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Abstract

Objective: There is clearly a necessity to identify novel non-dopaminergic mechanisms as new therapeutic targets for
Parkinson’s disease (PD). Among these, the soluble guanylyl cyclase (sGC)-cGMP signaling cascade is emerging as a
promising candidate for second messenger-based therapies for the amelioration of PD symptoms. In the present study, we
examined the utility of the selective sGC inhibitor 1H-[1,2,4] oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) for reversing basal
ganglia dysfunction and akinesia in animal models of PD.

Methods: The utility of the selective sGC inhibitor ODQ for reversing biochemical, electrophysiological, histochemical, and
behavioral correlates of experimental PD was performed in 6-OHDA-lesioned rats and mice chronically treated with MPTP.

Results: We found that one systemic administration of ODQ is sufficient to reverse the characteristic elevations in striatal
cGMP levels, striatal output neuron activity, and metabolic activity in the subthalamic nucleus observed in 6-OHDA-lesioned
rats. The latter outcome was reproduced after intrastriatal infusion of ODQ. Systemic administration of ODQ was also
effective in improving deficits in forelimb akinesia induced by 6-OHDA and MPTP.

Interpretation: Pharmacological inhibition of the sGC-cGMP signaling pathway is a promising non-dopaminergic treatment
strategy for restoring basal ganglia dysfunction and attenuating motor symptoms associated with PD.
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Introduction

Currently available pharmacotherapies for PD such as levodopa

(L-DOPA) subdue motor symptoms via activation of striatal

dopamine (DA) transmission. However, repeated L-DOPA

treatment can cause severe side effects (e.g. dyskinesias), most

likely as a result of abnormal changes in DA receptor expression

and function [1]. Thus, there is clearly a necessity to identify novel

non-dopaminergic mechanisms as new therapeutic targets for PD.

Among these, the soluble guanylyl cyclase (sGC)-cGMP signaling

pathway is emerging as a promising target candidate for treatment

strategies aimed at restoring striatal dysfunction induced by DA

cell loss [2].

It is now well accepted that sGC is the primary receptor for the

gaseous neuromodulator nitric oxide [3]. Interestingly, sGC

expression and activity are reportedly higher in the striatum than

in any other brain region [4,5]. At the cellular level, the sGC-

cGMP-PKG system is predominantly localized to striatal medium-

sized spiny projection neurons (MSNs) of both the direct and

indirect output pathways [5,6,7]. Until recently, the physiological

function of sGC-cGMP signaling in the striatum was unclear.

However, numerous recent studies now indicate that sGC-cGMP

signaling is likely to function as an important cellular intermediary

for regulating interactions between DA and glutamate neuro-

transmission in the normal and parkinsonian striatum

[8,9,10,11,12,13]. In fact, findings from studies of animal models

of PD indicate that following DA depletion, alterations in striatal

cGMP homeostasis are likely to contribute to pathophysiological

changes in basal ganglia circuits observed in PD [2]. Specifically,

an upregulation of striatal sGC expression and activity (i.e., cGMP

synthesis) has been observed in MPTP-treated mice [14,15].

Interestingly, transient elevations in intracellular cGMP markedly
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increase striatal neuronal excitability and facilitate excitatory

corticostriatal synaptic transmission [12,16,17], an effect resem-

bling that observed following chronic DA cell loss [18]. Therefore,

we hypothesized that downregulation of the sGC-cGMP signaling

pathway should restore pathological changes observed in the basal

ganglia after chronic DA depletion, and consequently, reverse

motor impairments associated with PD. Towards this goal, we

examined the utility of the selective sGC inhibitor 1H-[1,2,4]

oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) [19,20] in reversing

biochemical, electrophysiological, histochemical, and behavioral

correlates of experimental PD observed in 6-OHDA-lesioned rats

and mice chronically treated with MPTP.

Results

We first examined the impact of tonic cGMP signaling on

corticostriatal synaptic transmission in vivo in naı̈ve rats by

measuring changes in cortically-evoked striatal local field potential

(LFP) following systemic administration of the selective sGC

inhibitor ODQ (Fig 1a;b). Consistent with previous studies [12],

systemic administration of ODQ reduced the strength of corticos-

triatal transmission in a dose dependent manner (Fig 1b).

Specifically, a clear attenuation of the corticostriatal postsynaptic

potential (PSP) was observed 20 min after administration of 20

mg/kg, but not 10 mg/kg dose of ODQ (Fig 1b–c). This inhibition

of the cortically-evoked PSP was completely restored by local

(intrastriatal) infusion of the cGMP analog 8-bromoguanosine 39:59

-cyclic monophosphate sodium salt (8-Br-cGMP) (Fig 1c–d). Thus,

as shown in previous studies [17], the ODQ-induced attenuation of

corticostriatal synaptic transmission is mediated by local inhibition

of striatal sGC and cGMP signaling. The remaining studies

described below focused on assessing the utility of ODQ for

reversing abnormal striatal neuronal firing activity, basal ganglia

dysfunction, and akinesia observed in animal models of PD.

All 6-OHDA-lesioned rats included in the present study

exhibited a marked reduction in adjusting steps executed by the

contralateral forelimb (Fig 2a), and .90% depletion of DA cells in

the substantia nigra (SN), as revealed by TH immunostaining

(Fig 2b). We also determined the impact of 6-OHDA-induced DA

depletion on striatal sGC-signaling by assessing changes in tissue

cGMP levels. We found that chronic DA depletion significantly

increased striatal tissue levels of cGMP by ,35%, an effect that

was reversed by one systemic administration of ODQ (20 mg/Kg,

i.p., Fig 2c). We next examined whether systemic administration of

ODQ also reverses the abnormal striatal electrophysiological

activity observed after chronic DA depletions. Consistent with

previous studies [18,21], striatal single-units recorded in neurons

from 6-OHDA-lesioned rats exhibited increased spontaneous

firing (1.6960.28 Hz) compared to neurons recorded in sham-

operated controls (0.0760.01 Hz) (Fig 2d–e). We found that one

systemic administration of the selective sGC inhibitor ODQ

(20 mg/kg, i.p.) robustly decreased the spontaneous firing

observed in the DA-depleted striatum (Fig 1f). Specifically, a

significant decrease in striatal firing rate from 1.7260.49 to

0.6760.43 Hz was observed 10 min after ODQ administration.

Vehicle injection did not affect similar measures taken in 6-

OHDA-lesioned rats (Fig 2f). Furthermore, ODQ administration

did not affect the firing rate of striatal neurons recorded in sham-

operated controls (data not shown). Together with the biochemical

data, these results indicate that an upregulation of sGC signaling

may contribute to the abnormal elevation of neuronal excitability

observed in the DA-depleted striatum.

STN hyperactivity is another hallmark of parkinsonism as

abnormal electrophysiological and metabolic changes have been

consistently reported across different animal models of PD and in

studies of PD patients [22]. L-DOPA treatment also normalizes

STN hyperactivity [23] and mimics the therapeutic effects of STN

inactivation/lesion on motor deficits observed in both PD and

experimental parkinsonism [24]. We therefore evaluated the

effectiveness of systemic administration of ODQ to reverse the

STN hyperactivity resulting from chronic DA depletion in 6-

OHDA-lesioned rats (Fig 3). Changes in the metabolic activity of

the STN were assessed in sham-operated and 6-OHDA-lesioned

rats by means of histochemical staining of cytochrome oxidase

(CO-I) activity. All measures were taken by an investigator blind to

the experimental condition. As expected, vehicle-treated 6-

OHDA-lesioned rats exhibited a significant increase in STN

CO-I staining when compared to the vehicle-treated sham-

operated control group (Fig 3a–b). Following one systemic

administration of ODQ (20 mg/kg, i.p.), the increase in STN

metabolic activity was no longer detected in 6-OHDA-lesioned

Figure 1. Impact of tonic cGMP signaling on corticostriatal
synaptic transmission in vivo. (a) Recording arrangement employed
to study the pharmacological effects of the sGC inhibitor ODQ on
corticostriatal transmission in vivo (see Methods section for details).
Cortically-evoked postsynaptic potentials (PSPs) were recorded by
means of local field potential (LFP) recordings. Inset shows examples of
traces of corticostriatal PSPs (calibration bars: 30 ms, 1 mV). (b) Time
course of corticostriatal PSPs recorded before and following systemic
administration of 10 mg/kg and 20 mg/kg ODQ (i.p., n = 5 rats per
dose). A marked attenuation of the corticostriatal response was
observed following 20 mg/kg ODQ, an effect that becomes apparent
after 20 min of drug administration. (c) Time course of corticostriatal
PSPs recorded before and following 20 mg/kg ODQ + intrastriatal
administration (0.1 ml/min610 min) of the cGMP analog 8-Br-cGMP
(20 mM; n = 5 rats) or vehicle (aCSF; n = 5 rats). Note that the
characteristic attenuation of corticostriatal PSPs observed after 20 min
of 20 mg/kg ODQ administration was lacking following intrastriatal
infusion of 8-Br-cGMP. (d) Bar graph depicting the averaged changes in
PSP responses obtained from the last 3 data points shown in c (marked
in gray). Intrastriatal infusion of 8-Br-cGMP completely blocked the
effects of ODQ (***P,0.0005, unpaired t-Test).
doi:10.1371/journal.pone.0027187.g001

Role of sGC-cGMP in Experimental Parkinsonism
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rats (Fig 3a). To further determine whether this reversal effect of

ODQ was mediated via inhibition of striatopallidal output (see

Fig 2f), another cohort of sham and 6-OHDA-lesioned rats was

generated to examine the effect of intrastriatal ODQ administra-

tion on STN metabolic activity. Histological examination of

cannula tracks revealed that all intrastriatal microinjections were

within the dorsal striatum, between 0.7 to 20.3 mm from bregma

(see Methods for details). We found that intrastriatal infusion of

ODQ (50 mM) was sufficient to normalize the increase of STN

CO-I staining observed in the 6-OHDA group (Fig 3b).

Collectively, these observations point to the involvement of the

indirect striatopallidal MSNs, as opposed to the direct striatonigral

MSNs, in mediating the ODQ-dependent reversal of STN

hyperactivity.

We next determined the behavioral significance of ODQ

administration by measuring changes in forelimb akinesia in

6-OHDA-lesioned rats. Forelimb akinesia can be quantified in

animal models of PD by means of the stepping test, which assesses

behavioral parameters thought to resemble limb akinesia and gait

problems seen in PD patients [25,26,27]. All 6-OHDA-lesioned

rats included in this study exhibited similar stepping deficits

(Fig 4a–c). We found that the same acute ODQ treatment used in

the above biochemical, electrophysiological, and histochemical

studies was also effective in reducing forelimb stepping deficits

observed in 6-OHDA-lesioned rats. Moreover, the anti-akinetic

effects of ODQ were found to be dose-dependent in nature, as

revealed by the magnitude and duration of stepping improvement

observed with increasing doses of ODQ (Fig 4d). Next, we assessed

the effect of ODQ administration on stepping deficits induced by

DA depletion in the chronic MPTP mouse model of PD. The

MPTP model was chosen because systemic administration of this

toxin induces a bilateral DA lesion that reproduces the human

Figure 2. Systemic administration of the sGC ODQ reverses the increased striatal cGMP levels and the elevations in striatal activity
observed in 6-OHDA-lesioned rats. (a) Behavioral assessment of 6-OHDA-induced unilateral nigrostriatal DA cell lesions. Compared to sham-
operated controls (n = 11), all 6-OHDA-lesioned rats included in this study (n = 19) exhibited significant impairments in contralateral forelimb
adjustment steps (***P,0.0005, unpaired t-Test), (b) Cell counting of TH positive neurons in the SN at four anatomical levels indicated that the
degree of DA cell loss observed in all 6-OHDA-lesioned rats included in this study was .90%. (c) Striatal tissue cGMP levels were assessed in sham
and 6-OHDA-lesioned rats pretreated with vehicle (n = 5–6 per group) or the sGC inhibitor ODQ (20 mg/kg, i.p.). Chronic DA depletion increased
striatal cGMP levels (**P,0.01 as indicated, Tukey post-hoc test after significant one-way ANOVA) in a manner that was reversed following a single
ODQ treatment (1 hour post injection). (d) Bar graph summarizing the increased firing activity of striatal MSNs recorded from 6-OHDA-lesioned rats
(n = 25 cells/19 rats) relative to sham-operated controls (n = 13 cells/11 rats) (***P,0.001, unpaired t-Test). (e) Electrophysiological traces of
simultaneously recorded striatal single-unit activity and cortical LFPs in a sham and a 6-OHDA-lesioned rat. (f) Time course showing the effects of one
systemic administration of vehicle (n = 5 cells from 5 rats) or ODQ (20 mg/kg, i.p., n = 7 cells from 7 rats) on striatal single-unit activity recorded from
6-OHDA-lesioned rats. ODQ (but not vehicle) markedly reduced elevations in firing rate observed in cells recorded from 6-OHDA-lesioned rats
(***P,0.0005, compared to pre-ODQ activity or to measures taken at identical time points as indicated, Tukey post-hoc test after significant ANOVA).
doi:10.1371/journal.pone.0027187.g002
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parkinsonian state more accurately than that obtained with

unilateral lesions [28,29]. Consistent with our previous study

[25], when MPTP was administered to 10-month old mice, the

average number of adjusting steps observed in the lesioned mice

gradually declined throughout the six weeks of intoxication until it

reached a steady state that endured .3 weeks after the last MPTP

injection. At this time point, the degree of DA cell loss in the SN

was ,80% (Fig 5a–b) and the stepping performance was markedly

reduced by ,60% (Fig 5c). A one-time injection of ODQ (10 mg/

kg, s.c.) was sufficient to reverse the reduction in forelimb stepping

behavior observed in MPTP-lesioned mice (Fig 5d) in a manner

that was similar to that observed with acute injection of L-DOPA

[25]. No apparent improvement in the number of stepping

adjustments was observed with saline injection or with a lower

dose of ODQ (5 mg/kg) (Fig 5d). Together, these findings attest to

the effectiveness of systemic administration of the selective sGC

inhibitor ODQ in reversing DA depletion-induced akinesia in two

well characterized experimental models of parkinsonism.

Discussion

We have uncovered an important role of the sGC-cGMP

signaling pathway in the regulation of normal corticostriatal

transmission and basal ganglia dysfunction induced by chronic DA

depletion. We found that systemic administration of the selective

sGC inhibitor ODQ decreased corticostriatal transmission in

naı̈ve rats in a manner that was reversed by intrastriatal infusion of

a cGMP analogue. Moreover, ODQ administration markedly

reversed the abnormal elevation in cGMP levels and reduced the

increase in spontaneous firing observed in the DA-depleted

striatum. These effects of ODQ were also associated with a

normalization of the characteristic increase in metabolic activity

observed in the STN following nigrostriatal DA cell loss.

Moreover, the effects of systemically delivered ODQ on STN

hyperactivity were replicated in studies using intrastriatal micro-

injections of this drug, indicating that striatal sGC inhibition leads

to downregulation of striatopallidal output. The effects of ODQ on

neuronal hyperactivity in the striatum and the STN were found to

be behaviorally relevant as a similar systemic treatment transiently

attenuated the reduction in forelimb use observed in 6-OHDA-

lesioned rats and mice chronically treated with MPTP. These

observations, along with previous studies [14,15], provide strong

evidence that an upregulation of sGC-cGMP signaling in the DA-

depleted striatum may contribute to the enduring changes in

neuronal excitability and locomotor activity observed in parkin-

sonian animals. Furthermore, our data demonstrate for the first

time that pharmacological attenuation of striatal sGC-cGMP

signaling represents a promising novel non-dopaminergic thera-

peutic approach for restoring basal ganglia dysfunction and

subduing motor symptoms associated with PD.

Presently, little is known as to how attenuation of striatal sGC-

cGMP signaling may rescue dysfunctional basal ganglia output

and behavioral abnormalities associated with experimental

parkinsonism. However, converging evidence now indicates that

striatal sGC-cGMP signaling plays a key role in the regulation of

MSN excitability [12,17], short and long-term corticostriatal

synaptic plasticity [11,12,30,31,32], and neuronal synchrony

[12,33,34,35]. The current studies examining the effects of

ODQ on cortically-evoked striatal synaptic potentials in naı̈ve

rats indicate that tonic cGMP signaling also facilitates corticos-

triatal transmission within striatal networks. Taken together with

previous studies [12,16,17], these findings show that transient

elevations in intracellular cGMP markedly increase striatal MSN

excitability and facilitate corticostriatal excitatory synaptic trans-

mission. Notably, acute D2 (but not D1) receptor blockade mimics

the facilitatory effect of DA depletion on striatal sGC activity

[36,37] and MSN activity [38]. Thus, despite that striatal MSNs

from both the direct and indirect output pathways express high

levels of all components of the sGC-cGMP second messenger

cascade [6,7], the above studies suggest that alterations in cGMP

signaling observed after striatal DA-depletion could result from a

preferential upregulation of cGMP synthesis in D2 receptor-

expressing striatopallidal neurons of the indirect pathway [16].

Importantly, intrastriatal infusion of ODQ was sufficient to

normalize the increased metabolic activity observed in the STN of

6-OHDA-lesioned rats. This finding is of great translational value

as STN hyperactivity is one of the pathophysiological hallmarks of

parkinsonism that has been repeatedly reported in animal models

and in PD. In addition to the indirect pathway (i.e., striatopallidal

neurons), there are other afferents known to contribute to the STN

hyperactivity such as the excitatory inputs from the parafascicular

nucleus of the thalamus and the pedunculopontine nucleus in the

brainstem. However, the above outcomes from studies employing

intrastriatal ODQ infusions point to a primary role of the indirect

pathway in mediating both the STN hyperactivity and the ODQ-

dependent reversal of this pathophysiological state induced

following DA depletion.

At the cellular level, even less is known regarding how

alterations in striatal sGC-cGMP signaling contribute to dysreg-

ulation of corticostriatal-striatopallidal transmission observed in

the DA-depleted striatum. Given the current findings and previous

reports [12,17], it is possible that inhibition of the sGC-cGMP

Figure 3. Role of the indirect striatopallidal pathway in
mediating the ODQ-dependent reversal of STN hyperactivity.
(a) Bar graph showing levels of CO-I staining in the STN of sham-
operated and 6-OHDA lesioned rats following systemic administration
of vehicle or ODQ (20 mg/kg, i.p.). ODQ significantly reduced the
increase in CO-I levels observed in the STN of 6-OHDA-lesioned rats
(n = 10–11 rats/group; ***P,0.0005 as indicated, Tukey post-hoc test
after significant one-way ANOVA). Inset: Examples of coronal sections of
STN derived from CO-I staining showing the reversal effect of ODQ.
(b) Summary of the effect of single intrastriatal infusion (0.1 ml/min for
10 min) of vehicle (0.5% DMSO in aCSF) or ODQ (50 mM) on STN CO-I
staining. Intrastriatal ODQ also normalized the increased STN CO-I
observed in 6-OHDA-lesioned rats (n = 5–7 rats/group; *P,0.05,
**P,0.005 as indicated, Tukey post-hoc test after significant one-way
ANOVA). Inset: Sections of CO-I staining showing the reversal effect of
intrastriatal ODQ on STN activity.
doi:10.1371/journal.pone.0027187.g003
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signaling pathway reduces the abnormal increase in intrinsic

excitability observed in striatal MSNs following chronic DA

depletion. Indeed, under DA-depleted conditions pharmacological

downregulation of sGC-cGMP signaling (i.e., following ODQ

administration) may preferentially affect striatopallidal neurons

because they are likely to exhibit increased cyclic nucleotide

production and PKA/PKG/DARPP-32 activation as a result of

decreased D2 receptor-mediated suppression of adenylate cyclase

and sGC activity [10]. This prediction is consistent with previous

studies showing that drugs that augment cAMP (i.e., the adenylate

cyclase activator forskolin) or cGMP (i.e., the phosphodiesterase

inhibitor zaprinast) levels in MSNs increase the excitatory impact

of corticostriatal transmission on these cells [17,39]. Activation of

the sGC-cGMP signaling pathway is also known to stimulate

presynaptic facilitation of glutamate release [40], and to increase

surface expression of AMPA receptors at postsynaptic sites [41].

Taken together, these observations indicate that concurrent

downregulation of pre- and postsynaptic sGC-cGMP signaling at

corticostriatal synapses may be sufficient to normalize the

abnormally augmented corticostriatal-striatopallidal transmission

observed following DA depletion.

Unveiling the role of non-dopaminergic neural systems in the

pathophysiology of experimental parkinsonism has great translational

value, as this will open new avenues for treating PD and other

debilitating neurological disorders. For instance, given the results of the

current study, it is very likely that drugs designed to stimulate

metabolism of excessive cGMP (and possibly cAMP) via activation of

one or more of the numerous isoforms of phosphodiesterases expressed

in the striatum [42,43] will maximize the specificity of this novel

treatment approach. In support of this, in the current study we

demonstrated that a second messenger-based therapy (i.e., sGC

inhibition and decreased cGMP signaling) is effective for reversing

basal ganglia dysfunction and akinesia induced following DA depletion.

These observations should lead to a broader understanding of how

cyclic nucleotide signaling cascades can be modulated as an approach

for treating motor symptoms associated with PD and related

neurological disorders. Future studies will have to determine whether

an enduring reversal of parkinsonian symptoms can be achieved with a

treatment regimen designed to chronically downregulate striatal sGC-

cGMP signaling. Moreover, novel studies examining the potential

utility of combination therapy using low doses of L-DOPA and

inhibitors of sGC-cGMP-PKG signaling are also warranted.

Materials and Methods

All experimental procedures met the NIH guidelines for the

care and use of laboratory animals and were approved by the

Rosalind Franklin University of Medicine and Science Institu-

tional Animal Care and Use Committee (Animal Welfare

Assurance Number A3279-01, protocols 08-01 and 10–19). All

animals were kept under conditions of constant temperature (21–

23uC) and maintained on a 12:12 hour light/dark cycle with food

and water available ad libitum. All chemicals were purchased from

Sigma-Aldrich (St. Louis, MO) whereas ODQ was purchased

from Tocris Bioscience (Ellisville, MO).

Figure 4. Dose dependent effects of ODQ on reducing forelimb stepping deficits observed in 6-OHDA-lesioned rats. (a–c) Bar graphs
showing the effect of systemic ODQ administration (10, 20, 40 mg/kg, i.p.) on deficits in forelimb use in 6-OHDA lesioned rats assessed with the
stepping test. ODQ treatment transiently attenuated stepping deficits observed in 6-OHDA lesioned rats in a dose-dependent manner (n = 8 rats/
group; *P,0.05, **P,0.005, ***P,0.0005, compared to baseline or time 0, Tukey post-hoc test after significant two-way ANOVA). (d) Summary graph
(% change to baseline or time 0) depicting the impact of ODQ administration (10, 20, 40 mg/kg, i.p.) on deficits in forelimb use observed in 6-OHDA
lesioned rats (*,+P,0.05, **,++P,0.005, ***P,0.0005, compared to measures taken at identical time points as indicated, Tukey post-hoc test after
significant two-way ANOVA).
doi:10.1371/journal.pone.0027187.g004
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PLoS ONE | www.plosone.org 5 November 2011 | Volume 6 | Issue 11 | e27187



Drug preparation
In studies involving systemic drug administration, ODQ (10–

40 mg/kg) was dissolved in vehicle consisting of 10% Cremophor

EL in 0.9% saline [12]. In studies using striatal ODQ

microinjections, ODQ was dissolved in 0.5% DMSO in artificial

cerebral spinal fluid (aCSF) and infused into the striatum (see

below) at a concentration of 0.05 nmol/mL. The cGMP analog

8-Br-cGMP was dissolved in aCSF [17] and infused into

the striatum (0.1 ml/min for 10 min) at a concentration of 20

nmol/mL as previously described [43–46].

Local field potential recordings of cortical-evoked striatal
postsynaptic potentials in vivo

To determine the specificity of the pharmacological effects of

the sGC inhibitor ODQ for downregulation of cGMP and the

impact of this attenuation on corticostriatal transmission, we

examined the effects of local striatal microinfusions of vehicle or

the cGMP analog 8-Br-cGMP on LFPs evoked in the striatum

during cortical stimulation. To this end, a concentric bipolar

electrode (SNE-100; Better Hospital Equipment, Rockville Centre,

NY) was used to stimulate the frontal cortex (B: 2.7 to 3.2 mm, L:

1.5 to 2.2 mm, V: 1.5 mm), while a second concentric bipolar

electrode attached to a 28-gauge stainless steel cannula (Plastics

One Inc., Reannex, VI) was placed in the dorsal striatum (B: +0.5,

L: 3 mm, V: 24.5 mm) to enable the concurrent recording of

evoked postsynaptic potentials (PSP) and local microinfusion of

vehicle/cGMP analog (Fig 1a). Only naı̈ve adult male Sprague-

Dawley (Harlan, Indianapolis, IN) rats (250–350 g) were included

in this set of recordings. As previously described [11,12,16],

animals were deeply anesthetized with urethane (1.5 g/kg, i.p.),

placed in a stereotaxic apparatus (ASI instruments, MI) and

maintained at 37uC with a heating pad (Vl-20F, Fintronics Inc,

Orange, CT). Cortically-evoked striatal PSPs were amplified

(NeuroData, Delaware Water Gap, PA), filtered (bandwidth 0.1–

100 Hz), digitized (Digidata 1442, Molecular Devices), acquired

(Axoscope, Molecular Devices), and analyzed (Clampfit 10,

Molecular Devices) at a sampling rate of 10 kHz. The intensity

of stimulation (0.5 to 0.9 mA range of single square pulses of

0.3 ms duration delivered every 10 s) was chosen from the

minimum amount of current to elicit a PSP with ,15% variability

in amplitude and slope. The isolated response was therefore

monitored for at least 5 min to ensure the stability of the PSP,

followed by 15 min of baseline PSP recording. Intrastriatal

infusion of the cGMP analog 8-Br-cGMP or vehicle (aCSF) was

delivered at the rate of 0.1 ml/min for 10 min using a syringe

minipump (BASi Baby Bee Syringe Drives, CA).

6-OHDA lesion and stepping test
Adult male Sprague-Dawley (Harlan, Indianapolis, IN) rats

weighing ,250 g were randomly assigned to groups receiving

either 6-OHDA or vehicle (sham group). All rats were adminis-

tered desipramine (10 mg/kg, i.p.) 30 min prior to surgery. Rats

were then anesthetized with sodium pentobarbital (55 mg/kg, i.p.)

and placed into a stereotaxic apparatus. Eight micrograms of 6-

OHDA-free base in 4 mL of 0.1% ascorbic acid was injected

unilaterally into the medial forebrain bundle (B: 24.3 mm, L:

+1.6 mm, V: 28.3 mm from cortical surface) [18,27]. The sham

lesion was performed by injecting 4 ml of 0.1% ascorbic acid. The

injection rate was 0.4 ml/min and the cannula was left in place for

an additional 5 min before slowly being removed. Four weeks after

surgery, the effect of 6-OHDA on forelimb akinesia was evaluated,

as previously described [26,27]. All biochemical, electrophysio-

logical, histochemical, and behavioral studies were performed .4

weeks after the 6-OHDA or vehicle infusion (average: 4665 days).

Quantification of striatal cGMP levels
Rats were decapitated and their brains rapidly excised on an

ice-cold surface. Sections containing the striatum were collected

and resuspended separately in a chilled solution of 0.1 N HCl,

followed by sonication for 15 s. Samples were subsequently

centrifuged at 14,000 rpm for 15 min, and the resulting

supernatant was collected and stored at 280uC until further

processing. The Direct cGMP ELISA Kit-Non-acetylated Version

(NewEast; Malvern, PA) was used to determine the levels of cGMP

according to manufacturer’s instructions. For each sample, the

concentration of cGMP was normalized to its protein content

determined with Bio-Rad’s DC Protein Assay (Bio-Rad; Hercules,

CA). For each animal, a single value was obtained per striatal

sample.

Figure 5. Systemic ODQ administration improves stepping
performance in chronic MPTP-treated mice. (a) Chronic MPTP
treatment significantly reduced the number of TH positive neurons in
the SN. The data were collected at four anatomical levels from vehicle
or MPTP-treated mice 3 weeks following the last injection (**P,0.005
compared to vehicle). (b) Images of TH immunostaining showing the
degree of reduction of TH positive cells in the SN at four anatomical
levels (mm from bregma): 23.1 (i, v), 23.3 (ii, vi), 23.5 (iii, vii) and 23.7
(iv, viii). (c) Summary graph depicting the effect of chronic saline (n = 9)
or MPTP (20 mg/kg, s.c., n = 13) injections on forelimb stepping
performance. A significant decrease in the number of adjusting steps
was observed after 6 weeks of MPTP injection (**P,0.005 vs. vehicle,
Tukey post-hoc test after significant ANOVA). (d) Time course showing
the effect of a single s.c. injection of vehicle and ODQ (5 and 10 mg/kg)
on MPTP-induced stepping deficits (n = 5–7 mice per group). A transient
improvement in stepping performance was detected 30–90 min after
ODQ administration (**P,0.005, compared to measures taken at time 0
or identical time points in vehicle, Tukey post-hoc test after significant
two-way ANOVA).
doi:10.1371/journal.pone.0027187.g005
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Single unit recordings of striatal activity in vivo
All in vivo electrophysiological recordings were conducted

following the same experimental procedure as previously described

[11,12,16]. Briefly, animals were deeply anesthetized with

urethane (1.5 g/kg, i.p.), placed in a stereotaxic apparatus

(Narishige International USA Inc) and maintained at 37uC with

a heating pad (Vl-20F, Fintronics Inc, Orange, CT). Concurrent

recordings of striatal single-unit activity (B: 20.5 to 2.0 mm, L: 2.0

to 3.5 mm [44]) and cortical local field potentials (B: 3.0 to

4.0 mm, L: 1.5 to 2.2 mm lateral [44]) were obtained in all

experiments. The signals were amplified (NeuroData, Delaware

Water Gap, PA or Multiclamp 700B, Molecular Devices,

Sunnyvale, CA), filtered (bandwidth 300–3000 Hz), digitized

(Digidata 1322A, Molecular Devices) and acquired (Axoscope,

Molecular Devices) at a sampling rate of 20 kHz. The isolated

single-unit was typically monitored for at least 5 min to ensure the

stability of the firing rate, firing pattern, and spike waveform,

followed by 10 min of baseline activity recording. All time series

analyses were performed with Statistica 6 (Statsoft Inc., Tulsa,

OK); the interspike interval was obtained by means of spike

amplitude discrimination (Clampfit 10, Molecular Devices).

Striatal Microinjections
All surgical procedures performed before striatal microinjections

were conducted as described above (see In vivo electrophysiology).

A single stainless steel cannula (28-gauge, Plastics One Inc.,

Reannex, VI) was first stereotaxically implanted in the dorsal

striatum (B: 0.7 mm, L: 3.0 mm, V: 24.5 mm). At least 30 min

after implantation, each rat received an intrastriatal infusion

(0.1 ml/min for 10 min) of either vehicle (0.5% DMSO in aCSF)

or ODQ (50 mM) and all cannula were left in place for 5 min after

completion of the microinjection. The same cannula was then

placed in a more caudal and lateral position (B: 20.3 mm), and an

identical infusion of vehicle or ODQ was performed 20 minutes

after completion of the first microinjection. The cannula was left in

place for an additional 60 min after completion of the second

microinjection, and brains were then extracted for cytochrome

oxidase histochemistry.

Cytochrome oxidase histochemistry and densitometry
measures

Histochemistry of CO-I was performed according to a modified

protocol of Tseng et al (2006) [45]. Coronal sections (50 mm thick)

containing the STN were mounted onto glass slides and incubated

for 90 minutes at 37uC in 0.1 M PB (pH 7.4) containing 0.50 g/L

of 3,39-diaminobenzidine, 0.33 g/L of horse heart cytochrome c,

44 g/L of sucrose, and 0.2 g/L of catalase. After a 90- min

incubation, slides were rinsed, dehydrated and coverslipped.

Stained sections were captured with a slide scanner (Coolscan

IV; Nikon, Japan), and the mean relative optical density (ROD)

per pixel was determined by subtracting the optical density of the

background from that of the STN. Background OD was measured

at the level of the internal capsule. For each animal, a single value

per STN was obtained by averaging measurements from 4–6

sections.

MPTP model and stepping test
Ten-month old C57BL/6 male mice weighing 25–35 g were

single housed with food pellets and water available ad libitum. The

animal room was maintained at a constant temperature and

humidity on a 12 hour light-dark cycle. All animals were

acclimated to the animal facility for at least 3 weeks before their

use. A baseline stepping performance was monitored in all animals

for 2 to 3 days before the first injection, and at least 3 trials of the

stepping test were obtained before they were randomly assigned to

receive weekly injections of MPTP or vehicle. Each mouse

received 2 injections per week (3.5 day intervals) of MPTP

(20 mg/kg, s.c.) or vehicle for 6 weeks (12 injections), and

subsequent changes in the number of adjusting steps were

recorded. The stepping test was performed as previously described

[25].

Tyrosine hydroxylase immunohistochemistry and
dopamine cell counting

The extent of the DA lesion was estimated by means of TH

immunohistochemistry performed on free-floating sections, as

previously reported [25,27]. Briefly, serial coronal sections of

50 mm thick were obtained from the mesencephalon using a

freezing microtome (SM-2000R; Leica Microsystems, Germany)

and exposed to rabbit anti-TH for 72 hours. Sections were then

incubated for 2 hours in biotinylated goat anti-rabbit IgG (1:500;

Vector Laboratories, CA), and the bound antigen-antibody

complexes were visualized with 3,39-diaminobenzidine and

H2O2 tablets dissolved in 0.05 M Tris, pH 7. The degree of the

DA lesion was estimated by counting the number of TH positive

neurons in the SN at four serial coronal sections (200 mm apart)

using ImageJ (NIH, USA, http://rsb.info.nih.gov/ij/). The 4

stereotaxic planes lie between 25.2 and 25.8 mm from bregma in

rats and 23.1 to 23.7 mm from bregma in mice.

Statistical analyses
All measurements are expressed as mean 6 SEM and the

differences between experimental conditions were considered

statistically significant when P,0.05. In cases where data were

not normally distributed or had unequal variances, Kruskal-Wallis

ANOVA by ranks was used for multiple comparisons involving

interrelated proportions.
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