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Abstract

Living vertebrates vary drastically in body size, yet few taxa reach the extremely minute size of some frogs and teleost fish.
Here we describe two new species of diminutive terrestrial frogs from the megadiverse hotspot island of New Guinea, one
of which represents the smallest known vertebrate species, attaining an average body size of only 7.7 mm. Both new
species are members of the recently described genus Paedophryne, the four species of which are all among the ten smallest
known frog species, making Paedophryne the most diminutive genus of anurans. This discovery highlights intriguing
ecological similarities among the numerous independent origins of diminutive anurans, suggesting that minute frogs are
not mere oddities, but represent a previously unrecognized ecological guild.
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Introduction

Living vertebrates range in size over 3,000 fold. The breadth

and limits on vertebrate size have been of great interest to

biologists due to the functional and physiological constraints

associated with extreme body size. The largest extant vertebrate is

the blue whale (Balaenoptera musculus, average adult size 25.8 m) [1]

while the smallest is a fish (Paedocypris progenetica, adult size 7.9–

10.3 mm) [2]. Both species are aquatic and biologists have

speculated that the buoyancy of water may play a role in

facilitating the evolution of both large and small size [3–5].

Extreme miniaturization, however, has evolved independently at

least eleven times in terrestrial frogs. Here we describe two new

species of diminutive terrestrial frogs from the island of New

Guinea, one of which represents the smallest known vertebrate

species, attaining an average body size of only 7.7 mm (range 7.0–

8.0 mm). We identify ecological similarities among the most

diminutive frog species suggesting that the independent origins of

minute frogs are not merely evolutionary outliers, but represent a

previously undocumented ecological guild found in moist leaf litter

of tropical wet-forests.

Results

Taxonomic treatment
Amphibia, Linnaeus, 1758

Anura, Rafinesque, 1815

Microhylidae, Günther, 1858

Asterophryinae, Günther, 1858

Paedophryne, Kraus 2010

Paedophryne amauensis, sp. nov. (urn:lsid:zoobank.org:act:496-

F26AB-CD82-4A9C-944C-070EC86ADAA4)

Etymology. The species epithet refers to the type locality,

near Amau Village, Central Province, Papua New Guinea.

Holotype. LSUMZ 95000 (field tag CCA 5739), adult male,

collected by C.C. Austin and E.N. Rittmeyer near Amau Village,

Central Province, Papua New Guinea, 09.9824uS, 148.5785uE,

177 m, 7 August 2009.

Paratypes. LSUMZ 95001, same data as holotype, except

collected 6 August 2009; LSUMZ 95002, same data as holotype,

except collected 10 August 2009; LSUMZ 95003-4, same data as

holotype, except collected 12 August 2009; LSUMZ 95005-6,

same data as holotype, except collected 14 August 2009.

Diagnosis. A minute microhylid (male SVL = 7.0–8.0 mm)

of the genus Paedophryne based on the following combination of

characters: eleutherognathine jaw, 7 presacral vertebrae, first

digits of hand and foot reduced to single elements, prepollex and

prehallux reduced to single elements (Fig. 1). Legs moderately long

(TL/SVL = 0.478–0.507), snout broad and short (EN/SV =

0.075–0.084, EN/IN = 0.667–0.765), and eye relatively large

(EY/SVL = 0.127–0.150). Digits un-webbed with slightly

enlarged discs (3F/SVL = 0.025–0.033; 4T/SVL = 0.036–0.050).

First finger and first toe reduced to vestigial nubs, second and

fourth fingers and second and fifth toes also markedly reduced.

Dorsal coloration dark brown with irregular tan to rusty-brown

blotches; lateral and ventral surfaces dark brown to slate grey with

irregular bluish-white speckling. Detailed mensural characters and

proportions provided in Table 1 and Table 2.

Paedophryne amanuensis is distinguished from all congeners by its

smaller size (SVL = 10.1–10.9 mm in P. kathismaphlox, 11.3 mm in

P. oyatabu, 8.3–8.9 mm in P. swiftorum) and longer legs (TL/

SVL = 0.35–0.39 in P. kathismaphlox, 0.40 in P. oyatabu, 0.427–0.471

in P. swiftorum). Paedophryne amauensis is further distinguished from P.

oyatabu and P. swiftorum by its longer, narrower head (EN/
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SV = 0.062, EN/IN = 0.64 in P. oyatabu; EN/SV = 0.064–0.071,

EN/IN = 0.579–0.632 in P. swiftorum), and from P. kathismaphlox by

its shorter, broader head (EN/SV = 0.067–0.079; EN/IN = 0.78–

0.80 in P. kathismaphlox). The call of P. amauensis differs from that of

P. swiftorum by its higher dominant frequency (7300 Hz in P.

swiftorum) and by consisting of single notes, rather than eight paired

notes as in P. swiftorum. The calls of P. kathismaphlox and P. oyatabu

are unknown.

Call. This species is crepuscular and calls from within leaf

litter in primary forest at dawn and dusk. Its call consists of a

continuous series of high-pitched notes with a dominant frequency

of ,8400–9400 Hz. Individual notes range in duration from 2–

14 ms and are produced at a rate of 1.5 notes/s (Fig. 2; Table 3).

The overall acoustic impression is that of a stridulating insect.

Individuals generally call from one to three minutes and then rest

briefly before resuming. In a 5.5 minute recorded sequence, one

individual (NS2, Table 3) produced a total of 355 calls in four

groups, with the interval between groups ranging from 3.3 to

40.8 s.

Paedophryne swiftorum, sp. nov. (urn:lsid:zoobank.org:act:6F724864

-05A5-4729-AB27-7093A64F90F2)

Etymology. The species epithet honors the Swift family, in

recognition of their generous contributions that enabled the

establishment of the Kamiali Biological Station, where the type

series was collected.

Holotype. BPBM 31883 (field tag AA 19195), adult male,

collected by A. Allison, M.C. Gründler, E.N. Rittmeyer, and D.K.

Thompson at Kamiali Wildlife Management Area, 1.3 km N,

6.2 km W of Cape Dinga, Cliffside Camp, Morobe Province,

Papua New Guinea, 07.255997uS, 147.092879uE, 500 m

elevation, 14 July 2008.

Paratypes. BPBM 31879, same data as holotype, except

collected 8 July 2008; BPBM 31880, same data as holotype, except

collected 10 July 2008; BPBM 31881-82, same data as holotype,

except collected 11 July 2008; BPBM 31884 collected by M.

Gründler at Kamiali Wildlife Management Area, Pinetree

Camp, Morobe Province, Papua New Guinea, 07.257906uS,

147.06335uE, 950 m elevation, 12 July 2008; BPBM 31885, same

data as BPBM 31884, except an unsexed juvenile collected on 13

July 2008; BPBM 31886, same data as holotype, except collected

13 July 2008.

Diagnosis. A minute microhylid (SVL = 8.25–8.90 mm) of

the genus Paedophryne based on the following combination of

characters: eleutherognathine jaw, 7 presacral vertebrae, first

digits of hand and foot reduced to single elements, prepollex

and prehallux reduced to single elements (Fig. 1). Legs

moderately long (TL/SVL = 0.427–0.471), snout short and

broad (EN/SV = 0.064–0.071; EN/IN = 0.579–0.623), and

eyes relatively large (EY/SVL = 0.139–0.149). Fingers lacking

enlarged discs (3F/SVL = 0.018–0.024), toes with slightly

enlarged discs (4T/SVL = 0.041–0.047). Digits un-webbed;

first finger and first toe reduced to vestigial nubs, second and

fourth fingers and second and fifth toes also markedly reduced.

Dorsum dark brown with irregular tan to rusty brown blotches

or a broad tan mid-dorsal stripe; chin and throat dark brown,

abdomen lighter brown, occasionally mottled with tan. Detailed

mensural characters and proportions provided in Table 1 and

Table 2.

Paedophryne swiftorum is distinguished from P. oyatabu and P.

kathismaphlox by its smaller size (SVL = 10.1–10.9 mm in P.

kathismaphlox, 11.3 mm in P. oyatabu), longer legs (TL/

SVL = 0.35–0.39 in P. kathismaphlox, 0.40 in P. oyatabu,), and larger

eyes (EY/SV = 0.12 in P. kathismaphlox, 0.13 in P. oyatabu).

Paedophryne swiftorum is further distinguished from P. kathismaphlox

by its broader head (EN/IN = 0.78–0.80 in P. kathismaphlox). It is

distinguished from P. amauensis by its larger size (SVL = 7.0–

8.0 mm in P. amauensis), shorter legs (TL/SVL = 0.478–0.507 in P.

amauensis), and shorter, broader head (EN/SV = 0.075–0.084; EN/

IN = 0.667–0.765 in P. amauensis). The call of P. swiftorum differs

from that of P. amauensis by its lower dominant frequency (8400–

9400 Hz in P. amauensis), and by consisting of a series of four

double notes, rather than repeated single notes as in P. amauensis.

The individual notes are otherwise similar to P. amauensis. The calls

of other Paedophryne species are unknown.

Figure 1. Osteological characters of Paedophryne amauensis, P.
swiftorum. A. X-ray of paratype of Paedophryne amauensis (LSUMZ
95002). B. X-ray of paratype of P. swiftorum (BPBM 31886). C,E,G,I.
Photos of cleared and double-stained paratype of P. amauensis (LSUMZ
95002). C. Whole body. E. Head. G. Hand. I. Foot. D,F,H,J. Photos of
cleared and double-stained paratype of P. swiftorum (BPBM 31886). D.
Whole body. F. Head. H. Hand. J. Foot. Skeletal elements labeled as
follows: Fp, frontoparietal; Il, illium; Mc1-4, metacarpals 1-4; Mt1-5,
metatarsals 1-5; Mx, maxilla; N, nasal; S, Sacrum; Sp, sphenethemoid; Sq,
squamosal; U, urostyle; V1, first presacral vertebra; V7, seventh presacral
vertebra.
doi:10.1371/journal.pone.0029797.g001
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Call. The calling ecology of Paedophryne swiftorum is similar to

that of P. amauensis – it is generally crepuscular; however, it calls

diurnally during particularly wet conditions. It does not call

nocturnally regardless of rainfall. The call generally consists of four

double notes (Fig. 2; Table 4) delivered in a continuous series at

the rate of 0.66 calls/s. Each note is around 7 ms in duration and

the entire call lasts approximately 0.5 seconds. The interval

between notes is 40–50 ms within a double note series and 85–

100 ms between each double note series. The dominant frequency

averages 7300 Hz. Some individuals occasionally produce calls of

Table 1. Mensural characters of Paedophryne amauensis and P. swiftorum.

Catalogue No. Species Sex SVL TL EY EN IN SN HW HL 3F 4T

LSUMZ 95000* P. amauensis Male 7.50 3.80 1.05 0.60 0.80 0.85 2.85 2.15 0.25 0.30

LSUMZ 95001 P. amauensis Male 7.00 3.55 0.95 0.55 0.75 0.65 2.75 1.90 0.20 0.25

LSUMZ 95002 P. amauensis Male 7.85 3.75 1.00 0.60 0.80 0.95 2.75 2.25 0.20 0.30

LSUMZ 95003 P. amauensis Male 8.00 3.90 1.20 0.60 0.85 0.75 2.90 2.30 0.25 0.40

LSUMZ 95004 P. amauensis Male 8.00 3.95 1.10 0.60 0.90 0.95 2.90 2.20 0.25 0.30

LSUMZ 95005 P. amauensis Male 7.70 3.80 1.00 0.65 0.85 0.95 2.90 2.10 0.20 0.30

LSUMZ 95006 P. amauensis Male 7.85 3.80 1.10 0.60 0.85 0.85 2.75 2.25 0.20 0.30

BPBM 31880 P. swiftorum Male 8.50 3.95 1.20 0.55 0.95 0.80 2.80 2.40 0.15 0.35

BPBM 31881 P. swiftorum Male 8.90 3.80 1.25 0.60 0.95 0.85 2.90 2.50 0.20 0.40

BPBM 31882 P. swiftorum Male 8.40 3.70 1.25 0.60 0.95 0.80 3.00 2.40 0.20 0.35

BPBM 31883* P. swiftorum Male 8.55 4.00 1.25 0.55 0.95 0.85 3.00 2.50 0.15 0.35

BPBM 31884 P. swiftorum Male 8.25 3.85 1.15 0.55 0.90 0.80 2.90 2.35 0.20 0.35

BPBM 31885 P. swiftorum Juvenile 4.45 1.75 0.75 0.25 0.50 0.50 1.75 1.40 0.20 0.20

BPBM 31886 P. swiftorum Male 8.50 4.00 1.25 0.55 0.90 0.85 3.00 2.45 0.20 0.40

Mensural data for Paedophryne amauensis sp. nov. and P. swiftorum sp. nov. Measurements, terminology, and abbreviations follow Kraus [13]: body length (SVL), tibia
length (TL), horizontal eye diameter (EY), distance from anterior of eye to naris (EN), internarial distance between external nares (IN), distance from anterior of eye to tip
of snout (SN), head width at center of tympana (HW), head length from posterior of tympana to tip of snout (HL), width of third finger disc (3F), and width of fourth toe
disc (4T). All measurements were made to the nearest 0.05 mm using dial calipers or an optical micrometer. Asterisks (*) indicate holotypes.
doi:10.1371/journal.pone.0029797.t001

Table 2. Relevant proportions of Paedophryne species.

Cat. No. Species Sex SVL TL/SV EN/SV IN/SV SN/SV EY/SV HW/SV HL/SV 3F/SV 4T/SV EN/IN 3F/4T HL/HW EY/SN

LSUMZ 95000* P. amauensis Male 7.50 0.507 0.080 0.107 0.113 0.140 0.380 0.287 0.033 0.040 0.750 0.833 0.754 1.235

LSUMZ 95001 P. amauensis Male 7.00 0.507 0.079 0.107 0.093 0.136 0.393 0.271 0.029 0.036 0.733 0.800 0.691 1.462

LSUMZ 95002 P. amauensis Male 7.85 0.478 0.076 0.102 0.121 0.127 0.350 0.287 0.025 0.038 0.750 0.667 0.818 1.053

LSUMZ 95003 P. amauensis Male 8.00 0.488 0.075 0.106 0.094 0.150 0.363 0.288 0.031 0.050 0.706 0.625 0.793 1.600

LSUMZ 95004 P. amauensis Male 8.00 0.494 0.075 0.113 0.119 0.138 0.363 0.275 0.031 0.038 0.667 0.833 0.759 1.158

LSUMZ 95005 P. amauensis Male 7.70 0.494 0.084 0.110 0.123 0.130 0.377 0.273 0.026 0.039 0.765 0.667 0.724 1.053

LSUMZ 95006 P. amauensis Male 7.85 0.484 0.076 0.108 0.108 0.140 0.350 0.287 0.025 0.038 0.706 0.667 0.818 1.294

BPBM 31880 P. swiftorum Male 8.50 0.465 0.065 0.112 0.094 0.141 0.329 0.282 0.018 0.041 0.579 0.429 0.857 1.500

BPBM 31881 P. swiftorum Male 8.90 0.427 0.067 0.107 0.096 0.140 0.326 0.281 0.022 0.045 0.632 0.500 0.862 1.471

BPBM 31882 P. swiftorum Male 8.40 0.440 0.071 0.113 0.095 0.149 0.357 0.286 0.024 0.042 0.632 0.571 0.800 1.563

BPBM 31883* P. swiftorum Male 8.55 0.468 0.064 0.111 0.099 0.146 0.351 0.292 0.018 0.041 0.579 0.429 0.833 1.471

BPBM 31884 P. swiftorum Male 8.25 0.467 0.067 0.109 0.097 0.139 0.352 0.285 0.024 0.042 0.611 0.571 0.810 1.438

BPBM 31886 P. swiftorum Male 8.50 0.471 0.065 0.106 0.100 0.147 0.353 0.288 0.024 0.047 0.611 0.500 0.817 1.471

BPBM 17975 P. kathismaphlox Female 10.40 0.35 0.067 0.087 0.13 0.12 0.38 0.28 0.024 0.037 0.78 0.66 0.74 0.92

BPBM 17976 P. kathismaphlox Female 10.90 0.38 0.073 0.092 0.12 0.12 0.35 0.32 0.028 0.032 0.80 0.86 0.92 1.00

BPBM 17977* P. kathismaphlox Female 10.50 0.39 0.076 0.095 0.13 0.12 0.35 0.31 0.031 0.037 0.80 0.85 0.89 0.93

BPBM 35353 P. kathismaphlox Male 10.10 0.39 0.079 0.099 0.12 0.12 0.37 0.31 0.029 0.035 0.80 0.83 0.84 1.00

BPBM 16433* P. oyatabu Female 11.30 0.398 0.062 0.097 0.124 0.133 0.372 0.319 0.025 0.031 0.636 0.800 0.857 1.071

Relevant proportions of P. amauensis sp. nov., P. swiftorum sp. nov., and the two previously described species of Paedophryne. Values for P. kathismaphlox and P. oyatabu
from Kraus [13]. Asterisks indicate holotypes.
doi:10.1371/journal.pone.0029797.t002
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only six notes, invariably consisting of double notes, and otherwise

similar to eight-note calls. The acoustic characteristics of the call

and the tendency of males to call continuously within a chorus

produces an uncanny resemblance to stridulating orthopteran

insects.

Morphology
Most miniaturized species show an overall reduction and

simplification of their bauplan [6]. Miniaturized anurans in

particular often show a reduced number of digits and phalangeal

elements [7,8], and the loss or reduction of some cranial elements

[8,9]. The four known Paedophryne species corroborate the trend of

digital reduction: multiple digits are reduced in size and the first

digits of the hand and foot are reduced to miniscule nubs. Further,

like many other miniaturized anurans, Paedophryne exhibit reduced

numbers of phalangeal elements (Fig. 1): all species have

phalangeal formulas on the manus of 1-2-3-2 (as opposed to the

typical 2-2-3-3 [10]), and on the pes of 1-2-3-4-2 (as opposed to the

typical 2-2-3-4-3 [10]). The skull of Paedophryne is largely ossified,

though several elements, particularly those more anterior, are

reduced in size (e.g. nasals) or at least partially chondrified (e.g.

sphenethmoid). Several elements that typically ossify late in

anuran development (e.g. columella, mentomeckelian) are present

and partially or entirely ossified, whereas others (e.g. spheneth-

moid) are chondrified (Fig. 1). This pattern may suggest

developmental truncation as a mechanism for the extremely

reduced body size of Paedophryne, as has been proposed for other

miniaturized anurans [9]; however, little is known of the cranial

ontogeny in direct-developing anurans. Direct development has

evolved numerous times independently and cranial ontogeny has

only been examined in detail in a small number of species. These

examined species show varied sequences of ossification. Some (e.g.

Philautus silus) show patterns similar to typical anurans in which

cranial elements involved in the braincase ossify early in

development and those associated with the adult jaw ossify later

[11], whereas others (e.g. Eleutherodactylus coqui) show drastically

different patterns in which cranial elements associated with the

adult jaw ossify early in development [12]. The cranial ontogeny

has not been examined in any asterophryine frogs, which represent

an independent origin of direct development from any examined

species, thus it is not clear from the patterns of cranial ossification

if the diminutive size of Paedophryne is the result of developmental

truncation (as has been hypothesized for many other minute frog

species [6,9], proportional dwarfism, or some combination of these

or other mechanisms. In addition to these patterns of digital and

cranial reduction, Paedophryne show a reduction in the number of

presacral vertebrae (7 in Paedophryne, Fig. 1, versus 8 in most other

anurans and other asterophryines [10,13], and an overall rather

juvenile appearance.

Discussion

Miniaturization, the reduction in body size necessitating drastic

alterations to an organism’s physiology, ecology, and behavior, is

known from every major vertebrate lineage and nearly all major

groups of animals [6]. Yet among vertebrates only teleost fishes

approach the extreme size of Paedophryne amauensis; the smallest

known actinopterygian fish is Paedocypris progenetica, maturing at

7.9 mm [2], whereas the smallest known vertebrate excluding

teleosts and anurans is a gecko (Spherodactylus ariasae, mean

SVL = 16.3 mm) [14] or a salamander (Thorius arboreus, mean

SVL = 17.0 mm) [15]. Miniaturization has occurred repeatedly in

anurans: the 29 smallest species (maximum male SVL,13 mm)

include representatives from 5 families and 11 genera (Table 5)

[7,13,16–24]. Several large frog families (e.g. Bufonidae, Hylidae,

Ranidae) lack extremely miniaturized species, whereas other

families include numerous minute taxa: 15 of these species are

microhylids, including representatives of 7 genera. This distribu-

tion of miniaturization among frog families suggests that the

evolution of miniaturization has been nonrandom with respect to

phylogeny.

Miniaturized animals typically show reduced overall fecundity

and increased egg size relative to larger congeners [6]. Of the 29

smallest frogs, 24 (83%) lack a larval tadpole stage and develop

directly [7,13,16–20,22–24], and only two congeners (Microhyla

supracilius, M. perparva) have a typical anuran tadpole stage [21].

These direct developing species belong to clades that include

much larger direct developing species, thus direct development

may facilitate the evolution of extreme miniaturization in frogs

[7]. Miniaturized species also typically express a generally

reduced and simplified morphology [6,8,9]. These changes are

also apparent in Paedophryne, which exhibit a reduced number of

Figure 2. Type localities, call sonograms, and photographs of Paedophryne species. A. Photograph of paratype of Paedophryne swiftorum
in life (BPBM 31880). B. Waveform (upper right), power spectrum (lower left) and spectrogram (lower right) of a single call series consisting of four
double notes of the holotype of P. swiftorum (BPBM 31883). C. Type localities of the four species of Paedophryne. Blue: P. swiftorum; red: P. amauensis;
yellow: P. kathismaphlox; purple: P. oyatabu. D. Photograph of paratype of P. amanuensis (LSUMZ 95004) on U.S. dime (diameter 17.91 mm). E.
Waveform (upper right), power spectrum (lower left) and spectrogram (lower right) of the first four notes of the call of the holotype of P. amauensis
(LSUMZ 95000).
doi:10.1371/journal.pone.0029797.g002

Table 3. Call characters of Paedophryne amauensis.

Specimen
Total Calls
Recorded

Mean Call Note
Duration (s)

Range in Call
Note Duration (s)

Mean Internote
Duration (s)

Range in
Internote
Duration (s)

Calling
Frequency
(calls/s)

Dominant
Frequency
(mHz)

LSUMZ 95000* 139 0.0055 0.0025–0.0102 0.624 0.1843–0.7875 1.59 9200

LSUMZ 95004 86 0.005 0.0029–0.0084 0.7056 0.5889–0.8617 1.44 8820

NS 1 252 0.0055 0.0030–0.0092 0.6934 0.5684–1.098 1.43 8440

NS 2 355 0.0051 0.0021–0.0142 0.6727 0.5533–1.0980 1.54 8440

Call characters of Paedophryne amauensis. NS refers to specimens not collected. Asterisk indicates the holotype.
doi:10.1371/journal.pone.0029797.t003
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presacral vertebrae, reduced ossification of several cranial

elements, and phalangeal and digital reduction on both the hand

and foot (Fig. 1).

All but two species of extremely miniaturized frogs inhabit

tropical wet-forest leaf litter; the two exceptions (Choerophryne

burtoni, Oreophryne minuta) inhabit dense moist moss. Frogs are

sensitive to water loss [25–27] and small species, which have a

high surface to volume ratio, are particularly susceptible to

desiccation [28]. Indeed, one of smallest known amniote species

(Sphaerodactylus parthenopion) loses water at much higher relative

rates than larger congeners, and is known to select moist

microhabitats to compensate [28]. A disproportionate number

of tropical wet-forest frogs occur on or near the ground and

have life histories dependent on the near constant high moisture

content of leaf litter [29]. This may explain the absence of

diminutive frogs from temperate forests and tropical dry-forests,

where the leaf litter is seasonally dry. Alternatively, the absence

of minute frogs from temperate forests may be explained by the

evolution of clades including miniaturized species in the wet

tropics (i.e. tropical niche conservatism) [30–32]; however, this

would not explain the apparent absence of these species from

tropical dry-forests. Thus, the wet-forest leaf litter may represent

an adaptive zone for diminutive frogs. Their small size likely

increases their susceptibility to predation by invertebrates [33–

35], which may account for the absence of diminutive anurans

from aquatic habitats, where invertebrate predation is partic-

ularly high [33]. This may also explain a tendency for these

frogs to inhabit upland regions where invertebrate diversity is

less than in the lowlands.

Phylogenetic analyses corroborate the monophyly of Paedo-

phryne (albeit with moderate support) and suggest a relationship

with Barygenys and Cophixalus balbus (Fig. 3, Fig. S1). Divergences

among species within Paedophryne are surprisingly deep (mean

uncorrected p-distance $0.102) and on par with, or greater than,

divergences observed among distinct genera of asterophryine

frogs (e.g. mean uncorrected p-distance between Albericus and

Choerophryne = 0.11, between Hylophorbus and Mantophryne+Phero-

hapsis = 0.113). These deep divergences within Paedophryne suggest

that the extremely diminutive size exhibited by the genus arose

early in the radiation of microhylid frogs in New Guinea, thus

indicating that these minute anurans have long been a

component of the leaf litter community where they occur.

Indeed, Paedophryne amanuensis and P. swiftorum appear to be

relatively common inhabitants of leaf litter, judging by the level of

calling, and we estimate that calling male P. swiftorum are spaced

only approximately 50 cm from one another within the leaf litter.

Thus, these minute species are likely an important component of

the tropical wet-forest ecosystem, both as a predator of small

invertebrates such as acarians and collembolans, and as a prey

item for larger invertebrates and vertebrates.

The discovery of Paedophryne amauensis and P. swiftorum also

greatly expands the distribution of the genus westward, both north

and south of the central mountains. The genus remains restricted

to the East Papuan Aggregate Terrain that composes the Papuan

Peninsula in eastern New Guinea [36–38], supporting Kraus’s

[13] conclusion on the importance of this geologic entity for the

evolution of Paedophryne. However, the poorly explored nature of

New Guinea and the extremely minute size and atypical, insect-

like call of Paedophryne species leaves the possibility of a much

broader distribution.

These discoveries further reveal intriguing patterns of amphib-

ian diversity in a megadiverse hotspot region and highlight

ecological similarities among the most diminutive anurans,

suggesting that these species are not merely curiosities, but

represent a previously unrecognized ecological guild. Phylogenetic

analysis also show genetic divergences among Paedophryne species

are deep, equal to or greater than among genera of asterophryine

frogs, suggesting that the evolution of this miniaturized vertebrate

guild arose early in the radiation of New Guinea microhylid frogs.

Such discoveries are increasingly critical in this time of global

amphibian declines and extinctions.

Materials and Methods

Nomenclatural Acts
The electronic version of this document does not represent a

published work according to the International Code of Zoological

Nomenclature (ICZN), and hence the nomenclatural acts

contained in the electronic version are not available under that

Code from the electronic edition. Therefore, a separate edition of

this document was produced by a method that assures numerous

identical and durable copies, and those copies were simultaneously

obtainable (from the publication date noted on the first page of this

article) for the purpose of providing a public and permanent

scientific record, in accordance with Article 8.1 of the Code. The

separate print-only edition is available on request from PLoS by

sending a request to PLoS ONE, Public Library of Science, 1160

Battery Street, Suite 100, San Francisco, CA 94111, USA along

with a check for $10 (to cover printing and postage) payable to

‘‘Public Library of Science’’. This article has also been digitally

archived in the PubMedCentral (www.ncbi.nlm.nih.gov/pmc/)

and LOCKSS (www.lockss.org) repositories.

In addition, this published work and the nomenclatural acts

it contains have been registered in ZooBank (www.zoobank.org),

the proposed online registration system for the ICZN. The

ZooBank LSIDs (Life Science Identifiers) can be resolved and

the associated information viewed through any standard web

browser by appending the LSID to the prefix ‘‘http://zoobank.

org/’’. The LSID for this publication is: urn:lsid:zoobank.org:pub:

CC7DC93E-9BB6-4F1B-B96F-FD929E6FE1FD.

Table 4. Call characters of Paedophryne swiftorum.

Specimen
Total Calls
Recorded

Mean Call
Duration (s)

Notes per
Call (mode)

Range in
Call
Duration (s)

Mean
Inter-Call
Duration (s)

Range in
Inter-Call
Duration (s)

Calling
Frequency
(calls/s)

Dominant
Frequency
(mHz)

BPBM 31881 71 0.494 8 0.3552–0.5588 1.0174 0.8400–1.7620 0.66 7220

BPBM 31883* 20 0.5589 8 0.5066–0.6857 0.9888 0.8607–1.2433 0.65 7400

Call characters of Paedophryne swiftorum. Asterisk indicates the holotype.
doi:10.1371/journal.pone.0029797.t004
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DNA sequencing and phylogenetic methods
Whole genomic DNA was extracted from muscle or liver

samples using a Qiagen DNeasy Blood & Tissue Kit (Qiagen, Inc.

Valencia, CA, USA) as per manufacturer’s instructions. A 700 bp

fragment of the mitochondrial 12S ribosomal RNA gene and a

564 bp fragment of the mitochondrial 16S ribosomal RNA gene

were amplified as in Austin et al. [39], but using an annealing

temperature of 55uC for both genes and the primers L2519 and

H3296 [40] or 16S-L and 16S-H [41] for 12S and 16S,

respectively. PCR products were purified by incubation with

Exonuclease I and Antarctic Phosphotase (New England Biolabs,

Ipswich, MA, USA) as in Austin et al. [42], cycle sequenced in both

directions using BigDye 3.1 (Applied Biosystems, Foster City, CA,

USA) using previously published protocols [39], and sequenced on

an ABI 3100 automated capillary sequencer (Applied Biosystems,

Foster City, CA, USA).

Sequences were edited and complementary sequences were

aligned using Sequencher ver. 4.7 (Gene Codes Corp., Ann Arbor,

MI, USA). Genbank accession numbers for all sequences collected

for this study are available in Table S1. These sequences were

combined with previously published sequences (Table S1),

resulting in a final dataset of 184 samples, including representa-

tives of 9 of the 11 subfamilies of Microhylidae and all 22 genera in

the subfamily Asterophryninae (which includes all New Guinean

microhylids), as well as representatives of 4 non-microhylid,

outgroup families (Arthroleptidae, Hyperoliidae, Hemisotidae,

Brevicipitidae). The final dataset also includes a total of 70

genetypes, including 3 hologenetypes, 43 paragenetypes, and 24

topogenetypes (see Chakrabarty for details of nomenclature for

sequences from type specimens [43]). Sequences were aligned in

ClustalX2 [44] under default parameters (Gap opening penal-

ty = 15, Gap extension penalty = 6.66). Some hyper-variable

regions contained numerous indels, and thus could not be aligned

with confidence, and were removed from subsequent analyses.

The final concatenated and aligned dataset consisted of 925 bp

(516 bp of 12S and 409 bp of 16S). The corrected Akaike

Information Criterion was implemented in jModelTest ver. 0.1.1

[45] to select the best fit model of nucleotide substitution

(GTR+I+G).

Phylogenetic relationships among sampled taxa were estimated

using maximum likelihood (ML) and Bayesian (BI) analyses.

Maximum likelihood analyses were conducted in Garli ver. 1.0

[46] with 50 search replicates; ML support was estimated with

1000 bootstrap pseudoreplicates, each with two search replicates.

Bayesian analyses were implemented in Mr.Bayes ver. 3.1.2

[47,48] with the nucleotide state frequencies and substitution rate

priors set as flat Dirichlet distributions, and the proportion of

invariable sites set as a uniform (0.0–1.0) prior distribution.

Analyses consisted of two independent runs, each with four chains

with default heating and sampling every 1,000 generations for

20,000,000 generations. Convergence was assessed by examining

the potential scale reduction factors (all of which were close to 1 at

run completion), by examining posterior probability, log likeli-

hood, and all model parameters for stationary and by the effective

sample sizes (ESSs) in Tracer ver. 1.5 [49] (all parameters were

stationary with ESSs substantially greater than 200 at run

completion), and by comparing the posterior probabilities of all

splits between runs in Are We There Yet [50] (which were linear,

supporting convergence of runs).

Ancestral State Reconstructions
To examine the evolution of body size in asterophryine frogs,

we used weighted squared-change parsimony [51], which is

computationally equivalent to maximum likelihood based ances-

tral state reconstructions [52,53], as implemented in Mesquite

v.2.72 [54]. The maximum likelihood phylogeny of asterophryine

frogs (Fig. S1) was trimmed to a single representative per generic-

level clade for use in ancestral state reconstructions. We tested

several different measures of body size for each clade, including

mean size, maximum size of the smallest species, and maximum

size of the largest species. Results did not differ substantially

among analyses (data not shown), thus the results of ancestral state

reconstructions with mean size for each clade are shown (Fig. 3).

Mean size for each clade used in the analysis are provided in

Table 6.

Morphology
Specimens of Paedophryne amauensis and P. swiftorum, with the

exception of one individual (BPBM 31885, P. swiftorum, unsexed

juvenile), were identified as mature males by the observation of

calling behavior. Measurements, terminology, and abbreviations

follow Kraus [13]: body length (SVL), tibia length (TL), horizontal

eye diameter (EY), distance from anterior of eye to naris (EN),

internarial distance between external nares (IN), distance from

anterior of eye to tip of snout (SN), head width at center of

tympana (HW), head length from posterior of tympana to tip of

snout (HL), width of third finger disc (3F), and width of fourth toe

disc (4T). All measurements were made to the nearest 0.05 mm

using dial calipers or an optical micrometer.

Figure 3. Phylogenetic position of Paedophryne and evolution
of body size in Asterophryinae. Maximum likelihood phylogeny of
Paedophryne and asterophryine frogs. Colors of branches correspond to
maximum male SVL (Paedophryne) or average SVL within each clade on
a logarithmic scale (Table 6). Circles above branches correspond to
posterior probabilities: black: .0.95; grey: 0.85–0.95; white: 0.5–0.85.
Circles below branches correspond to maximum likelihood bootstrap
support: black: .95%; grey: 75–95%; white: 50–75%.
doi:10.1371/journal.pone.0029797.g003
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Supporting Information

Figure S1 Maximum likelihood phylogeny of astero-
phryine frogs. A. Full phylogeny (not trimmed to single

exemplar per clade) of asterophryine frogs based on maximum

likelihood analysis of 925 bp of 12S and 16S rDNA sequences.

Numbers on branches indicate branch support assessed by 1000

bootstrap pseudoreplicates, followed by Bayesian posterior prob-

ability. Asterisks (*) indicate bootstrap support of 100 or posterior

probability of 1.0. B. Full phylogeny of asterophryine frogs

continued from Figure S1A.

(TIF)

Table S1 Samples included in molecular phylogenetic
analyses. Specimens and Genbank accession numbers for

samples used in phylogenetic analyses. Bolded lettering indicates

sequences collected for this study.

(PDF)
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Table 6. Average sizes of asterophryine genera.

Genus/Clade Representative Taxon Mean SVL (mm) References

Albericus Albericus laurini 18.97 [68–71]

Aphantophryne Aphantophryne pansa 22.27 [20,68]

Asterophrys Asterophrys turpicola 56.00 [68]

Austrochaperina Austrochaperina derongo 29.60 [68,72,73]

Austrochaperina Austrochaperina guttata 29.60 [68,72,73]

Austrochaperina palmipes Austrochaperina palmipes 38.00 [68,72]

Barygenys Barygenys exsul 35.09 [68,74,75]

Callulops Callulops robustus 56.42 [68,76]

Choerophryne Choerophryne rostellifer 16.89 [23,24,68,77]

Cophixalus Cophixalus balbus 25.00 [68,70,78–84]

Cophixalus sphagnicola Cophixalus sphagnicola 17.85 [20,68,85]

Cophixalus ateles group Cophixalus tridactylus 16.57 [68,78,82,86]

Copiula major Copiula major 43.00 [68]

Copiula Copiula obsti 27.17 [68]

Genyophryne Genyophryne thomsoni 40.00 [68]

Hylophorbus Hylophorbus wondiwoi 31.26 [68,76,87]

Liophryne dentata Liophryne dentata 38.00 [68,72]

Liophryne rhododactyla Liophryne rhododactyla 52.30 [68,72]

Liophryne schlaginhaufeni Liophryne schlaginhaufeni 38.00 [68,72]

Mantophryne Mantophryne lateralis 55.48 [68,76,88]

Metamagnusia Metamagnusia marani 52.15 [68,89]

Oreophryne Oreophryne atrigularis 25.88 [22,68,70,90–95]

Oxydactyla Oxydactyla crassa 27.74 [72]

Paedophryne amauensis Paedophryne amauensis 8.00 This Study

Paedophryne oyatabu Paedophryne oyatabu 11.30 [13]

Paedophryne swiftorum Paedophryne swiftorum 8.90 This Study

Pherohapsis Pherohapsis menziesi 31.00 [68,88]

Pseudocallulops Pseudocallulops pullifer 35.75 [68,88,89]

Sphenophryne Sphenophryne cornuta 37.40 [68,88]

Xenorhina (+Xenobatrachus) Xenorhina bouwensi 43.39 [68]

Average sizes (snout-to-vent length, SVL) of asterophryine genera used in reconstructions of ancestral body sizes.
doi:10.1371/journal.pone.0029797.t006
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