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Abstract

Symmetry detection is an interesting probe of pattern processing because it requires the matching of novel patterns
without the benefit of prior recognition. However, there is evidence that prior knowledge of the axis location plays an
important role in symmetry detection. We investigated how the prior information about the symmetry axis affects
symmetry detection under noise-masking conditions. The target stimuli were random-dot displays structured to be
symmetric about vertical, horizontal, or diagonal axes and viewed through eight apertures (1.2u diameter) evenly distributed
around a 6u diameter circle. The information about axis orientation was manipulated by (1) cueing of axis orientation before
the trial and (2) varying axis salience by including or excluding the axis region within the noise apertures. The percentage of
correct detection of the symmetry was measured at for a range of both target and masking noise densities. The threshold
vs. noise density function was flat at low noise density and increased with a slope of 0.75–0.8 beyond a critical density. Axis
cueing reduced the target threshold 2–4fold at all noise densities while axis salience had an effect only at high noise
density. Our results are inconsistent with an ideal observer or signal-to-noise account of symmetry detection but can be
explained by a multiple-channel model is which the response in each channel is the ratio between the nonlinear transform
of the responses of sets of early symmetry detectors and the sum of external and intrinsic sources of noise.
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Introduction

One of the major functions of the visual system is to identify and

localize objects in a visual scene. To achieve this, we can assume

that the visual system is likely to have developed means of utilizing

many kinds of useful information. Mirror symmetry is one of the

important image features, and is present in a large proportion of

the objects that we encounter. In the wild, for instance, many

relevant aspects of the environment, such as potential predators,

food sources or mates, tend to have mirror symmetry while the

background elements, such as rocks, water, trees, and hillsides, are

largely non-symmetric [1]. Hence, the ability to extract symmetry

information effectively should facilitate the identification of

relevant objects in a complex scene [2,3,4]. Thus, it is not

surprising that mirror symmetry detection is an ability that has

been routinely demonstrated in mammals [5,6,7] and insects [8]

and is an effortless or easy task for humans [9,10] as a mere 50 ms

presentation is usually sufficient for a human observer to tell a

mirror symmetric stimulus from noise [9,11,12,13].

While detecting mirror symmetry is easy for the human vision

system [14] it is actually a complicated process from the

computational point of view. By definition, a visual stimulus is

mirror symmetric if some part of this stimulus is a reflection of

another part about a certain axis. It is difficult to decide whether

an image has two or more parts that are reflections of each other

unless the location and orientation of the symmetry axis is

specified; while one cannot determine the symmetric axis location

unless two parts of the image are recognized as reflections of each

other. Hence, the question of how the human visual system

performs the novel pattern-recognition task required to resolve the

symmetry is a chicken-and-egg problem.

Currently, the spatial filtering approach is popular framework for

understanding symmetry perception [15–23]. While there is a

considerable variation in detail, spatial filtering models for

symmetry perception share many features. First, the input stage is

modeled as a band of linear filters whose sensitivity profiles contain

excitatory and inhibitory regions. There are data showing that these

filters may be oriented [15,20]. In some versions of the model, filters

with different phase selectivity are required [19–22]. These filters

operate on the input images. If an input image is symmetric, the

filtered image would contain features at or across the symmetry axis

that can be picked up by a second-order filter at the orientation of

the symmetry axis [17,22] or by a simple mathematical operator

operating orthogonal to the symmetry axis [15,16,19–21]. For these

models to work, however, one has to make an assumption about the

location and orientation of the symmetry axis, on which all the

operations on the filtered image depend. However, mirror

symmetry can occur at any orientation in a nature scene. Thus,

while current spatial filtering models perform well to explain the

data from experiments with a known symmetry axis orientation,

their generality is limited as they have not addressed the situation

whether the symmetry axis orientation is unknown to the observer.

The purpose of our study is then to understand the effect of

uncertainty about axis orientation in the framework of Signal
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Detection Theory [24]. We measured symmetry detection thresh-

olds for target dot patterns with one of four possible symmetry axis

orientations. The target patterns were embedded in different

amounts of noise. Such manipulations allow us to characterize the

functional relationship between the input stimuli and the internal

response of the visual system and decision process. Lu & Dosher

[25] developed a similar experimental paradigm in the domain of

contrast detection. The advantages of such a paradigm were

recently reviewed by Lu & Dosher [26].

Here, we consider two possible hypotheses as to how the visual

system determines the axis orientation for the detection of

symmetry. The first hypothesis assumes that a higher-order

symmetric detector receives the responses from lower-order

mechanisms that are each sensitive around a symmetry axis of a

particular orientation. When the axis orientation is unknown to

the observer, according to the uncertainty theory [27,28], a

higher-order detector needs to monitor the output of all lower-

order symmetry detectors at all possible axis orientations and in

turn makes the decision based on the maximum response among

all lower-order mechanisms. On the other hand, if the axis

orientation is known to the observer, the system needs to monitor

only the lower-order mechanism whose orientation selectivity

matches that the symmetry axis. The ideal observer would thus

switch strategy to match the known stimulus conditions. Thus,

symmetry detection thresholds measured at different numbers of

possible symmetry axes can be predicted by the relative levels of

uncertainty in the system.

The second hypothesis suggests that the visual system may

simply analyze the spatial relationships among individual image

elements and determine an image to be symmetric if a sufficient

proportion of the spatial locations of image elements support it.

That is, symmetry detection would be based solely on the signal-

to-noise ratio or ‘‘weight-of-evidence’’ in the image [29,30]. In the

context of our experiment, suppose that the observer has the

knowledge that an image, if it is symmetric, had, say, vertical

symmetry axis through the fixation point. The visual system then

analyzes how many image elements have a horizontal correspon-

dence relative to that axis location and determine that the image is

symmetric if the proportion of elements with such horizontal

correspondence reaches a baseline criterion level. On the other

hand, if the symmetry axis orientation is unknown to the observer,

the visual system would need to analyze the correspondence of an

image element over many different orientations. In this case, since

the image, and in turn, the number of elements supporting a

symmetry judgment, is the same while the spatial relationships

needing to be examined increased, it is a more difficult task to

determine whether the image is symmetric. Thus, an increase in

the number of possible axis orientations increases the number of

symmetric dot pairs in the image needed for it to be judged as

symmetric. That is, the lack of knowledge of axis orientation

effectively reduces the sensitivity of the visual system to the

symmetry information in the image.

In addition to the axis orientation, we also need to consider the

issue of salience of symmetry axis, which is relevant to how the

location of symmetry axis is determined in some models. For

instance, Rainville & Kingdom [20] used detectors with adjacent

and aligned filters of opposite polarities to process the input

images. Such detector would produce a zero response at the

symmetry axis of a symmetric image and a non-zero response

elsewhere. The models proposed by Gurnsey et al. [17], Osorio [6]

and Scognamillo et al. [22] also used the idiosyncratic filter

responses at or near the symmetry axis to determine the location of

the axis. This requirement, however, contradicts the result that a

human observer is able to perceive symmetry based on image

elements far away from the symmetry axis [9,31]. Indeed, Tyler &

Hardage [1] found no diminution of the detectability of symmetry

even for pattern regions separated by 60 degrees of visual angle (as

long as the element size was scaled with eccentricity). We will

define the degree to which the symmetry axis is present in the

pattern as the ‘‘axial salience’’ of the pattern symmetry. The

further the pattern elements are from the geometric location of the

symmetry axis, the less salient that axis is considered to be. To

examine the effect of axial salience, we had our observers view the

stimuli through a mask of six apertures. The apertures were

arranged to control whether the part of the image around the

symmetry axis was visible to the observers. With this manipulation,

we can quantitatively estimate the effect of axial salience on

symmetry detection.

Methods

Ethics statement
The use of human participants was approved by the IRB of

National Taiwan University Hospital and followed the guideline of

Helsinki Declaration. The written informed consent was obtained

from each participant.

Apparatus
The stimuli were presented on a ViewSonic VA902 170 LCD

monitor controlled by an HP D325MT computer with an ATI

Radeon 9800PRO graphics card. The spatial resolution was 1280

(H) 6 1024 (V). At the viewing distance of 83.2 cm, a pixel

subtended 19 (H) 6 19 (V). The temporal refresh rate of the

monitor was 60 Hz (non-interlaced). The gamma function of the

monitor was calibrated with a LightMouse photometer [32], and

this information was used to compute linear 8-bit color look–up

table. The accuracy of the look-up tables was verified by an

international Light RPS-380 spectroradiometer. The experimental

control software was written in MATLAB with the Psychophysics

Toolbox [33]. The display had mean luminance at 15 cd/m2 and

chromaticity of (0.33, 0.33) in CIE 1931xycoordinates.

Stimuli
In our experiment, the information about the symmetry axis

was manipulated in two ways. The information about the axis was

varied by (1) cueing: whether there was a cue indicating the axis

orientation before a trial; and (2) axial salience: whether the axis

location fell within the apertures or between them.

Figure 1 shows examples of the stimuli. The dot patterns

consisted of white (30.1 cd/m2) pixels (49649) randomly distrib-

uted on a black (0.2 cd/m2) background. The density of the

random-dot mask varied from 0 to 10%. In the symmetric target,

half of the displays structured to have symmetry about an axis

whose orientation was either vertical, horizontal, or one of the two

diagonals. That is, a pixel at position (x,y) of the symmetric image I

has the property

I x0,y0ð Þ~I {x0,y0ð Þ ð1Þ

where

x0~x � coshzy � sinh

y0~y � cosh{x � sinh

where h denotes the four possible orientations of the symmetry axis

with h = 0u for the vertical, h = 90u for the horizontal, and 45u
and 135u for the two diagonal symmetry axes.

Symmetry Perception
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On each trial, the stimuli consisted of a random-dot mask

superimposed on either a symmetric target or a non-symmetric

random-dot control. The purpose of the random-dot control was

to balance the local statistics in the image. The stimuli were

spatially masked with a uniform gray field (15 cd/m2) with eight

apertures (1.2u diameter) evenly distributed around a 6u diameter

circle. In the high axial salience condition, the centers of the

apertures were located from 0u to 315u in 45u steps from the

horizontal axis to include the symmetry axis in diametrically-

opposite pairs, regardless of which of the four orientations the axis

took. In the low axial salience condition, the centers of the

apertures were shifted clockwise by 22.5u to exclude the symmetry

axis from all the apertures. In this configuration the blank region

around each possible axis location was a minimum of 1.16u.

Procedure
On each trial, observers determined whether a symmetric target

or a non-symmetric control pattern was presented. The axis was

randomly selected from one of the four orientations on each trial,

but information about the axis was manipulated by (1) cueing and

(2) axial salience. Thus, there were a total of 4 ( = 262) test

conditions in the experiment. In the cue condition, a straight line

with the same orientation and location as the symmetry axis

flashed for 500 ms, followed by 15 ms of a uniform gray field,

before the onset of the stimuli. In the non-cue condition, instead of

the valid cue, a neutral cue of four lines that had the same

orientations and location as the four possible symmetry axes was

presented before the test stimuli. The test stimuli stayed on the

screen until the observer made a response, after which the display

was replaced by the uniform gray field. The salience and non-

salience conditions were determined by the location of the

apertures as discussed above.

The trials were blocked by test condition as well by the noise

density, but axis orientation was randomized throughout each

block. In each block, we used a constant stimulus paradigm to

measure the psychometric functions of percentage correct responses

for a range of 7–9 target densities in 0.15 log increments. The range

of target densities depended on both test conditions and noise

density and was determined by a pilot experiment (data not shown)

in which one of the authors served as an observer. The sequence of

target density and axis orientation within a block, or noise density

and test conditions between blocks, were all randomized.

Four observers participated in this study. One observer (CC)

was one of the authors of this paper while the other three were

paid observers who were naı̈ve to the purpose of the experiment.

All observers had a corrected–to-normal (20/20) visual acuity.

Observer PC left the study before making measurements with the

low-density noise masks.

Figure 1. Examples of stimuli. A. The configuration consisted of an overall noise pattern with a single axis orientation visible through a mask of
eight apertures The axial salience was controlled by the position of the apertures, located so as to either include or exclude the region around the
axis. B. Examples of different combinations of target and masker density.
doi:10.1371/journal.pone.0009840.g001
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Results

Figure 2 shows the target threshold vs. noise density (TvD)

function for four conditions. Each panel in Figure 2 represents the

TvD functions from one observer. Blue symbols denote the TvD

function for the cued high axial salience condition; magenta

symbols, the cued low axial salience condition; green symbols, the

non-cued high axial salience condition; and red symbols, the non-

cued low axial salience condition. The smooth curves are fits of the

model discussed below.

For all conditions, the target density threshold increased with

noise density. At medium to high noise densities, the slope of the

increment function reached an average of about 0.77 in log-log

coordinates for all conditions and observers, significantly less than

a slope of 1 (t(15) = 6.19, p,0.001). The asymptotic slope of the

TvD functions varied with axial salience. Averaged across

observers and cue conditions, the TvD functions for the low

salience conditions had a slope (0.86) significantly greater

(t(7) = 2.38, p = 0.048) than that for the high salience conditions

(0.70). Within the same salience condition, there is little difference

is slope for TvD functions measured for different cueing conditions

(t(7) = 0.65, p = 0.53). At the low noise densities, the slope of the

increment function may be less because the density thresholds

measured with no masking noise would be the same as those

measured at noise densities between 23 and 24 log units (as

predicted from the slope at the high noise densities).

Wenderoth [34] studying symmetric stimuli with no external noise,

reported that cueing the axis orientation facilitated symmetry detection.

We now show that, regardless of the degree of axial salience, the axis

cue produced a facilitative effect on symmetry detection. The open

circles in Figure 3 denote the threshold difference between the cued

and non-cued conditions, averaged across observers and salience

conditions. The magnitude of the threshold reduction was from 0.3 to

0.6 log unit (or a two- to four-fold change) across observers. These large

cueing effects were about the same for all noise densities.

The filled circles in Figure 3 denote the threshold difference

between the high and the low axial salience conditions, averaged

across observers and cueing conditions. In contrast to the cueing

effects, there was little salience effect on symmetry threshold at low

noise density (t(5) = 0.94, p = 0.19). The salience effect increased

with noise density reaching up to ,0.3 log unit, or a two-fold

change, by cueing the axis location at the highest noise density.

Discussion

The experiment was designed to directly compare two aspects of

the knowledge about the symmetry axis on the detectability of

symmetry as a function of masking noise density.

Figure 2. Target threshold vs. masker density functions. Each panel represents data from one observer. Blue denotes the TvD function for the
cued high salience condition; magenta, the cued low salience condition; green, the non-cued high salience condition; and red, the non-cued low
salience condition. The smooth curves are fits of the model discussed below. The error bars are the estimated standard error of measurement.
doi:10.1371/journal.pone.0009840.g002
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Threshold effects
The axis orientation cue reduced the symmetry detection

threshold 2–4 fold. This axial salience effect was pronounced at

high but not low noise densities. The threshold reduction produced

by the cue is inconsistent with what would be predicted by a simple

signal-to-noise ratio or weight-of-evidence account of symmetry

detection [29,30]. In our experiment, there were four possible axial

orientations. Hence, the observer needed to inspect the spatial

relationships between dots over four possible orientations when the

orientation of the symmetric axis was unknown. That is, compared

with the non-cued condition, the observer needed to compare four

times fewer dot relations in the cued conditions. As a result, we

would expect a 4-fold improvement in threshold (denoted as dotted

line in Figure 3) by the informative cue. This is, in general, an

overestimation of the cue effect, which averaged 3-fold.

The effect of the cue, however, cannot be explained by uncertainty

reduction alone. We assume that the observer’s performance in both

conditions is determined by the channel with the greatest response.

Gaussian Max Uncertainty Theory [35] predicts that the signal

intensity in the non-cued condition over four axes to be 1.7 times

greater than that in the cued condition to maintain the same

discriminability, or d’. Thus, the effect of the cue would be a 1.7 times,

or 0.15 log unit, decrease in threshold. The dashed horizontal line in

Figure 3 denotes this threshold reduction. Our results all showed a

greater effect than the uncertainty model predicts. Hence, the cueing

must be affecting more than just uncertainty in our experiment.

The axial salience effect was pronounced at high but not at low

noise densities. Actually, when there was no external noise, the

salience effect did not differ significantly from zero. Given that the

gap between the neighboring apertures was at 1.16u at their closest,

a lack of threshold difference between the high and low salience

condition the observer is not using the information close to the

symmetry axis for symmetry detection. Since models of symmetry

based on the image property at or near the symmetry axis

[17,18,20] would predict an advantage from the high axial salience

in symmetry detection, our result suggests that such models are, at

best, valid only under high-noise viewing conditions.

Slope of increment threshold function
Our results showed that the increase of target density threshold

with noise density had a slope of between 0.70 and 0.86 in log-log

coordinates. This result is not consistent with the simple signal-to-

noise-ratio [9] or weight-of-evidence [29,30] accounts of symmetry

detection. Van der Helm & Leeuwenberg [30], for example,

suggested that symmetry detection is determined by the ratio of

the number of symmetry pairs and the total number of image

elements in the image. Hence, the number of symmetry pairs

required for symmetry detection should increase proportional with

the masker density. Scaled by the size of the image, the target

density threshold should increase with the density of the noise

masker with a slope of 1 on log-log coordinates. With a different

approach, Barlow & Reeves [9], proposed that discriminability, d’,

of a random-dot symmetry pattern should be proportional to the

difference between the number of symmetric pairs in the

symmetric target+noise pattern, divided by the standard deviation

of the number of the symmetric pairs in the noise pattern. This

model would also predict that the target threshold, or the number

of symmetry pairs that allows d’ reaches a constant, increases with

masker density with a slope asymptotic to 1.

Our data do not fit with this picture. Figure 4 shows examples of

our data and this prediction. At first glance, a line of slope of 1

(solid line) may give a visually passable fit across the data on this

log-log plot, which spans four log units. More careful examination

shows that this line overestimates the thresholds at high masker

density while underestimates them at low density. On the other

hand, lines of slope 0.75 (dashed lines) are much closer to the data

points. Indeed, fitting the data in the masker density range

between 0.001 and 0.1 with a line of slope 0.75 gives a sum-of

square error of only 1/3 of that for the slope 1 fit. However, as

shown in Figure 2, the slope of the TvD function depends on the

test conditions. Hence, a line of any particular slope cannot

account for all our data. Slope must be a free parameter in a well-

fitting model of these data.

Model
Here, we present a model that can explain all aspects of our

data. This model, in the framework of Signal Detection Theory

[24], contains two stages: a perception stage and a decision stage

(Figure 5). The perception stage concerns the noise-limited

Figure 3. The average threshold change produced by cueing
(open circles) and axial salience (closed circles) at different
masker densities. The dashed and dotted blue lines indicate the
predictions of the uncertainty model and the signal-to-noise, or weight-
of-evidence, model respectively.
doi:10.1371/journal.pone.0009840.g003

Figure 4. The slopes of the TvD functions. The solid lines have a
slope of 1, the dashed lines, a slope of 0.75. The lines with unity slope
tend to overestimate thresholds at high masker density and underes-
timate them at low masker density.
doi:10.1371/journal.pone.0009840.g004

Symmetry Perception

PLoS ONE | www.plosone.org 5 April 2010 | Volume 5 | Issue 4 | e9840



Figure 5. Diagram of the model. A. Without cues. B. With cues. See text for details.
doi:10.1371/journal.pone.0009840.g005
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sensitivity of a visual mechanism to the stimuli limited by both

internal and external noise, while the decision stage concerns the

effect of uncertainty and cueing on the decision criterion.

Symmetry processing. The first step of the perception stage

is a band of orientation-selective symmetry processors that are

sensitive to symmetry in an image. Each processor is sensitive to

the mirror symmetry about one axis. Note that these are not the

traditional local filters but long-range pairs of local multiplicative

contrast detectors that register a signal whenever there is a similar

contrast at two locations in the field equidistant from a symmetry

axis. The outputs of all such pairs of detectors relative to a given

symmetry axis are linearly summed to form the symmetry signal

relative to that location. It is important to emphasize that

symmetry processing requires such axis selectivity, since any

binary noise pattern has an infinite number of dot pairings at

arbitrary locations and pairwise orientations. It is only when a

number of them line up with respect to a particular symmetry axis

or axes that we say that the pattern has symmetry.

The image in the target+masker trial can be considered to

consist of two components: the symmetric target and the noise

masker while the image in the control+masker trial can be

considered to consist of just one component with a density that is

the sum of the control and the masker.

For sparse binary random-dot patterns, such as those in our

experiment, the output of the j-th processor to the i-th image

component, Ej,i, is

12

ð
123u788812

Ej,i~Sej,i
�Di

ð2Þ

where Sej,i is the sensitivity, or gain factor, of the j-th processor to

i-th image component, while Di is the dot density of the i-th image

component. Eq. (2) can be derived in many ways. For instance,

one can simply calculate the correspondence of dots in the

opposite regions of the image component about the symmetry axis,

or reverse mapping [9,17,36] as

Sx0Sy0Ii x0,y0ð Þ�Ii {x0,y0ð Þ~nsi ð3Þ

where x’ = x*cosh+y*sinh and y’ = y*cosh - x*sinh with h denoting

the orientation of the symmetry axis and nsi denoting the number

of dots that have a corresponding dot in the other half of the image

component i. For the same type of image, nsi should be

proportional to the number of dots in the image. That is, the

covariance can be written as aj,i * ni where n is the number of dots

in the i-th image component and a is a constant. The value of aj,i

depends on the type of the i-th image component and the property

of the j-th processor. If the i-th image component is symmetrical

about the axis to which the j-th processor is sensitive, aj,i will be

large; otherwise, aj,I will be small. Scaling by the total number of

possible pixels in an image, we then arrive at Eq. (2).

Eq. (2) should hold for spatial filtering approaches [20,22,37] as

well. For the sparse random-dot patterns we used, each additional

dot increases the contrast energy in the image by the same

amount. Hence, the response of a linear filter should increase in

proportion to the dot density. Thus, Eq. (2) should be reasonable

way to describe the output of an orientation-specific symmetry

processor.

Nonlinear response. The response of the perception stage of

the model is the excitation of the j-th processor, Ej, raised by a

power p, in which Ej =Si Ei,j is the sum of excitations produced by

all image components, and is then divided by a divisive inhibition

term Ij plus an additive constant z. That is,

Rj~E
p
j

.
Ijzz
� �

ð4Þ

where Ij is the summation of a non-linear combination of the

excitations of all relevant mechanisms to mechanism j. This

divisive inhibition term Ij can be represented as

Ij~Si Sij,iDi

� �q ð5Þ

where Sij,i is a positive value serving as an inhibitory term.

Noise. The contribution of each channel to the visual

performance is limited by the noise. There are two sources of noise

in this model: the internal noise inherited in the system, and the

external noise provide by the noise patterns. The variability of the

internal noise, sa
2, is a constant for all processors in the model. The

variability of the external noise, se
2 is proportional to the square of

the density of random-dot patterns, Db; that is, se
2 = v * Db

2, where v

is a scalar constant. Pooled together, in each channel the standard

deviation of the response distribution is

sr~ sa
2zse

2
� �1=2 ð6Þ

Decision stage. The output of the perception stage is sent to

the decision stage. The decision stage monitors more channels

than those that are relevant to the prescribed visual tasks [27].

Here, a relevant channel is the one whose symmetry selectivity

matches that of the image. The performance of the system is

limited not only by the noise in the relevant channels but also by

that in the irrelevant channels. In our experiment, the task of the

observer is to detect the symmetry in the image regardless the

orientation of the symmetry axis. That is, the observer detects a

symmetry pattern if the maximum response of all monitored

channels to an image is greater than the response of a random-dot

pattern by an amount that exceeds the level of noise in the

system [24].

When there are m channels to be monitored, the maximum

response of these channels can be described by a distribution

whose mean approximates a fourth-power summation over these

m channels [27,38,39], although the Gaussian distribution theory

of Tyler & Chen [28] shows that the fourth power exponent is

valid only under the restricted conditions of a particular attention

model and a linear signal transducer. For the random-dot patterns,

the mean of the response R’b+c is

R0bzc~ Sj~1
m

Rj,bzc
4

� �1=4 ð7Þ

Here, we use the subscript b+c to emphasize that the noise

pattern contained both the masking noise and a control pattern

with same number of dots as the corresponding symmetry target.

Suppose that there are n channels responding the symmetry image

component in the stimuli when it is available. Then, the mean

response in the decision stage becomes

R0bzc~ Sj~1
n

Rj,bzc
4 zSj~nz1

m
Rj,bzc

4
� �1=4 ð79Þ

where the subscript t denotes the target or symmetry component.

In our experiment, there were four possible symmetry axis

orientations but only one was presented in the image. Thus, we

Symmetry Perception
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assign m = 4 and n = 1 for the non-cued condition. In the cued

condition, the observer needed only to monitor the relevant

channel and thus m = n = 1.

The decision variable is the difference of the response to the

image with the symmetry component and the response to the

random-dot image of the same pattern divided by the standard

deviation of the max distribution, sp. That is,

d0~ R’bzt{R’bzcð Þ
�
sp ð8Þ

The threshold is defined when d’ reaches unity. Note that the

standard deviation of the max distribution of four independently

and identically distributed samples is 0.71 times the standard

deviation of the original distribution [35]. Thus, sp =sr for the

cued conditions and sp = 0.71*sr for the non-cued conditions.

Model implementation and performance. In practice, if

we use a typical value of 2 for the power for the divisive inhibition

input q in Eq. (5) [40,41,42], we can combine the divisive

inhibition terms and the noise terms and simplify the model by

approximating the response of the individual channel in Eq. (4) by,

Rj,bzt~ Set
�DtzSeb

�Dbð Þp
.

Sit
�Dtð Þ2z Sib

�Dbð Þ2zz0
� �

Rj,bzc~ Seb
� DtzDbð Þð Þp

.
Sib
� DbzDtð Þð Þ2zz0

ð49Þ

where Dt and Db are the target and noise densities, respectively,

and Set, Seb, Sit, Sib, z’ and p are the parameters in the model.

Recall that noise patterns contain the same number of dots as the

noise-plus-target (Db+Dt) patterns. The decision variable of Eq. (8)

thus becomes

d0~ Rbzt{Rbzcð Þ=c ð89Þ

where c= 1 for the cued condition and 0.71 for the non-cued

condition.

Eqs. (4)9, (7) and (8)9 thus define the whole computation and all

the parameters in the model. In general, the parameters in Eq. (4)9

were set the same for all conditions except as follows: we allowed

the target-related sensitivity parameters Set and Sit to change with

axial salience as images with different salience were physically

different. As discussed above, uncertainty reduction alone cannot

explain the whole cueing effect. Other parameters also need to be

adjusted to model the cueing effect. From Figure 3, we showed

that the cueing effect was relatively constant for all masking

densities. Hence, it is less likely that the cueing effect acted on the

denominator of the response function, which would be noise-

density dependent [43]. Instead, such an effect would be consistent

with a change in the excitatory sensitivity to the target (Set in Eq

(4)9). Hence, in the model, we allowed Set to be different for

different cueing conditions. This arrangement is consistent with

the signal enhancement theory of cueing effects [25,44]. The

parameter Set for the high salience target in the cued condition was

set to 1000 as an anchor point. Thus, in total, there were nine free

parameters in the model for each observer.

Before describing the model fits, it is relevant to consider the

inherent properties of the model. In particular, it has the property

that the noise masking function can exhibit two ‘‘corners’’, or

locations where the slope of TvD function increases, instead of one

as commonly seen in the discrimination functions in the contrast

or luminance domain [25,41,45]. In the case of contrast
discrimination functions, such corners reflect the transition

between dominating terms in the denominator of the response

function [43]: at low contrasts, it is the additive constant, z in Eq.

(4), that dominates the denominator of the response function,

while at high contrasts the divisive inhibition term or I in Eq. (4).

In our model, there were three terms in the denominator of the

response function from different sources: the ‘‘gain control’’ (or self

inhibition) from the symmetry target, the external noise and the

intrinsic noise or additive constant. The multiple corners in the

fitted TvD functions reflect the transitions among these terms, as

illustrated by the parametrized example in Figure 6.

The black curve contains all three components in the

denominators of Eq (4)9. The parameters in this illustration were

chosen to make both the two corners more pronounced. The

green curve of Figure 6 shows the effect of removing the additive

constant, i.e., z’ in Eq (4)9; the threshold at low masker density is

no longer limited by the intrinsic noise and is markedly reduced.

At the high masker density, however, the TvD function is

unaffected. On the other hand, if we remove the divisive inhibition

by setting Sit in Eq. (4)9 to zero (blue curve in Figure 6), the TvD

function is dominated by the external noise. Hence, the effect on

masker-densitydependent threshold change is not pronounced

until high masker density, illustrating that this part of the curve is

dominated by the divisive inhibition term. (Removing the external

noise is not shown because it is a degenerate case that results in a

horizontal line, since it is the parameter of the x axis.)

Model fits. The model fits are shown as smooth curves in

Figure 2. This model explains 97%–98% of the all variability in

the thresholds across observers (112 free parameters). The root

mean square error (RMSE) is between 0.07 to 0.10 log unit across

observers, on par with the average standard error of measurement.

Table 1 shows the fitted model parameters.

The excitatory sensitivity to the symmetric target was

reduced by around 50% when prior knowledge of the symmetric

axis orientation was not available to the observer. This sensitivity

change is essential to explain the cueing effect. If we make the

assumption that the cueing effect can be explained by the

Figure 6. Examples of the model parametrization. The black
curve has all three model components in the denominators, with
parameters chosen to for a strong double-corner effect. Green curve:
removing the internal noise reduces the threshold at low masker
density. Blue curve: removing the divisive inhibition limits the masking
effect at high masker density. (Removing the external noise results in a
horizontal line, since it is the parameter of the x axis.)
doi:10.1371/journal.pone.0009840.g006
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uncertainty reduction alone, the RMSE of the model fit increases

2–4 fold. This difference is significant even given the reduced

number of free parameters in the uncertainty reduction account

(F(2,15) = 13.28, p = 0.0004 for HP, F(2,18) = 4.61 to 43.89,

p = 0.02 to 1027 for other observers). Hence, our result provides

strong evidence for the enhancement of symmetry sensitivity by

prior knowledge about the symmetry axis.

The excitatory sensitivity to the low salience targets shows a 15–

60% reduction compared with that to the high salience ones. This

degree of reduction may be taken as an index of the relative

contribution of the information at or near the symmetry axis. This

result also suggests that 40–85% of symmetry sensitivity is from

sources distant from the symmetry axis (by more than 0.58u).
Notice that, since the distance between two neighboring apertures

is 1.5u in our stimuli, such a contribution must be from a long-

range interaction mechanism [1,46]. The contribution needed for

divisive inhibition from the low salience target is also smaller than

that from the high salience target. Such reduced divisive inhibition

balances out the reduced excitatory sensitivity and allows a

relatively stable symmetry detection threshold across salience

conditions. However, as the external noise level increases, the

denominator of the response function (Eq. (4)9) is gradually

dominated by the noise and the effect of the divisive inhibition

diminishes. Hence, the difference in the excitatory sensitivity, and

in turn, the symmetry detection threshold between two salience

conditions, becomes more pronounced at high noise levels.

Conclusion
The target threshold vs. mask density function for symmetry

detection was flat at low mask density and increased with a slope of

0.75–0.8 beyond a critical density. The axis cueing reduced the

target threshold 2–4-fold at all masker densities. On the other

hand, axis salience, whether the paraxial dots were visible in the

windows or not, had an effect only at high masker densities. These

results are inconsistent with a signal-to-noise account of symmetry

detection but can be explained by a multiple-channel model is

which the response in each channel is limited by the nonlinear

transform of early symmetry detectors combined with the sum of

separate sources of external and intrinsic noise.

The combined design of the present study revealed that the

near-axis region, which is often considered to be the sole

determinant of symmetry detection, plays little role under noise-

limited conditions, since masking it from view has only a small

effect on detectability. Overall, the results are inconsistent with all

published models of symmetry processing of which we are aware.

The data require a more elaborated model of the form that we

propose, consisting of a band of local-feature-selective symmetry

processors configured as long-range pairs of local multiplicative

contrast detectors that register similar contrasts at pairs of

locations equidistant from a symmetry axis. The primary

symmetry signal from all such pairs of detectors is linearly

summed relative to a prescribed symmetry axis, subject to an

inhibitory gain control based on the external noise level which is

then sent to a decision stage that optimizes the response relative to

the prior knowledge of the axis location. This model accounts for

all the parametric variance in the data, including the minor

individual differences among observers. We therefore regard the

noise masking and axis salience properties as key variables in

discriminating among symmetry models, and as providing strong

evidence in favor of the current model structure for this form of

mid-level processing for object recognition.
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