) in the other groups. All had loss of ch10 and mutation of

PTEN in the remaining allele was observed in one case.

PDGF proteomic tumor class. Although this group of

tumors is defined by evidence of PDGF signaling at the protein

level, none of the 9 tumors in this class showed gene amplification

of either PDGF receptors or ligands. One tumor had both Ink4a/

ARF region deletion and EGFR amplification, however total and

phosphorylated EGFR levels in this tumor were low and PDGFB

was present. Of note, a second tumor with focal MET

amplification, GBM.18, was classified here and showed

extremely high levels of PDGFB and associated signaling.

Figure 1. Analysis of quantified western data in 20 GBM identifies three signaling axes associated with EGFR overexpression,
PDGFB overexpression, and loss of NF1. (A) Principal component analysis (PCA) of 56 proteins in 20 GBM samples by quantified western blot
(see Methods). The first two components are plotted, accounting for 51% of variance in protein levels. PC2 strongly distinguishes proteins correlated
with EGFR (red arrow) versus PDGFB (blue), while PC1 distinguishes a third pattern which is correlated with neither of these RTK pathways. Of note,
NF1 appears to be silenced in this group (‘‘NF1 loss’’, zero minus standardized protein expression, green). Dashed lines bound proteins with
significant co-expression by k-means clustering (see B). Inset shows the western bands confirming mutual exclusivity for EGFR expression, PDGFB
expression and NF1 silencing. (B) K-means clustering of proteins confirms three statistically significant core clusters. Unsupervised k-means clustering
of quantified protein levels in 20 GBM reveals 3 patterns of coordinate protein expression. The consensus matrix shown represents how often two
proteins were co-clustered during 10,000 iterations, leaving out 15% of samples (n = 3) selected at random for each iteration. ‘‘Core’’ correlated
proteins are those that show .95% co-clustering across iterations (dashed-lines). These define an EGFR group, a PDGFB group and a third non-EGFR/
PDGF group which features NF1 loss. 3-way clustering was determined to be the best fit by consensus matrix stability and cophenetic correlation (see
text, Figure S2).
doi:10.1371/journal.pone.0007752.g001
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NF1 proteomic tumor class. Tumors in this class included

six GBM, one of which was a secondary GBM, one anaplastic

astrocytoma, and one tumor with histopathologic features of GBM

and synaptophysin positivity (‘‘glioneuronal tumor’’, GNT.15).

The NF1-associated class is distinguished by chr7 gain without

focal amplification of either EGFR or the MET receptor which is

significantly more frequent in this class (5/7, 71%) compared to

the others (2/14, 14%, p = 0.017, Fisher’s Exact test).

Integrated analysis of molecularly defined subclasses of
GBM from The Cancer Genome Atlas identifies distinct
tumor subclasses enriched for mutations in EGFR,
PDGFRA, and NF1

Glioblastoma datasets from The Cancer Genome Atlas were

analyzed for alterations in EGFR, PDGFRA and NF1 and the

possible association of mutations in these genes with transcripto-

mally-defined subclasses. Of 278 tumors for which chromosomal

copy number and/or mutation data were available, amplification

and/or somatic non-synonymous mutation of EGFR was found in

40% (n = 111) and of PDGFRA in 7% (n = 19), while chromosomal

loss and/or mutation of NF1 was found in 16% (n = 45). As shown

in Figure 3, genomic alterations in these three genes are largely

mutually exclusive, suggesting distinct tumor subclasses among this

portion of GBM samples for which clear genomic alterations could

be detected.

We next sought to determine if these subclasses might be

associated with distinct transcriptomal signatures. Using normal-

ized gene expression profiles on 243 tumors downloaded from The

Figure 2. K-means clustering of gliomas by signature-defining proteins. Unsupervised k-means clustering of 27 gliomas by 44 core proteins
derived from Figure 1B. 3-way clustering was determined to be the best fit by consensus matrix stability and cophenetic correlation (Figure S3). Right:
summary of array-CGH, sequencing and clinical information is given for each tumor. Red denotes copy number gain or focal amplification as
specified; green marks deletion of at least one copy. Blue denotes mutations (see text). Gray marks samples for which DNA was unavailable. Detailed
aCGH profiles shown in Figure S4.
doi:10.1371/journal.pone.0007752.g002

Figure 3. Integration of mutation and chromosomal copy
number data from TCGA reveals aberrations of EGFR to be
mutually exclusive of aberrations in PDGFRA and NF1. Summary
of copy number aberrations (CNA) and mutations of EGFR, PDGFR and
NF1 genes in 278 glioblastoma samples from The Cancer Genome Atlas.
163 samples showed mutation/aberration of at least one of the genes.
For this summary, only validated, non-synonymous somatic mutations
were considered (164/278 samples had sequencing information
available). CNA was defined as focal high-amplitude amplification (.4
copies) of EGFR or PDGFR, and by at least single-copy loss of NF1.
doi:10.1371/journal.pone.0007752.g003

Signaling Subclasses of GBM
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Cancer Genome Atlas public portal, we applied unsupervised

hierarchical clustering which identified 4 main cluster branches

(Figure 4). This grouping was concordant with comparable 4-way

cluster structure recently reported by the TCGA.[26] Integration

of copy number aberration, mutation and expression of EGFR,

PDGFRA and NF1 revealed that three of the transcriptomal classes

were enriched for alterations in each gene, respectively, although

the segregation was imperfect. We named these three subclasses

‘‘EGFR cocluster’’, ‘‘PDGFRA cocluster’’ and ‘‘NF1 cocluster’’

based on the predominant signal transduction pathway member

enriched for mutation in each group. A fourth transcriptomal class

had neither significant enrichment for mutations in either of

EGFR, PDGFRA or NF1, nor enrichment for mutations in any

other sequenced gene in the TCGA dataset. As shown in Figure 4

as described below, PDGFRA amplification was only present in the

minority of PDGFRA-cocluster tumors and this transcriptomal

class included a subset of tumors with EGFR or Met amplifica-

tions. The PDGFRA-cocluster showed high expression of GRIA2,

OLIG2, and NCAM1/2 as well as other genes which are signatures

of the ‘‘Proneural’’ transcriptomal class of GBM previously

described.[19] Conversely, signature genes of the ‘‘Mesenchymal’’

GBM class such as YKL40/CHI3L1, IGFBP2 and VEGFA were

most highly expressed in the NF1-cocluster transcriptomal group

(Figure S5). The EGFR-cocluster class showed intermediate

expression levels of Proneural and Mesenchymal signature genes.

Unsupervised clustering reflects the combined effect of multiple

confounding influences on the transcriptome, including presence

of necrosis, inflammatory cells, inclusion of brain parenchyma, etc.

In order to clarify the specific relationship of EGFR, PDGFRA and

NF1 mutations to the transcriptome in GBM, we derived distinct

expression signatures associated with mutation/aberration of these

genes among the set of 147 tumors for which mutation/aberration

was found in one and only one of the three. Together, 1,943 genes

were identified which distinguished the three mutation classes (see

Methods). Hierarchical clustering performed with this gene set on

the full set of 243 GBM profiles resulted in clear division of GBM

into just 3 subclasses, each enriched for the associated alteration of

EGFR, PDGFRA and NF1 (Figure S6).

Comparison of proteomic and transcriptomal subclasses
We investigated possible correspondence between the proteo-

mic EGFR, PDGF and NF1 classes and the transcriptomal

EGFR-, PDGFRA-, and NF1-coclusters derived from TCGA data

by comparing signature genomic aberrations. As shown in

Figure 4, integration of mutation and copy number data

confirmed the strong association of EGFR amplification and

mutation in tumors from the EGFR-cocluster (59/79, 75%)

significantly more than in the other two classes (21/99, 21.2%,

p = 7.8e213). This subset of samples also harbored frequent

homozygous deletion of 9p21 spanning the Ink4a/ARF locus (75%

vs 35%, p = 2.0e27). These findings were concordant with

genomic profiling of tumors the EGFR signaling class. Conversely,

chr7 gain without focal amplification of either EGFR or MET was

most common in the NF1 transcriptomal cocluster (60.7% vs 23%,

p = 1.6e26), and this was concordant with aCGH profiling of

tumors in the NF1 signaling class.

Among TCGA samples, amplifications of PDGFRA were more

commonly seen in the PDGFRA transcriptomal cocluster (25.6%

Figure 4. Unsupervised transcriptomal clustering of GBM from the TCGA dataset. Unsupervised hierarchical clustering of gene expression
from 243 GBM samples in The Cancer Genome Atlas reveals four transcriptomal clusters, three of which are enriched for alterations of PDGFRA, NF1,
and EGFR respectively. Expression data is from Affymetrix U133A and copy number is taken from Agilent 244K platform (TCGA Level 3 public data, see
Methods). Gene expression for EGFR, PDGFRA, and NF1 is shown in the bar plots, colored according to gene copy number: amplification (red) or loss
(green). Blue boxes denote samples with non-synonymous somatic mutations which have been validated (solid) or are pending validation (open).
Three clusters are highlighted which show specific enrichment for lesions in genes encoding key signal transduction pathway members EGFR,
PDGFRA and NF1. A fourth cluster lacks clear enrichment for any specific mutation or CNA.
doi:10.1371/journal.pone.0007752.g004
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vs 1.5% in other classes; p = 2.9e26) as were PDGFRA mutations

(3/29 = 10.3% vs 0/79, p = 0.049). However 4 out of 5 MET-

amplified tumors were in this class and 7 tumors showed focal

amplification of EGFR. Therefore there was no single copy

number aberration distinguishing this class. There were no cases of

PDGFRA amplification among the 24 tumors in our study for

which aCGH was performed. Among the 9 tumors in our PDGF

signaling class, one had MET amplification and one had EGFR

amplification. Despite the absence of PDGFRA-amplified cases in

our sample set, the overall distribution of EGFR, PDGFRA and

MET amplifications was found to be within the normal sampling

error if one derives expectation frequencies from the TCGA data.

Comparison of genomic aberrations suggested a correspon-

dence between proteomic classes of EGFR, NF1 and PDGF and

the corresponding TCGA transcriptomal classes, therefore

expression levels for genes encoding the core proteins (total forms)

were next assessed in each of the four transcriptomal clusters.

Among genes encoding EGFR-core proteins, the corresponding

EGFR transcriptomal cocluster subclass showed significant

overexpression of EGFR, JAG1, and HES1 compared to the other

subclasses (p,1e25 for each gene). However other EGFR core

proteins and Notch pathway members showed no elevation of

mRNA expression in the corresponding transcriptomal class and

therefore direct correlation could not be established.

Within the transcriptomal NF1-cocluster, the only overex-

pressed genes encoding NF1 core proteins were IRS1 and YKL40/

CHI3L1. As seen in Figure 4, NF1 mRNA was strongly

underexpressed in the NF1-cocluster class compared to other

classes (p = 4.4e215), making NF1 mRNA underexpression

among the strongest signatures of the transcriptomal class.

Within the PDGFRA transcriptomal cocluster, TSC2 and HEB/

TCF12 were the only genes among the PDGF core protein group

significantly overexpressed (p,1e24). The PDGFRB gene was

significantly underexpressed in this group, concordant with our

observation that total protein levels were higher in the EGFR class

even while the phosphorylated receptor was correlated with the

PDGF class. Overexpression of PDGFRA was a prominent feature

of the PDGFRA-cocluster tumors (p,1e212), nearly always

associated with gene amplification. Messenger RNA levels of genes

encoding PDGF ligands were not elevated in the PDGFRA

cocluster even among the subset of tumors showing PDGFRA

amplification. We further investigated the relationship of PDGFB

mRNA and protein levels in a validation set of 40 gliomas and

found no correlation between mRNA expression and levels of

protein even though the latter were highly variable (Figure S7).

This reflects the strong regulation of PDGF at the level of

translation rather than transcription.[27,28] It is likely that some

signaling proteins in our study are closely coupled to mRNA levels

while many others are regulated independently (or in negative

feedback) with corresponding mRNA.

Discussion

Given the importance of signaling in the biology of gliomas,

dividing these tumors into subsets by the pattern of coordinate

signaling pathway activation may have practical implications for

choice of therapies and for interpretation of patient responses in

existing clinical trials. In order to clarify the net activation of

signaling pathways we used a targeted proteomic analysis to

determine not only the levels but the posttranslational modifica-

tions associated with signaling activity. The intrinsic cellular

heterogeneity of gliomas is masked by the methods used in this

study since both the proteomic and TCGA genomic analyses are

performed on homogenized tissue, blending the characteristics of

the cells together. Additionally, the small sample size and selection

of proteins in this study limits the statistical power to define protein

correlations and sample assignments. Nonetheless, we find

common features defining three basic groups by both genomic

and protein analysis, illustrating the high complementarity

between protein signaling activity, transcriptomal signature and

genomic alteration in GBM. The observed enrichment of EGFR,

PDGFRA and NF genomic alterations with transcriptome pattern

could mean that signaling activity directly influences the

transcriptome and/or that both signaling and the transcriptome

patterns are part of a common underlying phenotype. Comparing

unsupervised and supervised clustering results, it is likely that only

a portion of the transcriptomal features distinguishing unsuper-

vised clusters are associated with signaling, either directly or

indirectly. In fact, unsupervised clustering identifies four clusters

and broader phenotypic and genetic differences distinguishing

these four transcriptomal groups have been reported.[26]

Analysis of the downstream signaling components of the PDGF

proteomic group revealed generally lower PI3K/Akt activity than

in the EGFR glioma group although S6 phosphorylation was

paradoxically high. Histologic analysis of the tumors provided an

explanation by demonstrating that strong pS6 immunopositivity

was localized in reactive astrocytes rather than tumor cells per se

(data not shown), concordant with recent observations of mTOR

activation in reactive astrocytes under experimental conditions of

injury.[29] These cells were more common in PDGF-class tumors.

We found a trend for treated tumors to be in the PDGF proteomic

class and PDGFB levels were significantly higher in treated

compared to untreated tumors. It is possible that some of the

features of the PDGF signaling pattern are influenced by prior

treatment though it is unlikely that this accounts for the genotypic

differences in this proteomic tumor class, such as the paucity of

EGFR amplification, chr7 gain and Ink4a/ARF locus deletion.

Comparison with treated samples in TCGA is complicated by the

fact that the current dataset contains few treated cases and of

these, many are secondary GBM which would arguably be

assigned to the PDGFRA co-cluster by their common Proneural

signature.

The histology of the TCGA samples was uniformly GBM, but

this is a histologically heterogeneous tumor type. A priori, it is

possible that the transcriptomal classes identified in this analysis

could be related to tumor sampling or microenvironment.

However, this does not appear to be the case since well-defined

genetic lesions are enriched in specific tumor classes and there is

no evidence for regional localization of mutations in glioma as a

general phenomenon. Although clinical and pathologic data are

limited and a more detailed review of this information is

underway, there appeared little clinical or histological differences

between the three groups identified in this analysis. PDGFRA-

cocluster tumors in TCGA occurred in younger patients, and

there were small but significant differences in the amount of

associated necrosis and inflammatory cells (data not shown).

It remains to be established whether ligand-driven PDGF

signaling is common among tumors in the transcriptomal

PDGFRA-cocluster and whether this is functionally important.

We have shown that PDGFB ligand levels are highly variable in

GBM, are associated with receptor activation, and are not

correlated with mRNA expression. The PDGFRA-cocluster

transcriptomal class shares features with the Proneural group of

gliomas identified by Phillips et al using transcription analysis, and is

characterized by genes expressed during normal cortical oligoden-

drocyte development such as olig2, Sox2 and doublecortin and

signaling pathways involved in that process as well, such as PDGF

and SHH. While the PDGFRA-cocluster group is enriched for

Signaling Subclasses of GBM

PLoS ONE | www.plosone.org 7 November 2009 | Volume 4 | Issue 11 | e7752



Proneural signature genes, it is important to note that the original

signature was derived from a dataset of mixed histologies and the

analysis designed specifically to resolve a prognostic signature.

Therefore the exact relationship between our PDGF proteomic

class, the PDGFRA co-cluster, and gliomas harboring Proneural

signature is unclear and will need to be further investigated.

Although PDGFRA amplification predominated in the

PDGFRA-cocluster transcriptomal group, a full 15% showed

amplified EGFR and another 15% showed amplified MET. From

the prevalence of PDGF signaling we found at the protein level

one might hypothesize the existence of concurrent PDGF signaling

in EGFR- and MET- amplified tumors in this class. In fact, we

found two such tumors in our proteomic analysis: one EGFR- and

one MET-amplified, both with high levels of PDGFB, phosphor-

ylation of PDGFRb and an overall signaling pattern matching the

PDGF proteomic class. It is unclear in these cases whether the

level of PDGF pathway activation is functionally important,

perhaps in a subpopulation of cells. It is notable that 6 tumors in

TCGA show focal amplification of both PDGFRA and another

RTK: four cases sharing focal co-amplification of EGFR, and two

cases sharing focal co-amplifications of PDGFRA and MET.

In conclusion, our findings support a division of GBMs into

three classes according to patterns of signal transduction pathway

activation. These patterns reflect, in part, mutually exclusive

signaling involving EGFR, PDGF RTK activation or NF1

silencing. Both the transcriptomal and proteomic classes were

imperfectly related to genotype, suggesting that molecular assays

used in patient stratification and clinical trial analysis should

include measures of PDGF ligand and receptor phosphorylation as

well as NF1 expression. Notch signaling was prominently

associated with the EGFR class at the protein level, an observation

which was not predicted by mRNA expression levels of Notch

pathway members in EGFR-altered tumors from TCGA.

Whether one or more non-EGF/PDGF RTKs are contributing

to NF1 tumors is uncertain, but the finding that NF1-silenced

tumors show elevated MET, HGF and IRS1 at the transcriptomal

level and validation of IRS1 at the protein level suggest IGF and or

MET signaling may be contributory. Further refinement of GBM

subclasses will likely come from direct investigations of these and

other signaling proteins, as well as investigation of newly described

recurrent mutations in GBM such as ERBB2 and IDH1. The

current study provides an initial architecture for such subclasses

and suggests the potential for class-directed therapies.

Methods

Ethics statement
The collection and use of the human tissues in this study were

performed after obtaining written consent from all participants, in

accordance with a study protocol approved by the Institutional

Review Board of Memorial Sloan-Kettering Cancer Center. Data

from The Cancer Genome Atlas public portal were obtained

under an approved Data Access Request.

Surgical glioma sample analysis
Tumor samples. Tumors were snap-frozen in the operating

room, and stored at 280uC. Samples in liquid nitrogen were

ground to powder and protein was extracted through lysis with T-

per tissue extract solution (Pierce) supplemented with 30 mM

sodium fluoride, 1 mM sodium vanadate, and protease inhibitor

cocktail tablets (Roche). Protein concentrations were determined

by bicinchoninic acid assay (BCA) method (Bio-Rad).

Western blot analysis. Samples (100 mg) were separated by

6, 8, 10, or 12% SDS-PAGE gel, and transferred onto

polyvinylidene difluoride membrane (Millipore). For qualitative

comparison, analysis included normal brain cortex lysate as

previously described (Analytical Biological Services Inc).[30]

Membranes were blocked with 5% nonfat milk in PBS-0.1%

Tween 20. Primary and secondary antibodies were diluted in the

blocking solution. Signal was visualized using enhanced

chemiluminescence (Amersham Biosciences). Primary antibodies

used in this study are listed in Table S1. Secondary peroxidase-

conjugated anti-rabbit antibody (Amersham Biosciences), anti-

mouse and anti-goat antibodies (Roche) were used at 1:1,000

dilution. For NF1, 50 ug of lysate was run on 6% gel and

secondary antibody was 1:10,000 dilution. PDGFRa total protein

was assayed at a later date by western blot of frozen banked lysate

aliquots (Santa Cruz, #sc-338, 1:500, secondary 1:10,000).

Because of low band intensity a second PDGFRa antibody was

tested as well and gave concordant results (Cell Signaling #3174,

1:1000, secondary 1:2,000). The density of each band was read

and quantified using Adobe Photoshop and NIH Image 1.63

software and normalized by actin control. PDGFRa western was

normalized to tubulin.

Activated ras pull-down assay. Activated K-ras (K-ras-

GTP) was tested by using 500 mg samples for activated Ras pull-

down with 10 mg of glutathione-conjugated Raf-1 GST-RBD

beads (Upstate Biotechnology) as previously described.[31]

Unsupervised clustering of protein data. Quantified

western data were standardized for each protein by mean and

standard deviation across the sample cohorts. Standardization was

done first on the glioblastoma samples (n = 20) for unsupervised

clustering analysis of protein level, then again separately on the

whole sample set (n = 27) for cluster analysis of samples. For the

purpose of display, NF1 is represented as ‘‘NF1-loss’’, or zero

minus standardized NF1 quantity on western. All statistical

analyses and plotting were done in R (www.cran.org). Principal

component analysis was performed on standardized data. K-

means clustering of quantified protein levels for 20 GBM samples

was performed in R, and stability of cluster assignment assessed

over 10,000 iterations leaving out 15% of tumors with each

iteration (kmeans, stats package, www.cran.org). Consensus

matrices were generated for each k-clustering over all iterations

and assessed visually as well as by cophenetic correlation. Core

correlated protein clusters are defined for 3-way clustering as

.95% consensus. Proteins in these core clusters were selected for

k-means analysis of 27 gliomas using, as before, an 85%

resampling of proteins and consensus matrix analysis over

10,000 iterations.

ACGH and resequencing. Genomic DNA was extracted

from primary tumors using standard techniques. DNA was then

digested and labeled and hybridized to 244K CGH arrays

according to manufacturer guidelines (Genomic DNA labeling

kit PLUS, Agilent). This array consists of .238,000 coding and

non-coding sequences allotted to assembly map positions (NCBI,

Build 35). Normal male genomic DNA (Promega, Madison, WI)

was used as a reference. After washing, the slides were scanned

with an Agilent scanner and images quantified using Feature

Extraction 9.5.3.1 (Agilent). Fluorescence ratios of the scanned

images were calculated and the raw aCGH profiles were processed

to identify statistically significant transitions in copy number using

the Circular Binary Segmentation algorithm.[32] Each profile was

centered so that log2 ratio of zero is assigned to the predominant

copy number, determined by the mode of the distribution of the

mean log2 ratio for each segment, weighted by the number of

probes per segment . After mode-centering, gains and losses for a

subset of analyses were defined as segment mean log2 ratios of

.0.2 or ,20.2 and amplification and deletions as .2 or ,21,
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respectively. Additionally, sample-specific thresholds for

alterations were computed for all other analyses. The annotated

microarray data for the sample set is available on GEO (www.

ncbi.nlm.nih.gov/geo, GSE17381).

Integrated analysis of genomic data from The Cancer
Genome Atlas

Dataset compilation and analysis. A description of TCGA

data types, platforms and analyses are as previously described.[8]

Processed genomic datasets were downloaded from The Cancer

Genome Atlas public data portal (http://cancergenome.nih.gov/

dataportal/) as available on May, 2009. Specific data sources were

as follows: For mRNA expression, ‘‘Level 3’’ normalized gene

expression derived from the Cancer Genome Characterization

Center (CGCC) at the Broad Institute, MIT (Affymetrix Human

Genome HTS U133A 2.0). For chromosomal copy number,

‘‘Level 3’’ normalized and segmented copy number data from the

CGCC at Memorial Sloan-Kettering Cancer Center (Agilent

244K CGH Array). From this array-CGH dataset one unique

profile was selected for each tumor based on the highest

signal-to-noise estimate. For sequencing data, we combined all

available sequencing data summaries in ‘‘multiple alignment

format’’ (MAF) files as of May 2009: broad.mit.edu GBM.ABI.1,

genome.wustl.edu GBM.ABI.53, hgsc.bcm.edu GBM.ABI.1.maf

and GBM.ABI.2. Mutations were further filtered by excluding

events which were classified as ‘‘somatic,’’ ‘‘synonymous’’ or

‘‘silent,’’ or ‘‘unvalidated,’’

A list of the sample IDs and the summary of genomic data are

given in Table S3. 243 samples had gene expression from Affymetrix

U133A platform. Of these, 237 also had aCGH data and 159 had

mutation data available. Level 3 array-CGH data was used for local

copy number estimation. Amplification was defined by regional log2

ratio .2.0. Gene loss was classified by minimal log2 ratio (log2R)

across the gene as follows: ‘‘single copy loss’’ = 21.0,log2R,20.2;

‘‘homozygous deletion’’ = log2R,21.0.

Clustering of TCGA expression dataset. Unsupervised

clustering of TCGA Level 3 expression data was performed on

1,807 genes representing the top 15%ile of variance (hierarchical

clustering, correlation metric, complete linkage; hclust, R

package:stats,). Supervised cluster analysis was performed as

follows: 147 samples were identified harboring only one of either

EGFR mutation/amplification (n = 103), PDGFRA mutation/

amplification (n = 14) or NF1 mutation/loss (n = 30). Kruskal-

Wallis (kruskal.test, R package:stats) test was used to identify genes

which discriminate between EGFR-, PDGFRA- and NF1-altered

samples. Because only 14 samples in TCGA set harbor solitary

PDGFRA alteration, the numbers of profiles in each class are

balanced by sampling 14 of the 103 EGFR-altered and 14 of the

30 NF1-altered samples and the KW test is run iteratively 1000

times with resampling. 1,953 genes were found to show KW p-

values ,0.05 in .95% of iterations and these were used to

perform supervised hierarchical clustering. Calculation of

significance for differences between cluster was by Fisher’s Exact

Test (R package:stats) using cluster assignments for PDGFRA,

NF1 and EGFR-coclusters derived from unsupervised clustering,

and excluding samples belonging to the ‘‘Indeterminate

Genotype’’ cluster.

Supporting Information

Figure S1 Selected bands from western blots which were

quantified in this study. Signaling class assignments are shown

for those samples with stable clustering: ‘‘P’’ = PDGF class,

‘‘N’’ = NF1 class, and ‘‘E’’ = EGFR class.

Found at: doi:10.1371/journal.pone.0007752.s001 (6.30 MB TIF)

Figure S2 Principal Componenet Analysis of Quantified Protein

Levels: Fractional variance for principal components from the

analysis of quantified protein levels in 20 GBM samples. The first

two components together account for 51% of total variance and

are plotted in Figure 1A.

Found at: doi:10.1371/journal.pone.0007752.s002 (0.34 MB TIF)

Figure S3 Analysis of stable cluster assignment by k-means for

varying cluster count: K-means clustering of quantified and

standardized protein levels in GBM; classification of gliomas by

core protein expression patterns. For each analysis, K-means was

run for 10,000 iterations leaving out 15% of data with each

iteration. Shown are consensus matrices for division into 2–4

clusters, and cophenetic correlations for division into 2–8 clusters.

(A) Clustering of 55 proteins in 20 GBM samples shows stable two-

way and three-way clustering with peak cophenetic correlations

,0.98. Details for 3-way clustering are shown in Figure 1B in the

main text. Three sets of ‘‘core’’ proteins (n = 46 total) are defined

by their stable cluster membership in .95% of iterations. (B) 27

glioma samples clustered by 44 core proteins identified in the

preceding analysis and highlighted in Figure 1B. Gliomas are

classified into 3 types based on the levels of 44 total and activated

protein forms.

Found at: doi:10.1371/journal.pone.0007752.s003 (1.04 MB TIF)

Figure S4 Genomic profiling of gliomas clustered by signaling

class: Array-CGH shows high concordance between EGFR

signaling class and amplification of EGFR locus and deletion of

the Ink4a/ARF locus. Tumors in the NF1 class show frequent gain

of chr7 without focal amplification of either EGFR or MET. Of

the two tumors which do have focal MET amplification, one

clusters with EGFR-class and the other with PDGF-class. No

amplification of PDGFRA was found in any of the samples.

Found at: doi:10.1371/journal.pone.0007752.s004 (0.96 MB TIF)

Figure S5 Expression of Proneural and Mesenchymal signature

genes in transcriptomal subclasses: Expression analysis of Pro-

neural and Mesenchymal signature genes across transcriptomal

subclasses derived from The Cancer Genome Atlas. Unsupervised

clustering of TCGA samples and subclass assignments are as

shown in Figure 4. Tumor profiles in each subclass are assessed for

enrichment of signature genes defining the Proneural and

Mesenchymal transcriptomal classes of GBM previously described

[19]. Box plots show the distribution of mean percentile rank for

expression of Proneural and Mesenchymal signature gene sets

courtesy of Kenneth Aldape, MD: Proneural = BMP2, GRIA2,

OMG, NCAM1&2, OLIG2, BCAN, RTN1, SNAP91,

GABBR1&2, and KCNB1; Mesenchymal = YKL40/CHI3L1,

IGF2BP3, VEGFA, COL1A1, COL5A2, COL3A1.

Found at: doi:10.1371/journal.pone.0007752.s005 (0.35 MB TIF)

Figure S6 Supervised transcriptomal clustering of GBM tumors

in The Cancer Genome Atlas: Clustering of 243 GBM samples

form TCGA using ,1,900 genes selected for their ability to

discriminate three genotypes: EGFR mutation/amplification,

PDGFRA mutation/amplification or NF1 mutation/deletion (see

Methods). Sample set and figure legend are as shown in Figure 4

and clustering methods differ only in the subset of genes used.

Samples are clustered into three divisions each enriched for one of

the three genotypes.

Found at: doi:10.1371/journal.pone.0007752.s006 (0.91 MB TIF)

Figure S7 PDGFB protein levels are not correlated with mRNA

expression: PDGFB protein levels were assessed in a validation

panel of 40 gliomas by western blot and compared with mRNA
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expression levels. Although the ligand is expressed at highly

variable amounts there is no correlation with mRNA, concordant

with post-transcriptional regulation of PDGF.

Found at: doi:10.1371/journal.pone.0007752.s007 (0.77 MB TIF)

Table S1 Antibodies and conditions used for western blot panel.

Antibody sources and conditions as shown. *Hes1 antibody kindly

provided by Dr. Tetsuo Sudo (Toray Scientific, Japan).

Found at: doi:10.1371/journal.pone.0007752.s008 (0.03 MB

XLS)

Table S2 Quantified western results. Western bands quantified

by densitometry and normalized to actin (see Methods). Images of

selected bands are shown in Figure S1.

Found at: doi:10.1371/journal.pone.0007752.s009 (0.05 MB

XLS)

Table S3 Summary of integrated analysis of genomic data from

278 samples in The Cancer Genome Atlas. In this table, mutations

are denoted in blue and designated ‘‘validated’’ and ‘‘unvalidated’’

according to whether TCGA reports that the mutation was

verified by second sequencing method or whether such verification

is pending. Focal amplifications in red and single-copy loss or

homozygous deletion (light and dark green, respectively) are

inferred from array-CGH log2 ratios (see Methods). Cluster

assignments are derived from Figure 4.

Found at: doi:10.1371/journal.pone.0007752.s010 (0.08 MB

XLS)
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