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Abstract

In many eukaryotes, a significant part of the plasma membrane is closely associated with the dynamic meshwork of cortical
endoplasmic reticulum (cortical ER). We mapped temporal variations in the local coverage of the yeast plasma membrane
with cortical ER pattern and identified micron-sized plasma membrane domains clearly different in cortical ER persistence.
We show that clathrin-mediated endocytosis is initiated outside the cortical ER-covered plasma membrane zones. These
cortical ER-covered zones are highly dynamic but do not overlap with the immobile and also endocytosis-inactive
membrane compartment of Can1 (MCC) and the subjacent eisosomes. The eisosomal component Pil1 is shown to regulate
the distribution of cortical ER and thus the accessibility of the plasma membrane for endocytosis.
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Introduction

Besides its basic function as a selective diffusion barrier, the

plasma membrane (PM) hosts a variety of cellular functions

including nutrient sensing and transport, sensing of various types

of stress, endo- and exocytosis and signaling, and mediates the

communication of the cell with its environment. To coordinate

these processes and to ensure constant material and information

exchange, the plasma membrane has to be precisely organized.

Independent lines of evidence show that the membrane is

compartmentalized into domains of specific structure and function

[1].

Two stable membrane compartments were described in the

plasma membrane of the yeast S. cerevisiae [2,3]. The Membrane

Compartment of arginine permease Can1 (MCC), corresponding

to furrow-like plasma membrane invaginations [4], is organized by

a cytosolic complex called eisosome [5]. Several possible biological

functions of this specialized membrane compartment have been

suggested to date, including a role in sphingolipid sensing and

signaling [6] and regulation of protein turnover [7], the latter still

being a matter of scientific debate [8]. The originally proposed

involvement of eisosome in canonical endocytosis [5] has been

ruled out [7,8]. The PM area surrounding MCC was named

MCP, referring to its first identified constituent, the major H+/

ATPase Pma1 [2]. Dynamic processes apparently take place

outside the highly stable MCC domains: endocytic and exocytic

sites, for example, do not overlap with MCC [7,8], and the

formation of TORC2 signaling complexes occurs in the PM areas

that contain neither MCC markers nor the MCP marker Pma1

[9]. The temporal order, in which the specific factors bind the sites

of canonical endocytosis, has been described [10,11,12]. The

above conclusion concerning the distribution of endocytic events

in respect to MCC [7] was based on localization of Ede1, one of

the first coat proteins arriving at the endocytic spot [13,14], and

thus reflected the process of endocytic site selection at the PM

surface. However, the mechanism by which the sites of endo- and

exocytosis are selected remains unclear.

In fungi, plants and also animals, a significant part of the

cytosolic side of the plasma membrane is associated with the

cortical endoplasmic reticulum (cortical ER) [15,16,17]. The

cortical ER forms a dynamic meshwork in the close vicinity

underneath the PM; sheets and tubules of the endoplasmic

reticulum (ER) are continuously rearranged [16,18,19,20]. Apart

from its role in the secretory pathway, the ER establishes

numerous membrane contact sites (MCS), connecting it with

other membranous organelles in a cell, including the plasma

membrane. In yeast, the best characterized MCS so far are

nucleus-vacuole junctions [21,22], whereas less is known about the

composition and function of the others, including ER-PM contact

sites. The upper distance limit defining ER-PM contact sites in

yeast was set by Pichler and coworkers at about 30 nm. More than

a thousand ER-PM MCS per yeast cell were identified by this set-

up [19]. Only recently, the ER-PM spacing was measured more
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exactly to vary from 16 to 59 nm with a mean value of about

33 nm [20]. This indicates that the majority of the PM-associated

cortical ER may be at a distance suitable for MCS formation.

Here we address the question whether close association of

cortical ER and PM could locally affect endo- and exocytosis. The

formation of an endocytic vesicle about 50 nm in diameter [23]

may require accessibility to cytosolic components. For a substantial

part of the PM inner surface [20], the cortical ER could represent

a spatial hindrance for vesicular formation and/or delivery. It is

known that cytoplasmic factors can modulate the PM organiza-

tion. In yeast, actin filaments, for example [24], deliver various

cargoes to the plasma membrane, and eisosomes, sub-membrane

protein clusters organize protein and lipid distribution therein

[25,26,27]. In the case of cortical ER, however, it would be the

shape of a membranous cytoplasmic organelle that influences the

local functional properties of the plasma membrane. We show that

the endocytic machinery is positioned and functional only at PM

sites free of cortical ER. The cortical ER pattern, on the other

hand, is influenced by the association of eisosomes with MCC.

Results

Distribution of cortical ER with respect to endocytosis
and MCC

To test whether endocytosis occurs at sites equally distributed

throughout MCP of the yeast plasma membrane or whether the

close apposition of the cortical ER network to the PM results in a

non-random appearance of endocytic events, we monitored

endocytic events with respect to the presence of cortical ER in

the cortex of isotropically growing mother cells. We chose Ede1-

GFP as an endocytic marker because it is one of the first proteins

arriving at the endocytic spot [13,14], and the ER luminal marker

ss-dsRed-HDEL [28]. By observation of exponentially growing

living yeast cells expressing both the markers we were able to

visualize endocytic events and cortical ER simultaneously. As is

evident from tangential confocal sections, the initiation of

endocytosis occurred almost exclusively in PM zones not occupied

by cortical ER (Fig. 1A). As a control, we included MCC into this

mutual localization analysis and colocalized mCherry- and GFP-

tagged versions of the MCC constituent Sur7 [29] with the above

markers for ER and endocytic sites. In agreement with previous

findings [4,7,8], we observed MCC domains not colocalized with

either of these markers (Fig. 1B, C). Quantification of the entire

dataset of acquired images revealed that markers of all three

studied cortical structures (MCC, endocytic sites, and cortical ER)

occupied three separate domains in the PM (Table 1). This PM

partitioning seems to be independent on the yeast strain

background as BY4741 and W303-1A cells yielded identical

results (Table 1, compare also Fig. 1 and Fig. S1).

Then we attempted to describe the distribution of endocytic

events in more detail. We measured the minimal distance of

endocytic spots in areas not covered by the cortical ER (holes) to

the ER network. We defined the ER boundary as a line connecting

points that exhibited half of the local intensity drop between the

signal of the ER marker ss-dsRed-HDEL and the hole. Adaptive

character of this border definition makes it independent on signal

intensity and thus more reliable than any threshold-based

definition. The method could lead to an overestimation of the

real ER size in the range of ,100 nm in any direction, since

defining the ER border in this way possibly includes the blur of the

fluorescence signal of the ER marker. We measured the distance

between this cortical ER border and maxima of the Ede1 signal.

As a control, we generated a set of images containing foci

randomly distributed in the plasma membrane over the cortical

ER pattern (see Methods for details). We selected about 30% of

these foci, which localized into the holes in the ER pattern, and

again measured their distance from cortical ER. Comparison of

the two distributions revealed that endocytic events are randomly

positioned within the free-of-ER plasma membrane, with a weak

preference of places lying further apart from cortical ER border

(Fig. 2, note the asymmetry of the endocytic foci distribution).

Nonetheless, this means that most of the endocytic sites are

selected at the plasma membrane not further than 200 nm from

the ER border (Fig. 2). Similar analysis of MCC foci distribution

revealed that MCC is also randomly distributed in areas devoid of

cortical ER coverage. But, in contrast to Ede1 and random foci,

the fluorescence signal of Sur7 remains some minimal distance

from the ER border (see the symmetric distribution of Sur7 foci in

Fig. S2).

Local variations in spatio-temporal distribution of cortical
ER

The network of cortical endoplasmic reticulum represents a

highly dynamic organelle undergoing continuous rearrangement

that may further contribute to the dynamic accessibility of the

plasma membrane for membrane trafficking. To track the

dynamics of cortical ER, we measured the movement of GFP-

HDEL stained ER (Fig. 3A) in Sur7-mCherry expressing cells.

The immobile, Sur7-mCherry-labeled MCC domains were used

for alignment of 20 consecutive frames (increment: 10 s/frame) in

a time-lapse series. Consistent with earlier observations reporting

57–77% of the cell periphery to be covered by cortical ER

[18,19,30], we observed a GFP-HDEL signal over 6568% of the

PM surface (n = 30 series; 20 frames each). The binarized cortical

ER patterns (Fig. 3B) were superimposed in order to visualize the

local durations of plasma membrane coverage with cortical ER

during the monitored time window. Within 3 minutes, almost the

entire area of PM (98.761.3%) was covered at least once by

cortical ER. 9.363.8% of the PM surface was covered with

cortical ER permanently (dark red areas in Figs. 3C–E). This

visualization allowed for identification of micron-scale PM zones

with strikingly diverse relative cortical ER coverage. While

domains that are almost permanently covered by cortical ER

exist on the inner surface of PM (red and orange zones in Fig. 3),

other zones barely came in contact with cortical ER (blue in Fig. 3).

We propose that the cortical ER is involved in functional

compartmentalization of the PM as it confines the immediate

communication between the PM and cytosol to distinct (ER-free)

zones. This becomes clearly visible when the Ede1-GFP signal is

accumulated in time. In cells exhibiting low cortical ER dynamics,

Ede1-GFP appears in isolated domains within the plasma

membrane surrounded by ER. During the same time period,

cells with higher ER dynamics become evenly covered with Ede1-

marked sites (Fig. 4).

The only stable parts of the PM in our study are the MCC

areas, which are not accessible either for interaction with ER or for

initiation of endocytosis. Our analysis showed that both cortical

ER and endocytic sites can extend to the rest of the plasma

membrane, although their immediate plasma membrane distribu-

tions at any given time do not overlap (Figs. 3, 4).

Pil1 influences the cortical ER network spreading
Previously, we have shown that the cortical ER does not overlap

with the stable, invaginated MCC/eisosome domains (Fig. 1B and

Fig. S2A) [4]. The invaginations stretch into the cytosol with a

depth of about 50 nm and may possibly cause a hindrance for

lateral cortical ER spreading. We tested whether mutants being

Role of Cortical ER in PM Compartmentalization
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affected in MCC/eisosome distribution or invagination show an

altered cortical ER arrangement beneath the PM.

First, we explored the cortical ER pattern in strains pil1D [5]

and nce102D [7] which were shown to be defective in MCC

appearance. The fluorescence pattern of cortical ER resembles a

network: the compact labeled areas appear fragmented by circular

or irregularly shaped holes (perforations) into a system of more or

less fibrous (tubular) structures and sheets (cisternae). We detected

morphological changes of this network in selected mutants. In

pil1D cells, in which both MCC and the eisosome structure are

Figure 1. Endocytosis is initiated in the ER-free zones of the plasma membrane. Mutual localization was performed for Ede1-GFP, a marker
of early stages of endocytosis, and cortical ER visualized by ss-dsRed-HDEL. Only rare colocalization events were detected (A). Similarly, the cortical ER
network (B) and the initiation sites of endocytosis (C) were not colocalized with MCC domains marked with Sur7-GFP and Sur7-mRFP, respectively.
Tangential confocal sections of BY4741 cells expressing fluorescently labeled proteins are presented. The fluorescence intensity profiles along the
numbered arrows were scaled to the same range in the red and green channels. Bar: 5 mm.
doi:10.1371/journal.pone.0035132.g001

Role of Cortical ER in PM Compartmentalization
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disrupted [5], the cortical ER network was generally more

compact and indiscrete (Fig. 5A). Quantitative analyses revealed

a cortical ER with fewer but larger perforations as compared to

the wild type (Fig. 5B, C, Fig. S3 and Movies S1,S2,S3).

Accordingly, less fragmented, unequally distributed tubuli and

cisternae of cortical ER were also clearly discernible beneath the

plasma membrane of ultrathin-sectioned pil1D cells (Fig. 6)

observed by the transmission electron microscope. On the other

hand, cells over-expressing Pil1, which were reported to contain

more eisosomes than the wild type [31], exhibited cortical ER with

a high number of smaller holes (Fig. S4). In nce102D mutant cells

eisosomes correctly localize beneath MCC domains [6,32], but

membrane invaginations are lacking [4]. Testing the distribution

of cortical ER in nce102D cells did not reveal any significant

alteration in the cortical ER morphology (Figs. 5, 6), indicating

that the invagination of MCC domains is not required to restrain

the cortical ER from spreading over MCC areas.

To test whether the distinct localization of MCC and cortical

ER is preserved in the two MCC defective strains, we analyzed the

localization of ss-dsRed-HDEL and Sur7-GFP in pil1D and

nce102D cells. In agreement with previously published data [6],

we found a lower surface density of Sur7 domains in nce102D cells

(0.7560.19 mm22) as compared to the wild type

(1.2160.27 mm22). In pil1D cells, the Sur7 protein was originally

reported to be clustered only into occasional big ‘‘eisosome

remnants’’ and otherwise homogenously distributed in the

membrane [5]. In agreement with our earlier observations [7],

we show on tangential confocal sections of pil1D cells that aside the

eisosome remnants Sur7-GFP was also not completely evenly

distributed, but rather concentrated into smaller, less distinct

domains (Fig. S5). We analyzed the percentage of overlap between

Sur7 domains and cortical ER in nce102Dand pil1D cells, including

all discernible Sur7 domains in pil1D, and found no significant

difference between the tested strains (Fig. 7). Thus we demonstrate

that, even under the conditions when Sur7 is not concentrated in

large, easily distinguishable domains, the protein localizes

preferentially to PM areas devoid of cortical ER coverage. We

also examined and quantified the positioning of endocytic Ede1-

GFP sites in respect to the cortical ER area in the two mutant

strains. Again, endocytosis occurred solely outside the ER-covered

PM areas, as about 94% of endocytic sites did not colocalize with

cortical ER network in either of nce102D or pil1D cells (data not

shown).

Finally, to check whether the dynamics of ER rearrangement is

affected upon MCC disintegration, we explored the rate of ER

network movement in GFP-HDEL/Sur7-mCherry expressing

strains. The Sur7-mCherry domains were again used to align

the frames in the time-lapse series. We used a relative

displacement, i.e. proportion of the area covered by cortical ER

at a given time but not covered after a selected time interval, as a

measure of the ER mobility. Mainly due to cell-to-cell variations in

ER mobility, no significant difference in the dynamics of cortical

ER rearrangements between the wild type and nce102D or pil1D
cells was detected (Fig. S6A). Similar to WT, we were also able to

detect the micron-scale plasma membrane zones exhibiting

different cortical ER coverage in both the mutant strains.

Consistent with the above-mentioned observation of altered

cortical ER distribution in pil1D cells (Fig. 5 and Fig. S3), the

Table 1. Quantification of mutual localization of MCC, Ede1
sites and cortical ER.

Analyzed structures BY4741 W303-1A

Ede1/cortical ER 93610% (n = 144 cells)* 9468% (n = 148)*

Sur7/cortical ER 9863% (n = 139)** 9864% (n = 142)**

Ede1/Sur7 9964% (n = 150)* 9965% (n = 160)*

*fraction of Ede1 sites non-colocalizing with cortical ER or the Sur7 signal.
**fraction of Sur7 domains non-colocalizing with the cortical ER signal.
doi:10.1371/journal.pone.0035132.t001

Figure 2. Endocytic events are randomly distributed within ER-
free PM areas. In tangential confocal sections of individual W303 cells
expressing Ede1-GFP and ss-dsRed-HDEL (A), the minimal distance of
endocytic sites from the cortical ER boundary was measured. The
histogram of the measured distances (full bars in B; 906 sites in 200 cells
were analyzed) was compared to the distribution of the distances of
model foci randomly positioned in the plasma membrane (empty bars
in B; 320 foci in 100 cells; see Methods for details). In order to maximize
the accuracy of the distance measurements, for all the measurements
we chose only the foci located to easily discernible ER holes positioned
in central parts of the tangential confocal sections, so that the entire
borders of the holes could be traced. Bar: 1 mm.
doi:10.1371/journal.pone.0035132.g002

Role of Cortical ER in PM Compartmentalization
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pattern of these domains was changed accordingly (Fig. S6B;

compare with Fig. 3).

We conclude that the eisosome core protein Pil1 influences the

distribution of the cortical ER network. Pil1 is not required for

normal cortical ER mobility or PM binding but Pil1-driven

eisosome formation rather contributes to cortical ER fragmenta-

tion.

Discussion

Directional targeting of material exchange-related processes like

endo- and exocytosis is one of the basic processes enabling a living

cell to exist. For clathrin-mediated endocytosis, a detailed picture

of the order and timing has been acquired by Drubin and

coworkers [11]. The regulation and spatial distribution of sites of

endocytosis, however, remain elusive. In our study, we used

baker’s yeast for mapping endocytic events in relation to cortical

ER and the known, immobile domains of MCC, which are

regulated by the subjacent eisosomes. We found sites of

endocytosis to be non-randomly distributed and restricted to sites

free of cortical ER and free of MCC. Cortical ER distribution itself

also appears to be dependent on normal MCC-eisosome

formation.

Specific re-positioning of the ER during the process of budding

was described in detail in a recent study [20]. We report that apart

from this polar organization of the cellular cortex, the uneven and

variable distribution of cortical ER can be followed within the

plasma membrane of S. cerevisiae. We found micrometer-sized

domains preferentially covered by the cortical ER network and

domains preferentially free of this coverage coexisting within the

PM in a time scale of minutes (Fig. 3).

As evident from the Ede1-cortical ER co-labeling experiments

(Fig. 1), plasma membrane areas devoid of cortical ER coverage

determine the emergence of endocytic vesicles. Being a soluble,

cytosolic protein, Ede1 is one of the first proteins marking the

future site of endocytosis by clustering at the plasma membrane

[13,14]. Even if its movement in cytoplasm was driven solely by

diffusion, it is likely that its interaction with PM would occur

preferentially in the membrane domains that are not covered with

cortical ER. Our quantifications show that this preference is very

strong (93610%). Recently, a similar mechanism of indirect

soluble protein routing in the cell cortex has been observed in S.

pombe: the actomyosin ring organizing protein Mid1 is directed to a

cortical ER-determined ‘‘permissive zone’’ in the plasma mem-

brane, in which the plane of cell division (cytokinesis) is

consequentially established [33]. The distribution of Ede1 foci in

plasma membrane domains not covered with cortical ER is rather

random (Fig. 2), thus indicating that initiation of endocytosis is

independent from the lateral distance to cortical ER as long as the

plasma membrane is not covered with ER.

Figure 3. Differential cortical ER coverage defines micron-scale PM domains. The dynamics of cortical ER was followed in time-lapse series
of 20 tangential confocal sections of BY4741 cells expressing ss-GFP-HDEL together with Sur7-mCherry (rate: 10 s/frame). Raw data after a 363 mean
filtration (A) and binarized cortical ER pattern (B) of the first and the last three frames in the series are presented. For better lucidity, the red
fluorescence channel (MCC/Sur7-mCherry) is not shown. In order to visualize the local dynamics of cortical ER, all twenty binarized frames were
superimposed. Three out of 33 cells analyzed are presented in false colors denoting the number of frames in the series in which cortical ER was
detected (C–E). Bar: 1 mm.
doi:10.1371/journal.pone.0035132.g003
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Plasma membrane invaginations (MCC domains) and eisosomes

seem to modulate the ratio of cortical ER tubules to extended

cisternae. Contrary to our expectations, we found that the depth of

furrow-like PM invaginations/eisosome has no, or only a minor

influence on the cortical ER morphology. Rather the presence or

absence of MCC/eisosomes, independent of the local PM

topology, determines the local perforation of the cortical ER

network. Several lines of evidence allow for this conclusion. First,

these two structures localize in distinct parts of the plasma

membrane (Fig. 1, Fig. S1) as we also reported previously [4].

More significantly, a lack of the eisosomal Pil1p results in fewer

MCC/eisosome domains and fewer holes in the pattern of cortical

ER (Figs. 5, 6). Pil1 overexpression, however, increases the

number of MCC/eisosome domains and perforations of cortical

ER network (Fig. S4). Even in the absence of specific MCC-ER

interactions, it can be difficult for the ER sheet or tubulus to enter

between adjacent eisosomes, which are as frequent as

2.560.2 um22 in the plasma membrane surface and about

300 nm long each (parameters reported by a freeze-etching study

in Stradalova et al., 2009), simply because of mechanical obstacles.

The surface tension in the ER membrane and the fact that the

formation of curved areas in the ER membrane anticipates the

assistance of specific lipids will contribute here. In any case, we do

observe high ER dynamics beneath the plasma membrane. Thus,

one can assume that these obstacles are not impossible to

overcome and that ER still can enter most of inter-MCC gates

visible at the resolution of fluorescence microscopy.

In contrast to stable MCC/MCP partitioning of the plasma

membrane, the dynamics of membrane areas with differential

cortical ER coverage is much higher. We do not expect, therefore,

that discriminative protein or lipid markers of these domains will

be found in the PM. One can rather imagine that cortical ER

distribution supports more or less stable gradients of the PM

constituents as it directs the flows of cytoplasmic soluble factors

and vesicles towards certain zones of the PM. Similar steady-state

modulation of the PM structure/function was recently suggested in

plants: polar accumulation of auxin transporter Pin2 was reported

to result from spatially defined exo- and endocytosis in Arabidopsis

[34]. Based on the present knowledge, we propose a simplified

scheme of yeast cell cortex showing its spatial and consequent

functional map (Fig. 8).

Materials and Methods

Yeast strains and growth conditions
The yeast strains used in this study are listed in Table S1. The

cells were grown in a synthetic complete medium (0.67% Difco

yeast nitrogen base without amino acids, 2% glucose, and amino

acids; for W303-derived strains supplemented with 26 more

adenine) to mid-log phase (OD600 about 0.6) at 30uC on a shaker.

The cells in Figure S4 were cultivated in synthetic medium lacking

uracil. For electron microscopy preparations, the cells were

cultured in a rich medium (YPD; 2% peptone, 1% yeast extract,

2% glucose) to the same OD600 and under the same conditions as

the cells in synthetic medium.

Plasmids
YIp211-Ede1-GFP [7]; YIp211-Sur7-GFP [35]; YIp128-

Sur7-mRFP: The SUR7 gene was inserted as a HindIII-BamHI

fragment into YIp128-mRFP plasmid [35]; YIp211-Sur7-
mCherry: The mCherry gene was cut from pVTU100-HUP1-

mCherry (G. Grossmann, unpublished) plasmid using BamHI-

BssHII restriction sites and ligated into YIp211-SUR7-GFP

plasmid instead of the GFP gene. Before transformation, the

plasmid was linearized by digestion with EagI; YIp204-TKC-
dsRed-HDEL [28]; YIp128-TRP1-TKC-dsRed-HDEL: The

TRP1-TKC-dsRed-HDEL cassette was amplified by PCR from

the YIp204-TKC-dsRed-HDEL plasmid using the primers

HDEL_FW (GATTACGCCAAGCTTGCAAATTAAAGC) and

HDEL_RV (CTTGGAGCTCGTCTGTTATTAATTTCAC).

Figure 4. Lateral mobility of cortical ER determines the positioning of endocytic events. Initiation of endocytic events in cells co-
expressing Ede1-GFP and ss-dsRed-HDEL was monitored in a time-lapse experiment (20 frames, 30 s/frame). Superposition of all the frames is
presented. The 4th column represents the superimposed binarized ER signals from 20 consecutive frames in a false-color blue-to-red scale to highlight
the dynamics of the cortical ER network (see Fig. 3 legend for an explanation). The column on the far right shows this superposition of binarized ER
signals in red overlaid by the green channel, in which the positions of the maxima of the Ede1 sites in the 20 frames were marked by round spots. Bar:
1 mm.
doi:10.1371/journal.pone.0035132.g004

Role of Cortical ER in PM Compartmentalization

PLoS ONE | www.plosone.org 6 April 2012 | Volume 7 | Issue 4 | e35132



The obtained fragment was ligated into YIp128 plasmid using the

HindIII-SacI restriction sites. The plasmid was linearized before

yeast transformation by Bsu36I enzyme and integrated into TRP1

locus; YIp128-TRP1-TKC-GFP-HDEL: The GFP gene was

amplified by PCR from the YIp211-SUR7-GFP plasmid using the

primers VN155_HDEL_F (TATAGGATCCCATGTC-

Figure 5. Defect in MCC integrity results in alteration of the cortical ER pattern. Tangential confocal sections of BY4741, pil1D and nce102D
cells expressing ss-GFP-HDEL and Sur7-mCherry markers are presented (A). Statistical analysis of cortical ER pattern in all strains (n.30) revealed that
the cortical ER network in pil1D cells exhibits fewer (B) but larger (C) holes. Importantly, no difference in total cortical ER area with respect to the
individual tested strains was detected. Mean values (6 standard deviation) are compared and the significance of detected effects as revealed by
Student T test is denoted (* p,0.05;***p,0.001). Bar: 5 mm.
doi:10.1371/journal.pone.0035132.g005

Role of Cortical ER in PM Compartmentalization

PLoS ONE | www.plosone.org 7 April 2012 | Volume 7 | Issue 4 | e35132



Figure 6. Electron microscopic analysis of the MCC-specific
alterations of cortical ER pattern. The length and distribution of
cortical ER cisternae (arrows) on thin sections of BY4741 (A), pil1D (B)
and nce102D cells (C) were compared. No difference in total length of
the cortical ER structures with respect to the individual tested strains
was detected. Bar: 1 mm.
doi:10.1371/journal.pone.0035132.g006

Figure 7. Distinct localization of MCC marker Sur7 and cortical
ER distributions is maintained in MCC-defective strains. The
mutual position of fluorescence signals in tangential confocal sections
of BY4741, pil1D and nce102D cells co-expressing Sur7-GFP and ss-
dsRed-HDEL (n.140) was analyzed. Relative numbers (mean 6

standard deviation) of Sur7-GFP domains localized outside the ss-
dsRed-HDEL (cortical ER) pattern are compared.
doi:10.1371/journal.pone.0035132.g007

Figure 8. Model of functional plasma membrane compartmen-
talization in yeast. Three distinct domains can be distinguished in the
yeast PM: stable MCC domains (green) surrounded by a membrane
covered with a dynamic network of cortical ER (red) and the PM free of
cortical ER coverage (blue). Vesicle transport can take place only in the
ER-free PM.
doi:10.1371/journal.pone.0035132.g008

Role of Cortical ER in PM Compartmentalization
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TAAAGGTGAAG) and VC155_HDEL_R (TATATCTAGAT-

TACAATTCGTCGTGTTTGTACAATTCATC). The obtained

GFP-HDEL fragment was inserted into 128-TRP1-TKC-dsRed-

HDEL via BamHI-XbaI restriction sites instead of dsRed-HDEL

gene. The plasmid was linearized before yeast transformation by

Bsu36I enzyme and integrated into TRP1 locus; pVTU100-Pil1-
mRFP: The PIL1 gene was inserted as a HindIII-BamHI

fragment into pVTU100-mRFP plasmid [32] under the ADH1

promoter.

Confocal microscopy
Living yeast cells in synthetic medium were concentrated by

brief centrifugation, immobilized on a 0.17 mm coverglass by a

thin film of 1% agarose prepared in the synthetic complete

medium and observed using LSM510-META confocal microscope

(Zeiss) with a 1006 PlanApochromat oil-immersion objective

(NA = 1.4), with the exceptions listed below. Fluorescence signals

of GFP and mRFP/dsRed/mCherry (excitation 488 nm/Ar laser,

and 561 nm/solid state laser) were detected using the 505–550 nm

band-pass, and 580 nm long-pass emission filters, respectively.

Cells for Fig. 3 and Figs. S2, S6 were visualized using Zeiss/

Yokogawa Cell Observer spinning disc microscope with a 1006
PlanApochromat oil-immersion objective (NA = 1.4); cells for Fig. 2

and Fig. 4 were visualized using Zeiss/Yokogawa Axio Ob-

server.Z1 spinning disc microscope with a 1006PlanApochromat

oil-immersion objective (NA = 1.46). The fluorescence signals of

GFP and mCherry were detected using band pass emission filters

(520/35 and 617/73 nm, respectively) and recorded using a

Andor iXon+ 888 back-illuminated EMCCD camera (Fig. 3, S2

and S6) or AxioCamMR3 camera (Fig. 2 and 4).

Electron microscopy
Yeast cells were processed as described previously [4], in brief:

cells were filtered, loaded in a flat specimen carrier and frozen in

EM PACT (Leica). Frozen samples were freeze-substituted in

acetone supplemented with 3% glutaraldehyde (10% stock in

acetone; SPI Supplies, USA), 0.1% UA and 1% water in AFS

machine (Leica) and then embedded in HM20 resin. Ultrathin

sections (70 nm) were cut with Ultracut S ultramicrotome

equipped with a diamond knife (35u; Diatome) and placed on

copper formvar-coated grids. Sections were contrasted with a

saturated aqueous solution of UA for 1 hour, washed, air-dried

and examined in a FEI Morgagni 268(D) transmission electron

microscope at 80 kV. Images were captured with MegaView G2

CCD camera (Olympus).

Image processing and evaluation
If not stated otherwise, raw microscopic data are presented.

Mutual localization of MCC, endocytic sites, and cortical ER was

evaluated manually as follows: any overlap between the two

fluorescence channels was considered as a colocalization event.

The only exception from this rule was the case when focal

accumulation of endocytic or MCC marker overlapped with a

local minimum in the cortical ER pattern. This particular case was

evaluated as non-colocalization (small hole in the ER pattern,

partially filled with the blur from the surroundings). Processing of

time-lapse image series (Figures 3 and S6) (alignment, [363] mean

filtering, binarization) was performed in Matlab software (The

MathWorks): the positions of the MCC domains were determined

as local maxima of the Sur7-mCherry signal. A convex hull using

the Delaunay triangulation was constructed to determine the cell

shape. Combination of thresholding and morphological operations

was used to determine the inner structure of the cortical ER –

positions and shapes of the perforations in the cortical ER pattern.

Images for Figs. 2, 4 and S2 were filtered as stated above; the

alignment for Fig. 4 was treated manually.

In analysis of the distances between the Ede1-GFP (Sur7-

mCherry) domains and the cortical ER, images with random

population of foci (the control for surface distribution analysis)

were obtained as follows: the ER channel in the real images

previously analyzed was left untouched. The fluorescence signal in

the focal (MCC) channel was replaced by a regular hexagonal

lattice of Gaussian foci (frequency: 1.2 mm22). Only the foci falling

inside the convex hull of the ER fluorescence signal were taken

into account.

Supporting Information

Figure S1 Endocytosis is initiated in the ER free zones
of the plasma membrane in W303-1A cells. Mutual

localization of Ede1-GFP, a marker of early stages of endocytosis,

and cortical ER visualized by ss-dsRed-HDEL was performed.

Only rare colocalization events were detected (A). Similarly,

cortical ER network and initiation sites of endocytosis were not

colocalized with MCC domains marked with Sur7-GFP (B) and

Sur7-mRFP (C), respectively. Tangential confocal sections of

W303-1A cells expressing fluorescently labeled proteins are

presented. Fluorescence intensity profiles along the numbered

arrows were scaled to the same range in the red and green

channels. Bar: 5 mm.

(TIF)

Figure S2 Distribution of MCC domains through the
holes in the cortical ER pattern. In tangential confocal

sections of individual cells expressing Sur7-mCherry and GFP-

HDEL (A), the minimal distance of the Sur7 labeled MCC

domains from the cortical ER boundary was measured. The

histogram of the measured distances (full bars in B; 399 foci in 64

cells were analyzed) was compared to the distribution of the

distances of model foci randomly positioned in the plasma

membrane (empty bars in B; 320 foci in 100 cells; see Methods

for details). The Gaussian fits of the distributions are also depicted

(Sur7 solid, randomly positioned foci dotted). In order to maximize

the accuracy of the distance measurements, for all the measure-

ments we chose only the foci located to easily discernible ER holes

positioned in central parts of the tangential confocal sections, so

that the entire borders of the holes could be traced Bar: 1 mm.

(TIF)

Figure S3 Cortical ER pattern in MCC-defective
strains. Transparency projections (LSM Image Browser) of ER

patterns in BY4741, pil1D and nce102D cells expressing ss-GFP-

HDEL and Sur7-mCherry markers are compared. Only the green

(ER) fluorescence pattern is presented. More projections of the

same cells see also in Movies S1,S2,S3. Bar: 5 mm.

(TIF)

Figure S4 Overexpression of Pil1 leads to increased
fragmentation of the cortical ER pattern. Cells co-

expressing ss-GFP-HDEL (green) and Pil1-mRFP (red) under a

strong promoter (strain VSY177) were observed. Compare the

number of MCC/eisosomes and the number of cortical ER holes

with those of wild type (Fig. 1) and pil1D cells (Fig. 5).

Superposition of two consecutive confocal sections is presented.

Bar: 5 mm.

(TIF)

Figure S5 Distribution of Sur7 in pil1D cells. Tangential

confocal sections of pil1D cells expressing ss-dsRed-HDEL and

Sur7-GFP markers (only green fluorescence channel visible) are

presented. Note that, in addition to large and intensive ‘‘eisosome
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remnants’’, smaller and less intensive local accumulations of Sur7-

GFP are discernible in the surrounding membrane. Bar: 5 mm.

(TIF)

Figure S6 Speed of cortical ER movement is not affected
in MCC defective strains. The speed of the cortical ER

movement was measured as a decrease in the mutual overlap of

the ss-GFP-HDEL patterns detected in living BY4741 (white),

pil1D (grey) and nce102D (black) cells (n.30) after an increasing

interval of time (A). The dynamics of cortical ER was followed in a

time-lapse series of 20 tangential confocal sections of pil1D cells

expressing ss-GFP-HDEL together with Sur7-mCherry (rate:

10 s/frame). For better lucidity, the red fluorescence channel

(MCC/Sur7-mCherry) is not shown. The data were processed and

binarized as shown in Fig. 3 and all twenty binarized frames were

superimposed to visualize the local dynamics of cortical ER. Three

out of 30 cells analyzed are presented in false colors denoting the

number of frames in the series in which cortical ER was detected

(B). Bar: 1 mm.

(TIF)

Table S1 Strains used in this study.
(DOC)

Movie S1 Maximum intensity projections of ER pattern
in BY4741cells. Twenty-one MIP (Maximum Intensity Projec-

tions) of BY4741 cells from Fig. S1 in 3u angle increment (230 to

+30u) were calculated and joined. Presentation speed: 10 frames/s.

(AVI)

Movie S2 Maximum intensity projections of ER pattern
in pil1Dcells. Twenty-one MIP of pil1D cells from Fig. S1 in 3u
angle increment (230 to +30u) were calculated and joined.

Presentation speed: 10 frames/s.

(AVI)

Movie S3 Maximum intensity projections of ER pattern
in nce102D cells. Twenty-one MIP of nce102D cells from Fig. S1

in 3u angle increment (230 to +30u) were calculated and joined.

Presentation speed: 10 frames/s.

(AVI)
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