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Abstract

Biological networks change dynamically as protein components are synthesized and degraded. Understanding the time-
dependence and, in a multicellular organism, tissue-dependence of a network leads to insight beyond a view that collapses
time-varying interactions into a single static map. Conventional algorithms are limited to analyzing evolving networks by
reducing them to a series of unrelated snapshots. Here we introduce an approach that groups proteins according to shared
interaction patterns through a dynamical hierarchical stochastic block model. Protein membership in a block is permitted to
evolve as interaction patterns shift over time and space, representing the spatial organization of cell types in a multicellular
organism. The spatiotemporal evolution of the protein components are inferred from transcript profiles, using Arabidopsis
root development (5 tissues, 3 temporal stages) as an example. The new model requires essentially no parameter tuning,
out-performs existing snapshot-based methods, identifies protein modules recruited to specific cell types and
developmental stages, and could have broad application to social networks and other similar dynamic systems.
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Introduction

Systems biology suggests that we can understand a biological

system by decomposing it hierarchically into modular sub-systems.

In a molecular-scale network, these sub-systems include multi-

molecular complexes that form dynamic associations with other

complexes. These systems can be represented naturally as time-

dependent networks whose vertices are biomolecules (DNA/genes,

RNA/transcripts, proteins, metabolites) and whose edges repre-

sent physical interactions.

Large-scale compendiums of physical interactions are primarily

static lists that lack the dynamic aspects of living molecular

systems. Protein-protein interactions make up by far the largest

interaction class available in compendiums. These interactions

come primarily from high-throughput screens that may not be

specific to a single temporal stage (such as affinity purification/

mass spectrometry of yeast protein complexes obtained as an

average over the cell cycle) or may involve an engineered system

entirely removed from natural cellular dynamics (such as two-

hybrid screens). Other interactions inferred from numerous

bioinformatics methods, including cross-species inference, neces-

sarily lack information about spatiotemporal network dynamics.

The approach used here is to assume that interactions collected

in a compendium represent a superposition of the possible

interactions that could occur within a cell. From a different data

source, we obtain a spatiotemporal profile of the active network

components. These data sets are joined in a probabilistic model,

termed a dynamic hierarchical stochastic block model, to infer

network evolution. Our application is to protein interaction

networks, but the same techniques could be applied to other types

of networks, or to a complex network of multiple interaction types.

Spatiotemporal dynamics of proteins are inferred from transcript

presence or absence in mRNA profiling studies, an admittedly

inaccurate proxy for protein levels but nevertheless the primary

type of dynamic data readily available for cellular systems.

The application is to dynamic evolution of protein networks

required for root development in Arabidopsis, based on a classic

data set generated by Benfey and coworkers [1]. The physical

interactions used in this study are obtained from work by Geisler,

Provart and coworkers [2] and available in The Arabidopsis

Information Resource (TAIR) ftp://ftp.arabidopsis.org/home/

tair/Proteins/ [3].

This work, termed DYHM for ‘‘Dynamic Hierarchical Model’’,

builds on previous studies that used mRNA abundance as a proxy

for protein abundance, and when applied to yeast cell cycle data [4]

showed the existence of protein complexes that are specific to cell

cycle phases [5,6]. These studies, however, typically consider each

temporal stage as an independent snapshot. A protein complex at an

initial time has no explicit connection with itself at subsequent times.

Analysis of a series of snapshots becomes idiosyncratic and ad hoc,

both in terms of the algorithms for clustering a snapshot of a

network (often by single-linkage clustering with an adjustable

threshold on the confidence of each network edge) and in following

the evolution of a complex across snapshots.

A further assumption of previous methods, and of this work, is

that an interaction will occur if interacting components are both
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expressed. In other words, if an interaction between proteins A and

B is reported in a database, and transcripts corresponding to genes

A and B are present, then the interaction is assumed to be active. In

reality, interactions can depend on protein modifications, localiza-

tion changes, co-expression of other proteins, and environmental

cues. Our model does not address these difficult points.

To solve the problem of network dynamics, we adapt a

probabilistic generative model that has performed exceptionally well

for analyzing static networks. The model is termed a stochastic block

model, which in our context means that we assign proteins to blocks

(or groups), and the probability of an interaction pattern between two

proteins depends only on the groups to which they are assigned.

Recent work showed that hierarchical block models, which

represent intermediate levels of organization in a network, provide

state-of-the-art performance in identifying meaningful groups and

predicting missing links [7,8]. Vertices in an observed network are

assigned to leaf nodes in a hierarchically branching tree. We

introduce an extension in which group-group interactions are

constant over space and time, but group membership can vary

dynamically. Dynamic evolution of group-group interaction

parameters can be added to this model (see Discusion).

As a second independent contribution, we have made this model

scalable to larger networks by replacing slowly-converging Markov

chain Monte Carlo (MCMC) sampling with the variational solution

to a mean-field approximation. The mean-field problem can be

solved in polynomial time, compared with the complex optimization

of the original problem thought by many to be NP-hard with an

exponentially large search space. The mean-field approximation

converges rapidly and accurately for synthetic data, and provides

new biological insight when applied to root development.

For static networks, related work has used Variational Expectation-

Maximization [9] to identify interacting communities in interaction

networks [10]. This previous work assumed a homogeneous pattern

of interactions both within groups and between groups, as opposed to

the heterogeneity observed in biological networks. Another type of

static network model, solvable using expectation-maximization [11],

uses an asymmetric model in which groups of vertices interact with

individual vertices [12–14]. This latter model has very recently been

extended to dynamic networks [15].

Results

Our dynamic network clustering algorithm has essentially two

adjustable parameters: (1) the number of clusters, defined by the

branching depth d of a hierarchical tree; (2) the relative

importance given to optimizing clusters within each snapshot

compared to enforcing smoothness between snapshots, defined by

a parameter l. Methods that sample over different numbers of leaf

nodes are possible [10]. In practice, we have found that results for

occupied leaf nodes are stable provided that some leaf nodes are

unoccupied (see Methods).

The second parameter, l, interpolates between an independent

model for each snapshot (l~0) and a single model that superimposes

all the snapshots (l??). As discussed below, however, a value of l
can in fact be selected using a penalized likelihood. Results are

presented first for simulated data, to establish the performance of the

method, and then for Arabidopsis root development.

Simulation Studies
Static synthetic data. Prior to testing on dynamic networks,

we tested our hierarchical model on static networks, comparing

the variational approximation to the original MCMC algorithm

and to competing methods for analyzing interaction networks. We

selected two representative competing methods, the popular

MCODE [16] that extracts clusters from locally dense regions,

and the hypergeometric p-value for neighbor sharing that ranks

pairs of vertices without an intermediate step of predicting clusters

or complexes [17].

We assessed performance from predicted pairwise co-member-

ship scores. Overall tests were repeated for 100 different static

networks, and the precision and recall were computed according to

amassed counts of false-positives, false-negatives, and true-positives.

The number of groups within each simulated network was selected

uniformly from 5 through 10 inclusive, and the number of vertices

within each group was also selected uniformly from 5 through 10.

The probability Pwithin of within-group edges was selected

uniformly between 0.05 and 0.1, and the probability Pbetween of

between-group edges was selected uniformly between 0.05 and

0.08. Parameter sets with Pwithin v Pbetween were discarded. We

then generated a random network from the parameters, knowing

true membership of all vertices. After ranking pairs by each method,

we constructed Precision-Recall (PR) curves.

Performance on static networks. While the other methods

rely on local metrics, inference on the hierarchical model seeks to

optimize a total configuration of vertex membership. In our results

(Fig. 1A), both the MCMC and the variational approximation for

the hierarchical model are far superior to other methods tested.

The poor outcome of MCODE may arise from its greedy local

search strategy. Once a misleading ‘‘seed’’ vertex is chosen,

incorrect clustering may be locked in.

The MCMC algorithm, which samples from a full joint

distribution, performs somewhat better than the variational

approximation in which all group memberships are decoupled

(Fig. 1A, black solid line versus dashed line). The drawback of

MCMC, however, is the long computational time to obtain

converged results. The variational method, in contrast, takes

polynomial time, and it converged quickly for all the networks we

tested. We found that the variational approach was at least 10|
faster for these small simulated networks, and for larger networks

(w100 vertices) we did not have sufficient CPU resources to test the

MCMC algorithm.

Dynamic synthetic data. The dynamic data was generated

by assigning 30 total vertices initially to 5 groups. A snapshot of a

set of edges was then generated by adding within-group edges to

the snapshot with probability Pwithin, and adding between-group

edges with probability Pbetween. After each snapshot, the edges

are erased, each vertex switches to a different group at random

with probability Pswitch, and the process continues. This process

permits the number of vertices in each group to change with time.

The known group assignments provide a gold standard of known

positives to assess the inferred co-membership probabilities.

Results from DYHM using a depth-3 hierarchy (8 groups) at

various values of l, including extreme values corresponding to

independent and superimposed snapshots, were compared with

co-membership inferred by the hypergeometric method ([17]; see

Methods). For each snapshot we generated a PR curve and a

corresponding F1 score (the maximum harmonic mean of

precision and recall along the curve).

Performance on dynamic networks. On relatively easy data

sets (Pwithinw0:6 and Pbetweenv0:3), all models work well (results

not shown). On harder simulation tests, however, DYHM gave

superior performance. An example is Pwithin~0:5, Pbetween~0:3,

and Pswitch = 0.05 (Fig. 1B). The value of l selected by penalized

likelihood (which requires no knowledge of the true group

assignments) also gives the best performance in predicting time-

dependent co-membership, F1&0:9 corresponding to roughly 90%

precision and recall. It performs better than independent analysis of

each static snapshot, corresponding to l~0, with F1&0:8. We note

Dynamic Networks

PLoS ONE | www.plosone.org 2 January 2010 | Volume 5 | Issue 1 | e8118



that the l~0 version of DYHM itself out-performs the

hypergeometric predictor, which gives F1&0:7.

We further tested the ability of l to track networks with

increasingly labile group membership, ramping Pswitch through

values 0.01, 0.05, 0.2, 0.3, and 0.5, on non-trivially simulated

network data with Pwithin and Pbetween respectively fixed at 0:5
and 0:3. In all cases tested, the value of l with the best penalized

likelihood gave the best performance (results not shown).

Arabidopsis Root Development
Dynamic biological network. The root is an ideal model

for development because temporally staged samples are easily

obtained by cutting further back from the root tip, and distinct cell

and tissue types are observed radially outward from the root center

(Fig. 2A). A classic study mapped gene expression activity in 5

spatial regions across 3 developmental stages [1], yielding 15

spatiotemporal snapshots.

High-confidence interactions for the corresponding proteins

(confidence value §10) were extracted from TAIR Interactome

2.0 [2]. For this superposition of all genes active anywhere in the

root map, we iteratively deleted network vertices with degree less

than or equal to 3 until no more vertices could be removed. The

resulting network had 332 vertices and 1163 edges. Subnetworks

were then generated by extracting the active genes (expression

level §75 as reported by [1]; see Discussion) and their interactions

for each of the 15 snapshots. Each snapshot had approximately

150 to 220 genes and 5 interactions per gene (Table. 1).

Model selection. The depth of the hierarchical tree was set

to 6 (64 groups). Results for occupied groups were substantially

unchanged for depth-7 trees (128 groups, results not shown).

DYHM introduces 8 spatiotemporal couplings with strength l for

adjacent tissues and stages (Fig. 2A). For the observed data D and

a specific value of l, we used a penalized likelihood to determine

the degree of time-smoothness:

L0(Djl)~L(Djl)|K !(KT{K)!=(KTz1)!:

With M total groups (here 64), a total of M(M{1):KT directed

transitions are possible. Of these, a subset K are observed at least once

across the 8 coupled snapshots. The penalty K!(KT{K)!=(KTz1)!
gives equal weight to each of the C(KT ,K) models with exactly K
transitions, which results in a steeper penalty for models with more

transitions. This penalty arises from a Bayesian viewpoint in which

each of the KT possible transitions is observed independently with

probability h. Integrating
Ð 1

0
hK (1{h)KT {K dh produces the stated

form of the penalized likelihood. We performed a search over a sparse

grid, l~0:01, 0:05, 0:1, 0:2, and selected l~0:1 as the optimal

value.

Hierarchical clustering and spatiotemporal

mapping. Dynamical clustering using DYHM produces

hierarchical cluster assignments for each of the 15 spatiotemporal

samples. A reduced view of the results, averaging the inferred

memberships over the 15 samples, is provided (Fig. 2B). The node

color represents the averaged interaction enrichment. Leaf nodes,

shaped as squares, are groups of clustered genes. These leaves are

indexed from 1 (leftmost) to 64 (rightmost) for later reference.

Zoomed-in views below illustrate how selected clusters evolve over

space and time in increasing resolution (Fig. 2C,D).

This tree view shows that most of the groups are assortative

(green nodes, enriched for self-interactions), which is typical of

protein complexes. Some leaf nodes assemble hierarchically into

larger assortative modules, and these components often share

similar biological functions. For instance, four of small nuclear

RNA/RNP complexes (snRNA/P) are located adjacently and

form a clade (terminal leaves #39-40). Cladistic assignments are

also observed for EIF (eukaryotic translation initiation factor)

complexes (leaves #1-4) and Splicing/Ribosome complexes

(leaves #41-48).

An overview of terminal groups shows how each of the 64

clusters varies over the 15 spatiotemporal snapshots in terms of

occupancy and within-cluster interactions (Fig. 2C). Several of the

clusters correspond to protein complexes that appear constitutively

active, whose transcripts would typically be filtered out as

unchanging. Examples are #7 (membrane fusion), #10 (RNA

Pol II), #14 (syntaxin and SNARE proteins), and #26 and #33

(proteasome). A more dynamic pattern is observed for clusters that

are conditionally activated, most often with complex members

present at early times and then absent at later times to yield a

Figure 1. Simulation study. (A) Comparison on static synthetic networks. From top to bottom, lines correspond Precision-Recall curves of four
different methods. Dashed black: Hierarchical model trained by MCMC sampling. Solid black: Hierarchical model trained by variational approximation.
Solid blue: Hypergeometric method [17]. Solid red: MCODE [16]. (B) Comparison on dynamic synthetic networks. From top to bottom, lines denote
correspond to F1 scores over time frames. Blue circle: DYHM with l~0:05. Black squre: DYHM with l~0:01. Green triangle: DYHM with l~0:1. Red
diamond: DYHM with l~0. Dashed green: Hypergeometric method [17] applied separately to each each time frame.
doi:10.1371/journal.pone.0008118.g001
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Figure 2. Arabidopsis root development. (A) Lateral root sections correspond to distinct tissues, and vertical sections correspond to to distinct
developmental stages. (B) Average hierarchical decomposition of 15 networks. Node color indicates enrichment (green) or depletion (red) of within-
cluster (at terminal nodes) or between-cluster (at internal nodes) edges relative to random connectivity. (C) The evolution of each cluster is displayed
over the 5 tissues and 3 stages. Size indicates the number of proteins within the cluster, and color indicates edge enrichment. (D) Selected micro-
views on network dynamics. The leftmost example shows delayed activity of two genes in developmental process. The other two examples include
complexes that are more active at early stages. Sub-networks in each panel were drawn in identical topology. Gene names are labeled once. See text
for details of selected clusters.
doi:10.1371/journal.pone.0008118.g002
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smaller core complex. Examples are #44 (mRNA polyadenyla-

tion), #49 (a core of prefoldin and the H2A.Z histone variant

HTA9 has additional tubulin-related complex members during

stage 1), and #60 (a PCNA DNA repair complex is present in

stage 1 but vanishes in stages 2 and 3). These observations are

consistent with the inference from mRNA data of rapid mitotic

activity during stage 1 [1].

TATA box-binding protein complex. A detailed view of

cluster #54, involved in transcription from TATA box promoters,

highlights this pattern of dynamic complex membership (rightmost

of Fig. 2D). TATA box-binding protein associated factors (TAFs)

have time-specific and tissue-specific activity [18]. One member of

the TAF family, TAF10 (aka AT4G31720, TFIID15), has

preferential and transient expression during the middle

developmental stages of plant organs. Disrupting this tight

regulation causes pleiotropic phenotypic changes and abnormal

morphologies [18].

The majority of the genes in cluster #54 are TAFs, including

TAFII15/TAF10, TAFII21/TAF9, and TAFII59/TAF6. In the

root expression map, TAF10 is a core member of this complex,

while other members are transient. Along the temporal axis, the

TAF10-TAF9-TFIID-1 complex is present during early root

development, persists partially through stage 2, and in the mature

root only TAFII15, TBP2, and the uncharacterized PIK-related

kinase AT2G17930 remain. TAFs provide DNA-binding specific-

ity for TFIIDs, which bind to the basal transcriptional machinery

[19]. The TAF6 (TAFII59) protein appears to be present primarily

in stage 1, although absent from the stele. This factor has a core

interaction motif required for H3/H4 heterodimerization [19],

which suggests regional epigenetic modification in early develop-

ment. At the early stage, this complex also has HAT1 as a

member, a histoneacetyltransferase that is a positive regulator of

transcription in root morphogenesis.

Discussion

We have presented a new method for modeling the spatiotem-

poral dynamics of a biological network. The model takes as input a

series of discrete network states coupled in space and time and

infers a structure of dynamic groups that enter and leave the

network, possibly merging or separating from existing groups.

When applied to synthetic data, the model performs substan-

tially better than existing methods that consider each network

snapshot in isolation. It uses a variational approach that is much

faster than previous Monte Carlo methods and is scalable to

genome-sized networks.

Applied to a biological data set obtained from Arabidopsis root

development, the model reveals the dynamic organization of

network components. Previous analysis of this mRNA data set was

limited to time-varying and spatially-varying genes. Of the roughly

22,000 transcripts interrogated, 1/2 were not expressed in the

root, 1/4 showed differential regulation over space and time, and

1/4 were expressed constitutively. These unchanging transcripts

are filtered out by traditional gene expression analysis.

For our analysis, the activity of each network component is

inferred from transcript profiling, and the set of possible

interactions is obtained from a database compendium. Our

dynamic network model reveals that the constitutive components

form the core of complexes that evolve through the addition and

subtraction of dynamic modules. We are also able to observe

modules that are strictly limited to specific spatiotemporal states

and vanish elsewhere.

Converting real-valued gene expression levels to a binary

presence/absence score for a protein is admittedly problematic.

First, protein levels do not necessarily track mRNA levels. Second,

the level of protein activity may not be adequately represented by

a binary 0/1 score. We adopted this approach in part because it

was used in the original study. Given the promising performance

of our initial application, further work may benefit by incorpo-

rating quantitative measures of gene or protein activity.

Our model considers only about 5% of the 10,000 genes

expressed in Arabidopsis root because these are the only ones with

high-confidence interaction data. Access to a greater number of

interactions, for example including medium and low-confidence

interactions, will help retain more genes in the network model.

The method can also be generalized to incorporate edge

confidence scores. The model is readily extended to incorporate

additional types of network edges, such as gene regulatory

interactions inferred from ChIP/chip experiments for Arabidopsis

[20] and other species.

The model we have introduced can be readily generalized to

incorporate other time-dependent edge types, such as protein-

DNA regulatory interactions or protein-protein modifications.

Time dependence in the model described is limited to time-

varying module membership, but patterns of module-module

interaction are held constant. As an analogy, consider a model of a

citation network where patterns of citation by an author depend

on the author’s research group. In this model, a graduate student

will follow the pattern of his or her PhD mentor, and then will take

on the pattern of his or her postdoctoral mentor. The patterns of

the mentors’ groups remain fixed, however. In a more general

model, the pattern for each mentor can itself evolve. This more

general model is also amenable to an efficient variational

optimization.

These methods may have significant applications to other types

of time-varying networks, such as social networks or other

dynamic social groups where interaction are recorded over time

and space.

Methods

Probabilistic Model
Definition. Given network data D consisting of a set of vertices

V and an adjacency matrix A (or a set of edges), Clauset et al. [7,8]

suggested a model that hierarchically decomposes this set of vertices.

The model likelihood is expressed as a product of Bernoulli

distributions from iteratively dividing V into ‘‘left’’ and ‘‘right’’

subgroups. These divisions take place at internal nodes of a binary

dendrogram. More formally, each internal node r [ I splits graph

vertices assigned to it into left L(r) and right R(r) subsets. The

likelihood is written in terms of the relative edge Er and non-edge

counts �EEr between these left and right subsets, which are the

sufficient statistics of a Bernoulli distribution parameterized by edge

probability hr. We rewrite this as follows:

Table 1. The spatiotemporal variation of active subnetworks.

Stele Endoderm Endo + Cortex Epiderm
Lateral root
cap

Stage 3 217 (569) 215 (565) 225 (603) 219 (586) 211 (543)

Stage 2 182 (415) 185 (432) 193 (462) 188 (440) 172 (391)

Stage 1 150 (328) 151 (331) 156 (354) 144 (324) 135 (285)

The numbers of active genes at each position are shown without parentheses;
the numbers of active interactions are shown within the parentheses.
doi:10.1371/journal.pone.0008118.t001
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L0(D; h)~ P
r[I

hEr

r (1{hr)
�EEr

The tree-based decomposition need not be conducted to

completion, with each leaf having only a single graph vertex.

Rather we establish a fixed tree depth, and allow the very bottom

nodes, which we call terminal nodes or leaves, to have more than

one graph vertex. The terminals take the same form of the

Bernoulli likelihood, this time counting within-group edges for the

graph vertices assigned to each terminal leaf node. Within-group

edge probabilities are described by parameters hk for each k in the

total terminal set C. The extended likelihood is

L(D; h)~ P
r[I

hEr

r (1{hr)
�EEr P

k[C
hEk

k (1{hk)
�EEk

where Ek and �EEk respectively denote the counts of edges and non-

edges among the vertices under the kth terminal node. The model

is readily extended to heterogeneous independent data sets,

D~fD(t) : t~1 . . . Tg, as L~ PT
t~1 L(D(t); h(t)). Note that the

parameters hk can be integrated out in a Bayesian setting, yielding

no adjustable parameters other than tree depth.

Intractability. The maximum likelihood estimation of the

optimal tree (the optimal assignment of graph vertices to terminal

leaves) is challenging since it involves learning most likely left-right

divisions for each parameter estimation task. The problem is

similar to learning evolutionary parameters from an unknown

phylogenetic tree structure. Related phylogeny algorithms escape

this obstacle by performing Bayesian model averaging rather than

attempting to identify the optimal model. For example, the

Metropolis-Hastings algorithm [21] can sample plausible tree

structures according to the likelihood; then, based on the ensemble

of these trees, evolutionary parameters such as mutation rates can

be estimated [22]. The previous works of Clauset et al. [7,8] uses

model averaging by sampling over trees with probabilities

obtained from maximum likelihood parameter estimates.

In practice, this strategy is suitable for moderately small

networks, and the model asymptotically converges to the Gibbs

distribution of probable hierarchical structures, with probability

proportional to their likelihood. Unfortunately, convergence can

be difficult to determine, and adequate sampling can require

substantial CPU resources for even moderately sized networks

(100 to 1000+ vertices).

Structural approximation. To achieve scalability on a large

biological network, we modified the original algorithm in two

ways: fixed tree structure and variational approximation. Here we

fix the depth of the terminals, and the dendrogram structure is a

perfect binary tree. Each terminal node of the tree represents a

group of zero or more vertices from the original graph. This

structural assumption not only brings about a fixed probabilistic

framework, which suits a variational approximation, but also

reduces the search space from O(jV j!!) to O(K jV j), where !! is the

double factorial, K~2depth is the number of terminal nodes, and

jV j is the cardinality of network vertices. As described in the

results, this fixed dendrogram does not appear to change the

results for occupied terminals provided that the tree is sufficiently

deep, which is readily tested by runs at multiple tree depths.

For an explicit model definition, zik is a latent variable

indicating whether vertex i is assigned to the terminal node k:

zik~1 only if ith vertex is assigned to that node, otherwise zik~0.

Using this, the sufficient statistics of the internal edge and non-

edge counts are

Er(D,z,hr)~
X

k[L(r)

X
k’[R(r)

X
(i,j)[V|V

s:t:i=j

zikzjk’Aij

�EEr(D,z,hr)~
X

k[L(r)

X
k’[R(r)

X
(i,j)[V|V

s:t:i=j

zikzjk’(1{Aij)

and those of the terminals are

Ek(D,z,hc)~
1

2

X
(i,j)[V|V

s:t:i=j

zikzjkAij

�EEk(D,z,hc)~
1

2

X
(i,j)[V|V

s:t:i=j

zikzjk(1{Aij):

For succinctness, we also define the following potential functions

for the log-likelihood of the internals and terminals.

wr ~
def

ln hrErz ln (1{hr)�EEr, and wk ~
def

ln hkEkz ln (1{hk)�EEk:

Combining all these, the total likelihood with the flat priors of the

parameters becomes

p(D,h,z)~
1

Q
exp

X
r[I

wr(D,z,hr)z
X
k[C

wk(D,z,hk)

( )

P
r

Beta(hrj1,1) P
k

Beta(hkj1,1)

ð1Þ

where Q is a normalizing constant. We use standard non-

informative priors for the Beta distribution. The inference is now

on the latent variables and the parameters; we may solve this by

exploiting Jensen’s inequality

ln p(Djh)§
X
z[Z

q(zjh) ln p(Djz,h) ð2Þ

where q(zjh) is a distribution over the latent variables, and Z
denotes the overall space. If the posterior computation for p(zjD,h)

is readily available, setting q(z) to this probability will give an

improved lower bound as in generalized expectation-maximiza-

tion [11]. This method is equivalent to Gibbs-Bogoliubov-Feyn-

man variational mean field theory.

Variational approximation. In our model, the space of

latent variables Z can expand exponentially to O(K jV j) due to the

dependency of the variables (in an undirected probabilistic

graphical model, the structure is simply a clique). One easy

solution is to sample according to the total likelihood score over

this space of Z. We in fact have tested this MCMC algorithm

along with the following variational approximations. But this

necessitates the second approximation. Here we use a variational

approximation posing a slightly different bound where we also take

care of the uncertainty of h [23]:

ln p(D)§

ð
h

X
z[Z

q(z,hjf) ln p(Djz,h)dh: ð3Þ
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Then the inference task consists of finding q(z,hjf) with respect to

some variational parameters f, tightening the lower bound.

Maximizing the lower bound is equivalent to minimizing the

Kullback-Leibler (KL) divergence DKL(qjjp) [23]. By minimizing

the KL divergence we characterize the distribution of z and h
approximately. The detailed steps are provided below as update

equations.

Now, let us extend this further to an ordered series of observed

networks, fD(t)~(V (t),A(t)) : 1ƒtƒTg, whose vertex sets V (t)

and adjacency matrices A(t) are dynamic. But we additionally

believe that an abrupt change between q(t) and q(t’) is rare when

times t and t’ are adjacent. Note also that the index t is more

general than a sequential time index, and we think more

generally of the set of snapshots t’ that are neighbors of snapshot

t. So, we consider this divergence as well in the following

objective function:

F~DKL(p(t)jjq(t))zl
X

s[N(t)

DKL(q(t)jjq(s)): ð4Þ

The first term provides a conventional mean-field approximation

between a true model distribution p(t) and the surrogate

factorized q(t), and the second handles our belief in spatiotem-

poral smoothness. In other words, we want to find q(t) as close as

possible to p(t), but not very apart from the neighboring snapshots

s [ N(t). We call our novel approach a Dynamic Hierarchical

Model (DYHM).

We note again that despite the complicated looking model

structure, there is in fact only one adjustable parameter, l, which

controls the spatiotemporal smoothness. Setting l~0 is equivalent

to treating the snapshots as if they were independent, and large l
gives static group membership. The remaining parameters are all

optimized as part of the model and are not subject to tuning.

Furthermore, the model likelihood can be used as a guide for

selecting l itself, leading to a model with no adjustable parameters,

other than the depth selected for the hierarchical tree.

Time-Constrained Mean-Field Approximation
First let us define each term of Eq. 4. To pose a tractable

inference problem, we represent the joint probability density (Eq.

1) as a factorized mean-field distribution

q(z,fhrg,fhcg)~q(zjm) P
r[I

q(hrjar,br) P
k[C

q(hkjak,bk): ð5Þ

Each factored distribution is defined by the variational parameters,

m,ak,ar,br,ak,bk,

q(zjm)~ exp
X

i

X
k

ln (mik)zikzconst

( )

q(hrjar,br)~Beta(hrjar,br)

q(hkjak,bk)~Beta(hkjak,bk):

Then, the hard combinatorial problem can converted to a

tractable optimization problem. Here, we minimize two Kull-

back-Leibler distances: (Eq. 6) divergence of the approximate

surrogate from the true distribution, and (Eq. 7) divergence

between distributions at adjacent time frames:

DKL(qjjp)~S ln q(z,h)Tq{S ln p(z,h)Tq ð6Þ

DKL(q(t)jjq(t’))~S ln q(t)(z)Tq{S ln q(t’)(z)Tq

~
X

i

X
k

q(z
(t)
ik ) lnq(z

(t)
ik ){

X
i

X
k

q(z
(t)
ik )lnq(z

(t’)
ik )
ð7Þ

where S:Tq denotes an expectation taken with respect to the

surrogate distribution of time t, i.e., q(t)(z,h). Thanks to the

convexity of the KL-divergence, we are guaranteed to reach a

local optimum by setting the first derivatives to zero. We iteratively

optimize each variational parameter until convergence.

Latent variable update. The expected values of the latent

group assignments, SzikT, correspond to the mik parameters in the

variational distribution (Eq. 5). For algebraic convenience, we

account for time-dependency among active genes by introducing

auxiliary variables: let mi(t)~1 indicate that gene i is active at

time t, and mi(t)~0 if inactive. We can then rewrite the objective

function of the update of mik as follows:

F~{
X

r

SwrT{
X

k

SwkT{
X

k

X
i

m
(t)
ik z

X
i

X
k

m
(t)
ik ln m

(t)
ik

zl
X

t’

X
i

mi(t)mi(t’)
X

k

m(t)
ik ln m(t)

ik {
X

k

m(t)
ik ln m(t’)

ik

" #
zconst:

Introducing the Lagrangian ji to take care of a constraint,P
k mik~1Vi [ V , the derivative is

LF
Lm

(t)
ik

~{
X

r

S
Lwr

Lmik

T{S
Lwk

Lmik

Tz ln m(t)
ik

zl
X

t’

mi(t’)mi(t) ln m
(t)
ik { ln m

(t’)
ik

h i
zjizconst

~{
X

r

S
Lwr

Lmik

T{S
Lwk

Lmik

T{l
X

t’

mi(t’)mi(t) ln m
(t’)
ik

z 1zl
X

t’

mi(t’)mi(t)

 !
ln m(t)

ik zjizconst~0:

To be more explicit, the derivatives of the potential functions are

S
Lwk

Lmik

T~
X
j:j=i

AijmjkS ln hkTz
X
j:j=i

(1{Aij)mjkS ln (1{hk)T

S
Lwr

Lmik

T~
X

k’

I ½r [ g(k)\g(k’)�

X
j:j=i

Aijmjk’S ln hrTz
X
j:j=i

(1{Aij)mjk’S ln (1{hr)T

" #

where g(x) denotes a set of a terminal x’s ancestry, and I ½:� is an

indicator function. The update equation is simply

m
(t)
ik ! exp Hf g ð8Þ
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where

H ~
def

P
r SLwr

Lmik

TzSLwk

Lmik

Tzl
P

t’ mi(t’)mi(t) ln m(t’)
ik

1zl
P

t’ mi(t’)mi(t)
:

From the above, we can consider two extreme cases:

lim
l?0

H~
X

r

S
Lwr

Lmik

TzS
Lwk

Lmik

TzS ln pkT

lim
l??

H~

P
t’ mi(t’)mi(t) ln m(t’)

ikP
t’ mi(t’)mi(t)

:

The first assumes independence between time points, while the

latter approximates the current position by the geometric mean of

adjacent ones.

Update for the tree parameter. Given the latent variable

assignments, more precisely their expected assignments fmikgi,k,

we can optimize the tree parameters by taking the derivative with

respect to ar,br for all r [ I , and ak,bk for all k [ C. The updates

for internal nodes r are ar/a0zSErT and br/b0zS�EErT, using

the expected edge and non-edge counts for the left and right

subsets of the internal nodes. We use priors a0~b0~1,

corresponding to the non-informative priors of Eq. 1. The

parameters of the potential functions are

S ln hrT/y(ar){y(arzbr)

S ln (1{hr)T/y(br){y(arzbr)
ð9Þ

where y(z) is the digamma function, L lnC(z)=Lz. Likewise, the

parameters for the terminal nodes can be updated: we set for all

kth terminal nodes, ak/a0zSEkT, bk/b0zS�EEkT, and

S ln hkT/y(ak){y(akzbk)

S ln (1{hk)T/y(bk){y(akzbk):
ð10Þ

Overall algorithm. Starting from a randomly initialized mik

for all i [ V and k [ C, we update the tree parameters according to

Eq. 9 and Eq. 10, and then approximate mik according to Eq. 8.

Theses two steps are repeated until convergence. In practice, we

ran the algorithm multiple times with 7 random restarts and

generally observed similar variational likelihoods and similar

group structures. Results are provided for the best likelihood over

the random restarts.

Co-Membership Scores
The co-membership probability of two different vertices i and j

is computed from the m parameters trained in Eq. 8. The

probability of these vertices being co-clustered is

p(Ak,zik~1^zjk~1) ~
def X

k

mik
:mjk

where we do not consider the special case i~j. Note unlike the

original MCMC algorithm [7], we only need to compute these

metrics once at the final converged parameter values.

Tree Depth
The depth of the tree is a fixed parameter in the variational

algorithm (whereas in the original MCMC method the tree depth

changes dynamically during the sampling). As part of our method

for an input network, we ran the variational algorithm for a series

of increasingly deep trees. In practice, the variational solution for

a tree of depth d can be used as the starting point for the next

simulation of depth dz1, but we did not do so. For simulated

input where the number of groups is known, we found that trees

that were sufficiently deep usually sorted each group into its own

terminal node, with the remaining terminal nodes unoccupied.

Results for co-membership were then stable as the tree depth

increased further, the main difference being more unoccupied

terminal nodes and greater computational time (results not

shown). We used the observation of unoccupied terminal nodes as

a metric for selecting sufficiently deep trees for biological data

sets. All the reported results are essentially unchanged for deeper

trees.

Comparison to Other Methods
MCMC. Exploiting the conjugacy between the Beta and

binomial distributions, an analytical derivation of p(D,z) of Eq. 3

is straightforward. As an alternative to the variational

approximation, a stochastic simulation via MCMC gives the

asymptotically correct distribution of p(z�jD)!p(D,z�). While

sampling according to this distribution, we collect the co-

membership scores. We can summarize them by taking an

average. This provides a direct comparison to the variational

approximation.

Hypergeometric method and MCODE. The

hypergeometric method followed Goldberg and coworkers [17]

using the hypergeomtric distribution to calculate the p-value for

shared neighbors of two network vertices. MCODE is the work of

Bader and Hogue [16]. We gradually changed the cutoff value

defining clusters to examine all pairwise co-membership scores.

Precision-Recall
We used a precision-recall curve, and its summary F1 score, to

assess the quality of the scores produced by the tested methods.

They are defined as

Precision~TP=(TPzFP), Recall~TP=(TPzFN),

F1~2:Precision:Recall=(PrecisionzRecall)

where TP, FP, and FN are the number of true positives, false

positives, and false negatives.

Availability
Space limitations prevent full presentation of results. Source

code (BSD open source license) and a complete catalog of protein

complexes are available from the authors, http://www.baderzone.

org/, and as Source Code and Dataset S1.

Supporting Information

Source Code and Dataset S1 DYHM source code and

datasets.

Found at: doi:10.1371/journal.pone.0008118.s001 (0.25 MB

TAR)
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