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Abstract

Background: Accurately modeling LD in simulations is essential to correctly evaluate new and existing association methods.
At present, there has been minimal research comparing the quality of existing gene region simulation methods to produce
LD structures similar to an existing gene region. Here we compare the ability of three approaches to accurately simulate the
LD within a gene region: HapSim (2005), Hapgen (2009), and a minor extension to simple haplotype resampling.

Methodology/Principal Findings: In order to observe the variation and bias for each method, we compare the simulated
pairwise LD measures and minor allele frequencies to the original HapMap data in an extensive simulation study. When
possible, we also evaluate the effects of changing parameters. HapSim produces samples of haplotypes with lower LD, on
average, compared to the original haplotype set while both our resampling method and Hapgen do not introduce this bias.
The variation introduced across the replicates by our resampling method is quite small and may not provide enough
sampling variability to make a generalizable simulation study.

Conclusion: We recommend using Hapgen to simulate replicate haplotypes from a gene region. Hapgen produces
moderate sampling variation between the replicates while retaining the overall unique LD structure of the gene region.
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Introduction

Many new statistical methods and algorithms to detect

association between a trait and one or more genetic variants have

recently been developed to analyze the abundance of data

produced by Genome Wide Association Studies (GWAS).

Simulated data are used to verify and compare the type-I error

rates and power of these new association methods. The methods

are often compared over a variety of gene region, phenotypic, and

association simulation scenarios [1,2,3,4]. The foundation of

genetic association studies, as well as the basis for most new

complex analyses that use GWAS data, presumes the ability to

detect associated genetic variants through linkage disequilibrium

(LD) with genotyped markers. However, association methods

incorporate, control, or exploit the regional LD to various extents

and using different strategies. Thus, accurately modeling LD in

simulations is essential to correctly evaluate and compare new

association methods. Despite the need, there currently exists no

comprehensive comparison of the most promising gene region

simulation methods. Here, we compare three approaches on their

ability to accurately simulate the LD within a gene region:

resampling, Hapgen [5,6], and HapSim [7]. In addition, we assess

the impact of various parameters, such as recombination levels

and mutation rates, on the simulated LD structure. In order to

compare the variation and bias of the simulation replicates to the

original HapMap data, we evaluate the pairwise LD measures and

marker descriptive statistics for each method over 100 simulation

replicates.

Genetic data simulation was first developed within population

genetics theory. Methods developed from population genetics

theory, called forward time and backwards time (or coalescent)

methods, often simulate haplotypes without relying on real data,

and instead only use parameters to model aspects of population

genetics such as recombination, gene conversion, and evolutionary

models. More recently, researchers have developed methods that

simulate directly from an existing sample of haplotypes. We

describe these methods further below.

Simulating directly from a set of existing haplotypes avoids

relying exclusively on subjective parameters and is likely to give

a representative picture of the complex underlying LD structure in

a gene region since the methods start with real data. Further,

simulating directly from a gene region is relatively straightforward

and is computationally efficient. Therefore, in this paper we focus

on methods that simulate from a set of observed haplotypes in

a gene region.

In addition to focusing on gene region simulation methods, we

further concentrate on methods that appear to or claim to be able

to simulate pairwise LD similar to the original sample of

haplotypes over at least a 100 Kb chromosomal region, and can

take any set of haplotypes as a starting sample. Three methods that
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meet this criteria are Hapgen [5,6], HapSim [7], and resampling

haplotypes.

In 2003, Li and Stephens used an approximation to conditional

probability to relate a distribution of haplotypes to a recombination

rate that varies across a chromosomal region [5]. While in their

initial paper Li and Stephens focused on identifying recombination

hotspots using a set of haplotypes, a clear extension of this method

is to simulate haplotypes given an initial sample of haplotypes and

recombination rates across the region. Using an existing set of

phased haplotypes, the extension of Li and Stephen’s method [6]

uses a Hidden Markov Model to create new haplotypes that are

mosaics of the original set. This simulation method was

implemented as a software, Hapgen, that further extends the

approach to incorporate point mutations in addition to a variable

recombination rate [6].

Resampling haplotypes is probably the most straight forward

simulation method. It was first described by de Bakker et al. in

a paper looking into the efficiency and power of GWAS [3]. This

method samples with replacement from a set of existing haplotypes

to create simulated replicates. We implement a minor extension of

resampling haplotypes that recombines two of the original

haplotypes chosen at random using a recombination rate, which

is allowed to vary across the region. This method may be thought

of as producing a sample of haplotypes similar to that seen by

a single generation of random mating. Conversely, Hapgen creates

new haplotypes that are mosaics of all original and newly created

haplotypes, which may be thought of as a sample of haplotypes

similar to several generations of random mating. Due to this

difference, we may expect Hapgen to introduce more variation

than our extension of haplotype resampling.

In HapSim [7], the program simulates vectors from a multivar-

iate normal distribution using a correlation matrix estimated from

the minor allele frequency (MAF) and joint probabilities of the

original set of markers. HapSim then assigns a 0 or 1 for each

variable along the vector using a cutoff defined by the MAF

estimated from the original sample. Unlike Hapgen, HapSim’s

parameters are not adjustable as they are ingrained within the

choice of simulating from a multivariate normal distribution.

Thus, this approach is less subjective but is also less modifiable.

Before comparing methods, it is important to establish the

desired characteristics of the simulation replicates. As with any

sample of simulated replicates, there should be some variation. We

believe that too little variation limits the generalizability of the

simulation study while too much variation may be unrealistic and

might break down the characteristics of the gene region used for

simulation. Thus, the ideal simulation method will produce

replicates that differ enough to produce sampling variability but

not so much that the unique characteristics of the particular gene

region are lost. However, the ideal amount of variation is difficult

to quantify. Further, we believe that when simulation is used to

evaluate association analysis methods for a specific gene region,

a desirable characteristic is that the method produces replicates

that do not, on average, introduce an overall loss or gain in LD.

Figure 1. Gene Region LD plots. A) D’ Gene Region 1 (300 Kb), B) D’ Gene Region 2 (1000 Kb), C) r2 Gene Region 1 (300 Kb), D) r2 Gene Region 2
(1000 Kb).
doi:10.1371/journal.pone.0040925.g001
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This is the main characteristic that we evaluate in this article. We

also examine the variation and potential bias of MAF.

Several previous reviews of haplotype simulation methods as

well as papers describing a new method exist [7,8,9,10,11].

However, the reviews do not focus only on methods that simulate

from an existing region, and, more critically, do not provide

parallel comparison and implementation of the methods [8,9,11].

Further, papers that describe a particular method [7,10,12] often

provide results only for a single replicate, and usually do not

compare the simulation method to other available methods.

Here, we compare, through parallel implementation, the ability

of Hapgen, HapSim, and resampling to simulate a gene region

without introducing an overall loss or gain in LD across the region.

Materials and Methods

Gene Regions
To ensure generalizability for our comparisons, we used two

diverse gene regions. The first gene region is located on

chromosome 4 and was defined as 100 Kb from each end of the

longest SNCA transcript using NCBI36. This definition produced

a region of approximately 300 Kb, ranging from 90,765,728 to

91,078,470 bp (Figure S1A). We chose this region because of our

research in Parkinson’s Disease (PD). This gene contains rare

single nucleotide mutations and duplications within SNCA that

have been shown to cause PD and, more recently, common

variants within SNCA that have been shown to be associated with

PD [13].

Another region on chromosome 4 has been shown to be

associated with Atrial Fibrillation [14,15]. Also using NCBI36, we

defined this second gene region as 500 Kb on either side of the

SNP with the lowest p-value from a preliminary Atrial Fibrillation

CHARGE+ consortium meta-analysis [16]. This region, also

located on chromosome 4, ranges from 111,396,240 to

112,396,240 bp, and contains 445 HapMap Phase III SNPs.

The LD plot for each region is displayed in Figure 1.

As described above, we defined the gene regions using two

distinct definitions, which produced regions with different lengths,

and LD patterns. Some researchers may choose an area around

a particular gene, which is similar to how we defined gene region

1, while others may simulate a large section of a chromosome

based on some other criterion such as a region surrounding the

SNP with the lowest p-value as we do for gene region 2. While the

size of the gene regions being simulated and analyzed by other

researchers will depend on the definition used to create the region,

we believe our gene regions encompass much of the range that

would be seen in other studies.

To generate simulated replicates from these gene regions, we

used the populations with European ancestry, CEU and TSI, from

the HapMap data (Phase III in 2009) [17]. The CEU samples

were gathered from Utah in the United States and represent

Northern and Western European ancestry. The TSI samples were

gathered from Tuscany in Italy. Although the CEU and TSI

samples represent two distinct populations, when looked at in the

context of other populations world wide, the CEU and TSI

samples tend to cluster close to one another apart from Asian or

African samples [18]. The HapMap Phase III data consists of 234

& 176 phased haplotypes for the CEU and TSI samples

respectively. The gene regions include several lower frequency

SNPs in addition to common variants (Information S1).

Recombination Rates
We used variable recombination rates across each gene region

estimated by the HapMap project using McVean et al.’s coalescent

method [19].

Replicates
For each method and variation, we simulated 100 replicates

each consisting of 2,000 subjects.

Gene Region Simulation Methods
Hapgen [6]. We used Hapgen v1.3.0. Hapgen simulates

mosaic haplotypes using a Hidden Markov Model to define the

Table 1. MAF–Gene Region 1*.

Method N Min Q1 Median Q3 Max Mean SD

Hapgen 14500 20.074 20.010 20.001 0.009 0.068 20.001 0.017

Resampling 14500 20.047 20.005 ,0.001 0.004 0.033 ,0.001 0.008

HapSim 14300** 20.042 20.005 ,0.001 0.004 0.038 ,0.001 0.008

*Change in MAF from original HapMap MAF for each pair of SNPs in Gene.
Region 1 (MAFsimulated – MAFHapMap).
**HapSim requires that all monoallelic SNPs are removed prior to simulation.
doi:10.1371/journal.pone.0040925.t001

Table 2. MAF–Gene Region 2*.

Method N Min Q1 Median Q3 Max Mean SD

Hapgen 44500 20.086 20.010 ,0.001 0.009 0.093 ,0.001 0.018

Resampling 44500 20.039 20.004 ,0.001 0.004 0.043 ,0.001 0.008

HapSim 37900** 20.041 20.005 ,0.001 0.005 0.037 ,0.001 0.008

*Change in MAF from original HapMap MAF for each pair of SNPs in Gene.
Region 2 (MAFsimulated – MAFHapMap).
**HapSim requires that all monoallelic SNPs are removed prior to simulation.
doi:10.1371/journal.pone.0040925.t002
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probability of continuing on the current haplotype segment or

transitioning to a randomly chosen haplotype segment. The

transition probabilities are defined by the variable recombination

rate across the region as well as the effective population size

[20,21]. Each newly created haplotype is added to the set of

original haplotypes from which more haplotypes are created.

Figure 2. Histograms of the change in LD for each pair of SNPs in Gene Region 1. Histograms of the change in simulated LD from original
LD for each pair of SNPs in Gene Region 1 (LDsimulated – LDHapMap). A) D’, Resampling (gray) vs Hapgen (dotted); B) D’, Resampling (gray) vs HapSim
(dotted); C) r2, Resampling (gray) vs Hapgen (dotted); D) r2, Resampling (gray) vs HapSim (dotted).
doi:10.1371/journal.pone.0040925.g002
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Extension to Resampling. Given the starting set of

haplotypes, we sampled two haplotypes with replacement. We

then recombined this pair of haplotypes using a variable re-

combination rate across the region to specify the probability of

recombination occurring at a given chromosomal location. We

implemented this method in R [22].

HapSim [7]. We used HapSim v0.2. Starting with the

original set of haplotype markers, HapSim calculates a covariance

matrix assuming a bivariate normal distribution and using the

observed joint probability of each haplotype marker pair. HapSim

then simulates random vectors from a multivariate normal

distribution centered at zero using the previously calculated

Figure 3. Histograms of the change in LD for each pair of SNPs in Gene Region 2. Histograms of the change in simulated LD from original
LD for each pair of SNPs in Gene Region 2 (LDsimulated – LDHapMap). A) D’, Resampling (gray) vs Hapgen (dotted); B) D’, Resampling (gray) vs HapSim
(dotted); C) r2, Resampling (gray) vs Hapgen (dotted); D) r2, Resampling (gray) vs HapSim (dotted).
doi:10.1371/journal.pone.0040925.g003
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covariance matrix. Finally, the program transforms the normally

distributed vectors back to vectors of binary values using

thresholds defined by the observed allele frequency of each

marker.

HapSim uses a multivariate normal distribution and the

observed MAF and joint probabilities to produce simulated

haplotypes. Thus, the parameters used by HapSim are embedded

within these choices and are set by using a multivariate normal

distribution with a mean of 0, and a covariance matrix estimated

using the observed MAF for each marker and joint probabilities

for each pair of markers.

It is important to note that the calculated covariance matrix

may not be positive definite, which is necessary for the matrix to

be used as the covariance matrix for a multivariate normal

distribution. When this is the case, HapSim approximates

a positive definite version of the covariance matrix by: (1)

completing eigenvalue decomposition of the covariance matrix

(2) rounding all eigenvalues below a minimum tolerance threshold

up to that threshold.

Comparison of Methods
When comparing methods, we used the following parameters

for Hapgen: mutation rate = 0, effective population size = 11,418

(often used for samples of European descent) [6], weight = 1 on the

vector of recombination rates, and a randomly chosen starting

locus for the Hidden Markov Model for each replicate. We used

weight = 1 for the vector of recombination rates for the resampling

method as well. HapSim does not easily enable parameter

variation. We used both the CEU and TSI samples as the starting

haplotype sample for all three methods.

D’ and r2 are two common measures of LD. We calculated the

D’ and r2 using Haploview [23]. (Equations for D’ and r2 are

shown in Information S1.).

For each replicate, we calculated the LD (D’ or r2) for each pair

of SNPs. To look at the bias of the LD (D’ or r2) we compared the

pairwise LD values for each method’s replicates to the original

pairwise LD values for the entire region as well as subsets of SNPs

in the region by LD, D’ or r2, (#0.2, between 0.2 & 0.8, and$0.8)

and MAF (#0.1, between 0.1 & 0.3, and $0.3). (The equation for

bias is shown in Equation 1.) To visualize this comparison we

produced: (1) histograms of the difference between the simulated

pairwise LD and original pairwise LD for each pair of SNPs over

all replicates and (2) heat map plots of the median change in

simulated pairwise LD compared to original pairwise LD. In

addition to LD, we compared the distributions of the change

between the replicates and the original sample for MAF.

Bias~replicate LDm{original LDm ð1Þ

where LDm is the LD (either D’ or r2) for pair of SNPs m

To gain insight into a possible appropriate amount of variation

desired between replicates, we calculated the standard error (SE)

of the LD estimate from the original data for each SNP pair and

compared those with the replicate standard deviation (SD) of the

LD estimate for each SNP pair. We used Zapata et al.’s method to

estimate the SE for D’ [24]. We calculated and compare the SE

and SD of r instead of r2 since there exists a commonly used

equation to calculate the SE of r (shown in Equation 2) [25]. We

calculated the ratio of the replicate SD to the original SE for each

SNP pair and compared the methods by looking at the distribution

of the ratio across SNP pairs. A ratio value greater than 1 indicates

a larger replicate SD compared to the original SE while a ratio

value below 1 indicates a lower replicate SD compared to the

original SE.

Table 3. Ratio of replicate SD to original SE for each SNP pair.

GR1 GR2

Median (Q1, Q3) Median (Q1, Q3)

Hapgen 0.7047 (0.5973, 0.8091) 0.6747 (0.0776, 0.7948)

D’ Resampling 0.3543 (0.2251, 0.4399) 0.3574 (0.2221, 0.4084)

HapSim 0.4249 (0.3168, 0.5427) 0.3506 (0, 0.4165)

Hapgen 0.7886 (0.5264, 1.0360) 0.7164 (0.6215, 0.8524)

r Resampling 0.2797 (0.2408, 0.3171) 0.4311 (0.3610, 0.4827)

HapSim 0.3504 (0.2624, 0.6330) 0.4417 (0.3829, 0.4909)

doi:10.1371/journal.pone.0040925.t003

Figure 4. Heat maps of change in median LD for Gene Region 1. Heat maps of change in median simulated LD from original LD in Gene
Region 1 (median[LDsimulated] – LDHapMap). Upper left D’, lower right r

2. Blue indicates a gain in LD; red indicates a loss in LD.
doi:10.1371/journal.pone.0040925.g004
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sêe rð Þ~
ffiffiffiffiffiffiffiffiffiffiffi
1{r2

n{2

r
ð2Þ

where n is the number of haplotypes

Finally, we calculated the time necessary to simulate 10

replicates using each method for each gene region.

Parameter Variations
Where possible and using the haplotype sample for Gene

Region 1, we varied simulation parameters to study each

parameter’s effect on gene region characteristics. When comparing

the effects of varying one particular parameter, we kept all other

parameters constant at the values used to compare the methods

(Hapgen: mutation rate = 0, effective population size = 11,418,

recombination rate weight = 1; Extension to resampling: recom-

bination rate weight = 1).

For Hapgen, we compared the mutation rate by varying h, the
modifiable mutation rate parameter to be 0, 1, 2, or 5. Hapgen

uses the following formula to model the probability of a mutation

occurring at a given SNP where k is the total number of original

haplotypes and h is the modifiable mutation rate parameter.

P mutation at a given SNPand haplotypeð Þ~ h

hzk
ð3Þ

Using Equation 3 and k= 410 CEU and TSI haplotypes, the

resulting probabilities of a mutation at a given SNP for a given

haplotype are 0, 0.0024, 0.0049, and 0.0120 for h=0, 1, 2, and 5

respectively.

Also for Hapgen, we modified the location of the starting locus

of the Hidden Markov Model (random; 90,770,374; 90,955,029;

91,052,395), and the starting haplotype sample (CEU only, TSI

only, CEU & TSI). We chose to use the effective population size

that is most commonly used for populations of European ancestry

(11,418) as well as effective population sizes approximately 1/10th

and twice the size as this commonly used value (1,142 and 22,836

respectively) to explore the effects of changing the effective

population size parameter in Hapgen.

For Hapgen and the resampling method, we varied the weight

by which we multiplied the variable recombination rate vector

(0.1, 0.2, 1, 5, 10). The weight changes the recombination rate

vector by a multiple of the weight. A weight above one for the

recombination rate vector should increase the level of recombi-

Figure 5. Heat maps of change in median LD for Gene Region 2. Heat maps of change in median simulated LD from original LD in Gene
Region 2 (median[LDsimulated] – LDHapMap). Upper left D’, lower right r

2. Blue indicates a gain in LD; red indicates a loss in LD.
doi:10.1371/journal.pone.0040925.g005

Table 4. LD–Gene Region 1*.

Method N** Min Q1 Median Q3 Max Mean SD

D’ Hapgen 1011611 21.000 20.030 ,0.001 0.021 1.000 20.004 0.154

Resampling 1015300 20.991 20.006 ,0.001 0.010 0.993 0.003 0.058

HapSim 1015300 21.000 20.309 20.106 0.000 1.000 20.161 0.288

r2 Hapgen 1011611 21.000 20.008 ,0.001 0.006 0.445 20.002 0.036

Resampling 1015300 20.254 20.003 ,0.001 0.003 0.259 ,0.001 0.014

HapSim 1015300 20.665 20.049 20.006 0.000 0.275 20.046 0.103

*Change in simulated LD from original HapMap sample LD for each pair of SNPs in Gene Region 1 (LDsimulated – LDHapMap).
**Sum of SNP pairs over all 100 replicates. The number of SNP pairs for Hapgen is not divisible by 100 because monoallelic SNPs were dropped from the LD calculations.
Because Hapgen had more variation in MAF, it was more likely that a SNP with a low MAF would become monoallelic in one or more simulation replicates and would
thus be dropped from the LD calculations.
doi:10.1371/journal.pone.0040925.t004
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nation while a weight below one should decrease the level of

recombination.

Results and Discussion

Comparison of Methods
MAF. As shown in Tables 1 and 2, all three methods had

similar levels of variation for the change between the simulated

and original observed MAF. Most of the time, there was little or

no change in each SNP’s MAF, and the change was fairly

symmetric as indicated by the quartile values.

LD comparisons. As displayed in Figures 2 and 3, Hapgen

appears to provide more variation in the change in simulated LD

from the original sample LD compared to resampling. All methods

had lower replicate SD, on average, for both D’ and r2 estimates

than the SE estimate from the original data (Table 3). Hapgen

produced replicate SD values closest to the original SE estimate.

Resampling often produced the lowest ratio of SD to SE estimates

indicating that the replicate SD for the LD value for each SNP

pair was usually much lower than the estimated SE from the

original data.

Even more striking and important, resampling and Hapgen

produced little to no bias whereas HapSim appeared to produce

a loss in LD across both gene regions as shown in Figures 2, 3, 4,

and 5. For Gene Region 1, HapSim had a value for bias below

0 (median D’ =20.106 & median r2 =20.006, mean D’=20.161

Table 5. LD–Gene Region 2*.

Method N** Min Q1 Median Q3 Max Mean SD

D’ Hapgen 7002401 21.000 20.053 ,0.001 0.061 1.000 0.002 0.172

Resampling 7138597 20.999 20.018 ,0.001 0.032 1.000 0.009 0.073

HapSim 7149516 21.000 20.102 ,0.001 0.070 1.000 20.050 0.224

r2 Hapgen 7002401 20.861 20.002 ,0.001 0.002 0.666 ,0.001 0.013

Resampling 7138597 20.250 20.001 ,0.001 0.001 0.359 ,0.001 0.005

HapSim 7149516 20.934 20.002 ,0.001 0.003 0.333 20.005 0.040

*Change in simulated LD from original HapMap sample LD for each pair of SNPs in Gene Region 2 (LDsimulated – LDHapMap).
**Sum of SNP pairs over all 100 replicates. The number of SNP pairs is not divisible by 100 because monoallelic SNPs were dropped from the LD calculations. Because
Hapgen had more variation in MAF, it was more likely that a SNP with a low MAF would become monoallelic in one or more simulation replicates and thus, more SNP
pairs were dropped from the LD calculations than for Resampling or HapSim.
doi:10.1371/journal.pone.0040925.t005

Figure 6. Affect of dichotomizing on the correlation between two normally distributed variables. Correlation between dichotomized
variables compared to the original correlation between two normally distributed variables. Each curve represents an original correlation value (r=0.1
for the bottom curve to r= 0.9 for the top curve by 0.1). The same cut point was used for both variables.
doi:10.1371/journal.pone.0040925.g006
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& median r2 =20.046) indicating an average loss in LD (Table 4).

HapSim’s loss in LD was less extreme for Gene Region 2 (median

D’ ,0.001 & median r2,0.001, mean D’=20.050 & median

r2 =20.005) where there was a lower starting LD and thus less to

lose (Table 5). Both Hapgen and resampling had bias values close

to or at 0 indicating little to no bias. HapSim’s loss of LD was seen

across all MAFs, but was limited mostly to moderate to high LD

pairs (D’.0.2 or r2.0.2) (Figures S6, S7, S8, and S9). This is even

more apparent in Gene Region 2 where the loss in LD produced

by HapSim was limited exclusively to moderate to high LD pairs.

Nonetheless, the bias towards a loss in LD (especially r2) for the

moderate to high LD groups in Gene Region 2 for HapSim was

quite extreme.

Although having to approximate a positive definite version of

a matrix when the calculated covariance matrix is not positive

definite will introduce error, there is no indication that the error

produces a consistent bias. Rather, the error will likely increase the

variance. Another, more likely explanation for HapSim’s loss in

LD is dichotomizing the vectors of normally distributed variables

to vectors of binary values to create the haplotypes. It has been

previously shown that dichotomizing normally distributed vari-

ables into binary variables decreases the correlation between the

variables [26]. To further support this, we calculated the

correlation before and after dichotomizing two normally distrib-

uted variables. In Figure 6 we show a loss in correlation when

dichotomizing using the same threshold for each variable. We

continued to see a loss in correlation when different thresholds

were used for each variable (Figure S10). Thus, dichotomizing the

normally distributed simulated haplotypes is likely the reason the

LD decreased for HapSim across the region for the simulated

replicates compared to the original sample.

Since association analysis often relies on markers’ correlation

with the causal SNP, a loss in the LD across the gene region in the

simulation replicates, as seen in HapSim, will decrease the power

of most methods to detect association. Further, certain methods

may be affected more than others depending on the way the

method uses or adjusts for the regional correlation. Thus, the

relative order of methods being compared may be affected by this

reduction in LD. For example, Principal Component Analysis

(PCA) transforms the set of genetic markers into a new set of

independent variables (i.e. the principal components). The

correlation between the markers will to some degree determine

the weight that each marker is given in each principal component.

An extreme example would be if all genetic markers were

completely independent (i.e. had an LD of zero). The resulting

principal components would then each equal one of the genetic

markers with a weight of 1 and all of the other genetic markers

have a weight of 0. Another method, LASSO regression, controls

for the correlation between variables by further shrinking each

variable’s regression estimate. As these methods incorporate the

regional correlation differently, we would expect that differing LD

patterns to in turn have different affects on the resulting power and

type-I error of these methods.

For Hapgen, there appeared to be an edge effect for the few

SNPs on the left side of Gene Region 1 where there was a large

decrease in median D’ values of the simulated replicates compared

to the original sample (Figure 4). This large decrease in median D’

was limited to SNP pairs with a large LD (D’ $0.8) and a small

MAF (MAF #0.1) (Figures S6 and S7) indicating that the large

change in LD was likely due to highly correlated low frequency

SNPs rather than an actual edge effect.

Finally, across all methods and both gene regions, there was

a higher degree of variation and bias seen for D’ than for r2. This

was expected because D’ is more sensitive to low MAF and is

estimated to be one in the extreme case where one of the

haplotypes has an estimated frequency of zero.

Run Time. As shown in Information S1, Hapgen was more

than 10x faster than the other simulation methods producing 10

replicates in less than 10 seconds for each gene region. For

simulation designs that require tens or hundreds of thousands of

replicates, Hapgen would likely require hours while the other

methods would likely require days.

Parameter Variations
Starting haplotype sample (Information S1). Changing

the starting sample of haplotypes from both CEU and TSI samples

to either CEU only or TSI only samples had very little effect on

the variance or bias of the LD distributions although the two

smaller samples (CEU only and TSI only) appeared to have

slightly more variation compared to the larger sample (both CEU

and TSI). This is expected, since every haplotype section is more

likely to be drawn from the smaller sample of haplotypes and, thus,

the replicate sample more often contains identical haplotype

sections, which prevents much decay of LD.

The results seen here were not very sensitive to starting with

a different sample of haplotypes. Nonetheless, we recommend

using as large a starting sample of haplotypes as possible as long as

the samples are representative of the desired population.

Mutation rate variation (Information S1). Increasing the

mutation rate led to a loss in LD for the simulated replicates

compared to the original sample (Figure S2). This is expected as

increasing the mutation rate increases the likelihood that an

existing haplotype is changed, thus decreasing the LD between

markers.

We recommend taking into consideration the sample size when

choosing Hapgen’s mutation rate parameter, h. h is equal to the

expected number of mutations at each SNP for the sample of

haplotypes. As we may expect a larger number of mutations in

a larger sample of haplotypes, we may want to increase h
accordingly. In addition, if we have a particular interest in rare

variants, we may also want to increase h to introduce more rare

variants.

Effective population size variation (Information

S1). Hapgen developers recommend using 11418, 17469,

and 14269 for samples of European (HapMap CEPH), African

(HapMap Yoruban), and Asian (HapMap Japanese and

Chinese) descent respectively [6]. Depending on the time period

and population used for estimation, effective population size

estimates in the literature range from below 2,000 to about

21,000 [27,28,29]. The estimates that we use to compare the

effects of changing the effective population size (1142, 11418,

and 22836) cover this wide range of effective population size

estimates.

The effective population size is the number of mating

individuals in a population that will produce the same allele

frequency distribution as that observed in the entire population

assuming that all individuals in the effective population mate at

random and have an equal chance of passing along their

genetic information [20,21]. As the effective population size

increases so should the gene region haplotype variation thus

decreasing the gene region LD. Here we found that changing

the effective population size by a factor of 10 had a small

inverse effect on LD: decreasing the effective population size

produced higher simulated LD while increasing the effective

population size produced lower simulated LD (Figure S3). This

is expected, as the formula implemented by Hapgen inversely

relates the effective population size to the transition probability

in the Hidden Markov Model.
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Starting locus variation (Information S1). Using a differ-

ent locus as the starting point for the Hidden Markov Model in

Hapgen did not produce any notable change in variation or bias of

the replicates. We recommend using a randomly chosen starting

location, as the starting locus should not make any difference when

only control or general population haplotypes are simulated.

Recombination rate variation (Information

S1). Changing the recombination rate had a visible effect on

the difference in LD between the replicates and the original

sample (Figures S4 and S5). Increasing the recombination rate

increased how often an existing haplotype was altered, thus

decreasing the LD between markers. Given a high enough

recombination rate, all LD within a region would be lost.

Interestingly, as we decreased the recombination rate, we saw

a slight shift towards a gain in LD for the replicates compared to

the original sample. The reason for the slight gain in LD is easiest

explained through an example of a recombination rate of zero.

When the recombination rate is zero, or so low that it is essential

zero, haplotypes are chosen with replacement from the original

sample to create the sample for each replicate. Often, especially

when the sample size of the replicates is larger than the original

sample size, the same haplotypes appear several times in a replicate

thus increasing the LD [32]. The decrease in LD seen by

increasing the variable recombination rate was seen in both

Hapgen and resampling, although it was much greater for

Hapgen.

Unless the user specifically intends to alter the LD within a gene

region, we recommend using the recombination rates estimated by

the Hap Map project using McVean et al.’s method [19] with out

any weight (i.e. weight = 1) on the vector of recombination rates.

Generalizability of Gene Regions
As previously stated, since the methods examined use real data

they are likely to give a representative picture of the complex

underlying LD structure in a gene region. However, it is important

to note the sample will only include variation from the particular

gene region and population from which the starting sample was

gathered. Nonetheless, simulating from a gene region of interest is

likely to at least be representative of the particular gene region and

is less dependent on simulation parameters used in alternative

genetic simulation methods of backwards and forward time.

Applicability to Sequence Data
Recently, many research groups have started to use sequence

data to search for genetic associations for variants with low or rare

MAFs [30,31]. We believe these methods are applicable to

sequence data. However, these and other methods that simulate

from a starting sample of sequenced haplotypes may over

represent rare markers present in the original haplotype sample

especially when the simulated sample is much larger than the

original haplotype sample [32]. Additionally, these methods may

under represent rare markers not present in the original sample of

haplotypes. We believe these methods may over or under

represent rare markers because the starting sample of haplotypes

is not completely representative of the entire population of

haplotypes, especially for rare markers. Using the mutation rate

parameter in Hapgen may help to alleviate the latter issue by

adding in new rare variants to the simulation samples not seen in

the original haplotypes. More research is warranted.

Conclusions
We have implemented in parallel three methods for simulating

a gene region from a sample of existing haplotypes. We compared

these methods using two gene regions that differed in size, LD

strength and pattern, and distribution of MAF. Thus, we believe

our results and conclusions are applicable to most other gene

regions across the genome.

Our goal was to find an adequate simulation method by

comparing the LD measures (D’ and r2), and MAF for each of the

methods. Producing gene region simulations with a representative

LD structure is essential for appropriately comparing genetic

association analysis methods, which rely on the LD in the region to

find risk signals. Based on our findings, we do not recommend

using HapSim as the simulation program produces samples of

haplotypes with lower LD, on average, compared to the original

haplotype set, especially for gene regions with moderate to high

LD. Further, since HapSim does not incorporate parameters, it is

both less subjective as well as less modifiable. This is an important

consideration when simulating gene regions with rare variants

where we may want to introduce additional rare variants by using

a mutation rate parameter.

Although our simple resampling method does not introduce

bias, the variation introduced across the replicates is quite small

and may not provide enough sampling variability between

replicates to make a generalizable simulation study. The variability

of the resampling method could possibly be increased with further

modifications such as completing the resampling process over

multiple generations.

Among the gene region simulation methods reviewed here, we

recommend using Hapgen. Hapgen provides ample variation

between replicates while retaining the LD structure of the gene

region and does not introduce an overall loss or gain in LD. In

addition, Hapgen is easy to use and provides options for changing

additional parameters such as a recombination rate or mutation

rate, enabling users to modify the simulation settings to better

model a particular population or level of variation in the

haplotypes.

Supporting Information

Figure S1 SNAP P-value Plots of Gene Region Motivat-
ing Examples.(A) Gene Region 1: SNCA region defined as

100 Kb outside of the longest transcript using data from Pankratz

et al. [13] and (B) Gene Region 2: chromosome 4 AF peak defined

as 500 Kb from the SNP with the lowest p-value using preliminary

CHARGE + consortium data.

(TIFF)

Figure S2 Mutation Rate (MR) variation. Histograms of

the change in simulated LD from original LD for each pair of

SNPs in Gene Region 1 using Hapgen (LDsimulated – LDHapMap).

A) D’, MR=0 (gray) vs MR=1 (dotted); B) D’, MR=0 (gray) vs

MR=5 (dotted); C) r2, MR=0 (gray) vs MR=1 (dotted); D) r2,

MR=0 (gray) vs MR=5 (dotted).

(TIFF)

Figure S3 Effective Population Size (EPS) variation.
Histograms of the change in simulated LD from original LD for

each pair of SNPs in Gene Region 1 using Hapgen (LDsimulated –

LDHapMap). A) D’, EPS=11,418 (gray) vs EPS= 1,142 (dotted); B)

D’, EPS= 11,418 (gray) vs EPS= 22,836 (dotted); C) r2,

EPS= 11,418 (gray) vs EPS=1,142 (dotted); D) r2, EPS= 11,418

(gray) vs EPS=22,836 (dotted).

(TIFF)

Figure S4 Recombination Rate Weight variation: Hap-
gen. Histograms of the change in simulated LD from original LD

for each pair of SNPs in Gene Region 1 using Hapgen (LDsimulated

– LDHapMap). A) D’, RRW=1 (gray) vs RRW=0.1 (dotted); B) D’,
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RRW=1 (gray) vs RRW=10 (dotted); C) r2, RRW=1 (gray) vs

RRW=0.1 (dotted); D) r2, RRW=1 (gray) vs RRW=10 (dotted).

(TIFF)

Figure S5 Recombination Rate Weight variation: Re-
sampling. Histograms of the change in simulated LD from

original LD for each pair of SNPs in Gene Region 1 using

Resampling (LDsimulated – LDHapMap). A) D’, RRW=1 (gray) vs

RRW=0.1 (dotted); B) D’, RRW=1 (gray) vs RRW=10 (dotted);

C) r2, RRW=1 (gray) vs RRW=0.1 (dotted); D) r2, RRW=1

(gray) vs RRW=10 (dotted).

(TIFF)

Figure S6 Heat maps of change in median LD for Gene
Region 1 by LD Group. Heat maps of change in median

simulated LD from original LD in Gene Region 1 by LD group

(median[LDsimulated] – LDHapMap). Upper left D’, lower right r2.

Blue indicates a gain in LD; red indicates a loss in LD.

(TIFF)

Figure S7 Heat maps of change in median LD for Gene
Region 1 by MAF Group. Heat maps of change in median

simulated LD from original LD in Gene Region 1 by MAF group

(median[LDsimulated] – LDHapMap). Markers are only included in

each plot if both markers fall in the MAF group. Upper left D’,

lower right r2. Blue indicates a gain in LD; red indicates a loss in

LD.

(TIFF)

Figure S8 Heat maps of change in median LD for Gene
Region 2 by LD Group. Heat maps of change in median

simulated LD from original LD in Gene Region 2 by LD group

(median[LDsimulated] – LDHapMap). Upper left D’, lower right r2.

Blue indicates a gain in LD; red indicates a loss in LD.

(TIFF)

Figure S9 Heat maps of change in median LD for Gene
Region 2 by MAF Group. Heat maps of change in median

simulated LD from original LD in Gene Region 2 by MAF group

(median[LDsimulated] – LDHapMap). Markers are only included in

each plot if both markers fall in the MAF group. Upper left D’,

lower right r2. Blue indicates a gain in LD; red indicates a loss in

LD.

(TIFF)

Figure S10 Affect of dichotomizing on the correlation
between two normally distributed variables with differ-
ent cut points. Dichotomized correlation compared to original

correlation. Each curve represents an original correlation value

(r=0.1 for the lowest peaked curve to r=0.9 for the highest

peaked curve by 0.1). One cut point varied along the x-axis while

the other was held constant for each plot. A) c2 =23, B) c2 =21.5,

C) c2 = 0, D) c2 = 1.5, E) c2 = 3

(TIFF)

Information S1 Includes LD equations and supplemen-
tal tables.

(DOC)
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