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Abstract

Objective: To study the causes for the lack of clinical progression in a superinfected HIV-1 LTNP elite controller patient.

Methodology and Principal Findings: We studied host genetic, virological and immunological factors associated with viral
control in a SI long term non progressor elite controller (LTNP-EC). The individual contained both viruses and maintained
undetectable viral loads for .20 years and he did not express any of the described host genetic polymorphisms associated
with viral control. None of four full-length gp160 recombinants derived from the LTNP-EC replicated in heterologous
peripheral blood mononuclear cells. CTL responses after SI were maintained in two samples separated by 9 years and they
were higher in breadth and magnitude than responses seen in most of 250 treatment naı̈ve patients and also 25 controller
subjects. The LTNP-EC showed a neutralization response, against 4 of the 6 viruses analyzed, superior to other ECs.

Conclusions: The study demonstrated that a strong and sustained cellular and humoral immune response and low
replicating viruses are associated with viral control in the superinfected LTNP-EC.

Citation: Pernas M, Casado C, Arcones C, Llano A, Sánchez-Merino V, et al. (2012) Low-Replicating Viruses and Strong Anti-Viral Immune Response Associated
with Prolonged Disease Control in a Superinfected HIV-1 LTNP Elite Controller. PLoS ONE 7(2): e31928. doi:10.1371/journal.pone.0031928

Editor: Elvin Hsing Geng, University of California San Francisco, United States of America

Received August 24, 2011; Accepted January 19, 2012; Published February , 2012

Copyright: � 2012 Pernas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants SAF 2007-61036 and SAF 2010-17226, by Fundacion para la Investigacion y Prevencion del SIDA en España (FIPSE)
grants 36558/06, 36641/07, 36779/08, 360766/09 and 360737/09, and by the United States National Institute of Health NIH-NIAID contract N01-AI-30024. Support
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Introduction

Long term non progressor elite controllers (LTNP-EC)

constitute a subset of Human Immunodeficiency Virus (HIV-1)

infected naı̈ve individuals whose viral load is below 50 copies/ml

for more than 10 years of infection [1]. This group constitutes

around 1% of the HIV-1 infected individuals and has attracted a

lot of interest for the identification of mechanisms contributing to

the natural control of viral replication.

Viral factors, host genetics and immune responses have been

associated with the control of HIV-1 replication and lack or slow

disease progression. In some studies, mutations or deletions in

HIV-1 proteins, like Nef [2] or Env [3] and in accessory genes lead

to viral control [2,4]. An important role of gag and pol viral proteins

from LTNPs were responsible for the impaired viral replicative

capacity [5]. Other works described the presence of viruses with

reduced replicative capacity in the initial stages of the infection [6].

In contrast, other studies did not find relevant deletions or defects

after analyzing viral sequences from a large cohort of the EC [7].

Recently, a detailed study of viruses from HIV-1 EC showed a

lower replicative and reduced entry capacity, suggesting that viral

factor may contribute to the low viral burden in EC [8].

Host genetic factors have also been associated with viral control

in LTNPs. Genetic polymorphisms in the coding and the

promoter regions of the CCR5 co-receptor have been associated

with protection against HIV-1 acquisition [9]. The most relevant

host factors associated with relative viral control map to the major

histocompatibility complex class (MHC), specially the HLA class I

B alleles [10]. Particularly, HLA B* 27, B* 57 and B* 58 alleles are

consistently overrepresented in individuals who, in the absence of

anti-viral treatment, show viral control [11]. More recently,

certain alleles of the MHC class II, including HLA-DRB1*13

and/or HLA-DQB1*06 have been related to controller status and

associated with the presence of mucosal CD4+ T cell response

against HIV [12]. The maintenance of a robust HIV-specific

CD4+ T cell response, providing help to CD8+ T cells, may also

facilitate to the long term control of HIV replication [13]. The

robust associations between viral control and specific HLA class I
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and II alleles strongly suggests that virus-specific CD8+ T cell

responses represent one of the most effective mechanisms to

control HIV-1 infection [14].

Several studies have addressed whether ECs have broadly

neutralizing antibody (Nab) responses that could account for their

ability to control their virus [15,16,17,18,19]. This response is not

present, however, in most ECs and it does not have a major

protective role in the early or chronic phase of the viral replication

[19].

In previous analysis of HIV-1 superinfection (SI), infection with

a second virus during the course of an established infection was

generally associated with loss of viral control and abrupt decline in

CD4+ T cells counts [20]. In two EC patients, an accelerated rate

of disease progression was observed after a documented SI [21].

Disease control after infection by a nef-defective strain in a B*57

HIV-1 LTNP was lost after SI with a fully competent virus [22]. In

a LTNP-EC, recovery of viremic control after SI was described

although viral load was higher than before SI, and the patient did

no longer fulfill the EC definition [23].

We identified a case of HIV-1 SI in a LTNP-EC that was able

to control both viruses and maintain undetectable viral loads for

.20 years [24]. This study analyses the mechanisms leading to this

exceptional clinical presentation.

Materials and Methods

Ethic statement
The Ethical Committee of the Hospital German Trias i Pujol

approved the current investigation and the patient gave its

informed consent for the study.

Study participant
Samples from a homosexual man, who maintained undetectable

viral loads below 50 copies/ml, occasional blips, and high levels of

CD4+ T cells for more than 20 years were analyzed (Figure 1). The

study subject, fulfilled the LTNP-EC criteria [1] even after SI by a

second strain around nine years after primo-infection [24].

Host genetics, HLA typing and determination of
chemokine genotype

Genetic polymorphisms were chosen based on genome-wide

association studies, or selected from the literature according to the

quality of their supporting evidence. These included the HCP5

rs2395029 allele in linkage disequilibrium with HLA-B*5701, the

HLA-C-35 (rs9264942) variant, CCR5 D32 (rs333), CCR2 V64I

(rs1799864). CCR5 haplotypes (HHA to HHF) were constructed

according to the published nomenclature [9] considering 8

polymorphisms in the CCR5/CCR2 promoter and coding region

(rs2856758, rs2734648, rs1799987, rs1799988, rs1800023,

rs1800024, rs333, rs1799864). HLA-classI (A, B, C) and HLA-class

II alleles were also analyzed. HLA typing were determined by

sequencing, and SNP analysis was done by TaqMan as described

[25].

Gp160 amplification
Peripheral blood mononuclear cells (PBMC) were separated by

phycoll-hypaque centrifugation. Proviral DNA was obtained from

16107 cells by a standard phenol-extraction method. Proviral HIV

DNA was amplified in the gp160 region in env gene by limiting

dilution nested PCR [26]. Outer primers 59 ATGGCTTAGGG-

CAACATATCTATG 39 (5677–5700 HXB2 position)

59CTCTGGTAACTAGAGATC 39, (position 9664–9681) were

used for the first PCR and 59 GCGGAGACAGCGACGAA-

GAGCTCCTCAAG 39 (5983–6011) 59CTGCTGGCTC-

AGCTCTTCTCATTCTTTCCC39 (8845–8878) for the nested,

containing the SapI sites for cloning. All PCRs were done using the

Expand High Fidelity (Roche) to increase fidelity. Nucleotide

sequences were determined with the Big DyeTM Terminator Cycle

Sequencing kit (Applied Biosystems) in an ABI 3730 sequencer

(Applied Biosystems).

Generation of chimeric viruses
For the virus selection, the C2-V5 region of gp160 env amplicons

from different samples of the patient, were included in a Maximun

Likelihood phylogenetic tree. One clone of each of the three sub-

clusters of ‘‘a’’ viruses and of the superinfecting ‘‘b’’ virus in the

phylogenetic tree was selected for the study and are marked with

arrows in the tree of Figure 2.

Four complete gp160 amplicons from the patient, one from

LTNP 64 and three amplicons obtained for a patient with rapid

progression were used for the generation of chimeric viruses and

gp160 from NL4.3 reference virus was also included. The full-

length infectious molecular clones were constructed by replacing

the gp160 env sequence of molecular clone 89ES061 [27] with the

different gp160 amplicons. The molecular clone 89ES061 was SapI

digested; gel extracted using PureLink Quick Gel Extraction Kit

following the manufactures instructions (Invitrogen) and ligated

with the gp160 amplicons using T4 DNA ligase (New England

Biolabs). Recombinants plasmids were transformed in DH5a
competent cells and clones sequenced to check the correct insert

orientation.

In order to generate the chimeric viruses, 10 mg of the

recombinant plasmids were transfected into 36106 293 T cells

using calcium chloride protocol [28]. 293 T cells were maintained

in Dulbecco’s modified Eagle medium (DMEM) supplemented

with 10% fetal bovine serum, 2 mM L-glutamine, 100 U/ml

penicillin and 100 mg de streptomycin/ml (DMEMc). 72 h post-

transfection, supernatants were harvested, filtered through

0.45 mm to remove cellular debris. Virus production was

quantified measuring HIV-1 p24 antigen by enzyme-linked

immunosorbent assay (Roche Diagnostic).

Figure 1. Clinical characteristics of the patient. CD4+ T cell counts
and viral load are represented in the Y axis against time in the X axis.
The first sample was taken 78 months after the first documented HIV-1
positive test diagnosis. Blue arrow shows the first sample available,
close to the estimated moment of SI (1995). In yellow are represented
samples taken to perform quasispecies analysis and gp160 amplifica-
tion. Serum samples used for neutralization analysis (#) and PBMC
samples used for CTL response (%) are indicated.
doi:10.1371/journal.pone.0031928.g001

Strong Immunity and Deleterious Virus in HIV-SI
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Viral sequence analysis
The gp160 amino acid sequence of viruses a1, a2 a3 and b were

aligned using the Bioedit Program. The subject’ sequences were

automatically compared to all available sequences of subtype B

(702 sequences) from the Los Alamos HIV Sequence Data base

using the Quickalign tool (http://www.hiv.lanl.gov). The presence

of unusual residues in conserved positions (more than 85%) of the

sequences from the Database was analyzed in the LTNP-EC’s

viruses.

Co receptor usage was determined with the PSSM prediction

tool (http://indra.mullins.microbiol.washington.edu/webpssm),

based on the V3 amino acid sequences and confirmed by growing

the viruses in the U87.CD4.CCR5 or CXCR 4 cells.

Viral titer determination
Virus titration was performed in duplicate in TZM-bl cells. Five

serial ten-fold dilutions of viral stocks were assayed. After 48 h,

cells were stained for b-galactosidase activity as described [29].

Titers were expressed as tissue culture infective dose (TCID),

calculated by the Spearman–Karber formula [30].

Replicative capacity assay of the chimeric viruses in
U87.CD4.CCR5 and PBMCs cells

U87.CD4.CCR5 and U87.CD4.CXCR4 cells were cultured in

DMEM supplemented media with 15% fetal bovine serum plus

300 mg/ml G418 (Sigma-Aldrich) and 1 mg/ml puromycin

(Sigma-Aldrich). 506103 U87.CD4.CCR5 or CXCR4 cells per

well were seeded in a 24 well plate and infected with 1 ng of p24 of

the different viruses. Replicative capacity was evaluated quantify-

ing the p24 production in the culture supernatant after 3, 7, 10

and 14 days post infection.

PBMC obtained from two different uninfected donors, were

grown in RPMI 1640 (Bio-Whittaker) supplemented with 10%

fetal bovine serum (Gibco) plus 1% antibiotics (Bio-Whittaker),

and were activated with phytohaemagglutinin 2 mg/ml (Sigma-

Aldrich) for three days before infection. In order to compare the

replicative capacity of the variants present before and after SI,

16107 PBMC cultured in RPMI supplemented with 2.5 ng/ml of

recombinant human interleukin-2 rhIL-2 (Bender Medsystems),

were infected in two independent experiments, by spin inoculation

with equivalent amounts of viruses (1 ng) [31]. HIV-1 production

was quantified measuring p24 protein in the supernatant after 3, 7,

10, 14 and 17 days post infection. In the experiments, replicative

capacity of LTNP-EC’s virus was compared to the capacity of

reference strains HIV1-SF162 and NL 4.3. Chimeric virus

containing gp160 env from NL4.3 in the 89ES061 background,

LTNP patient 64, three clones obtained from a rapid progressor

(Ris 6 C2-2, Ris 3 C6-1 and Ris 3 C9-2) and the full length

89ES061 viruses were included as controls.

Figure 2. Maximum likelihood tree derived from the C2-V5 env
sequences obtained during the patient follow-up. Maximum
Likelihood tree was performed with the help of the MEGA program.
Symbols represent sequences taken in different year: 1995 %, 1996 .,
1998 e, 2001¤, # 2005, N2006 and 2007,. Virus ‘‘a’’ corresponds to
the primoinfecting virus and the encircled groups identify the different
a1, a2, and a3 variants. Virus ‘‘b’’ corresponds to the superinfecting
virus. Samples chosen for molecular cloning are marked with arrows a1,
a2 and a3 from virus ‘‘a’’ and b1 from virus ‘‘b’’. Nucleotide sequences
from control Spanish isolates are denoted by standard typeface and
sequences from subtype B reference viruses from the Los Alamos HIV
Data Base are shown in italic. The scale bar on the bottom of the figure
represents 5% of genetic distance.
doi:10.1371/journal.pone.0031928.g002
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ELISPOT analysis of HIV-1 specific CD8+ T cell response
ELISPOT assay was performed as previously described [32]. A

screening for cytotoxic T lymphocyte (CTL) responses was

performed using a matrix of overlapping peptides (OLP) pool

that spanned the entire genome of HIV from p17 in gag gene to

nef in the 39end of the genome; this scan included the env gene.

The matrix consists of a set of 410 OLP based on the consensus B

sequences of 2001 (HIV immunology database, (http://hiv-web.

lanl.gov/content/hiv-db/CONSENSUS/M_GROUP/Consensus.

html). Peptides were generally 18 mers varying from 15–20

amino acids in length and overlapping by 10 amino acids as

described [32].

Cryopreserved PBMCs (105 cells) from 1995 and 2004 samples

of LTNP-EC were incubated with the matrix peptides, at a 14 mg/

ml concentration, in a 96-well plate (Millipore, Barcelona, Spain)

pre-coated with anti-human interferon–gamma monoclonal anti-

body (Mabtech, Sweden). Cells with medium only were used as

negative controls and cells with phytohaemagglutinin were used as

positive controls. PBMCs were cultured overnight at 37uC, 5%

CO2 atmosphere and then washed six times with PBS. Plates were

then incubated for 1 hour at room temperature with the

biotinylated anti-INF monoclonal antibody (Mabtech, Sweden)

followed by 6 washes and 1 hour incubation with the streptavidin-

coupled alkaline phosphatase (Mabtech, Sweden). After washing

the plate, nitroblue tetrazolium and 5-bromo-4-chloro-3indolul

phosphate (Bio-Rad, Barcelona, Spain) was added for color

development. After a short incubation, the reaction was stopped

by washing the plate with water. The INF production was detected

as blue spots, counted using an ELISPOT reader (CTL,

Germany). Results are expressed as spot-forming cells (SFC) per

million inputs PBMC. Responses were considered positive if they

exceeded i) 50 SFC/106 PBMC per well, ii) the mean of negative

wells plus 3 standard deviations and iii) three times the mean of the

negative well [32]. Positive pools were deconvoluted and

individual peptides were retested individually in a confirmatory

ELISPOT assay. The breadth of the responses was determined by

the sum of all the recognized peptides and the magnitude of the

responses was determined as the total sum (SFC/106 PBMC) of

the responses to all the peptides eliciting a positive response.

Neutralization test
Sera samples taken at different times (1995, 1996/01, 1996/07

and 1998) were tested with a panel of six recombinant viruses

(VI191 subtype A, 92BR025 subtype C, 92UG024 subtype D,

CM244 subtype E, AC10 and NL4.3 subtype B) obtained as

previously described [33]. To perform neutralization assays, 96-

well plates were set up as follows: to the first three columns, 25 ml

of medium (DMEM, 10% FBS) was added; to each of the other

columns (nu 4 through 12), 25-ml aliquots of the corresponding sera

dilution at 1/100 and 1/1000 in DMEM-10% FBS were added.

All sera were heat inactivated at 56uC for 30 min before use in

neutralization assays. Each virus in a total volume of 75 ml was

then added to each well in columns 3 through 12. Virus-free

medium was added to columns 1 and 2 (mock). The amount of

each virus chosen was the lowest level of viral input sufficient to

give a clear luciferase signal within the linear range for each viral

strain. The plate was incubated for 1 h at 37uC. After incubation,

104 target cells (TZM-bl) in a volume of 100 ml were added to each

well. The plate was then placed into a humidified chamber within

a CO2 incubator at 37uC. After 72 h of incubation at 37uC,

supernatants were removed and the cell-associated luciferase

activity for each well was determined on a micro plate

luminometer (Turner biosystems, Sunnyvale, CA) by using a

luciferase assay kit (Biotherma, Sweden). Neutralization activity for

all samples was measured in triplicate and reported as the

percentage of luciferase activity 6 standard deviation, corre-

sponding to the viral infectivity after neutralization.

Results

HLA typing and determination of CCR5 haplotypes
To study the LTNP-EC host genetic markers potentially

associated with control of disease progression, we assessed the

most validated genetic markers [34]. The patient genotype,

A*0201/A*0301, B*4402/B*3501, HHC/HHF2, V64V/I, did

not include any of the known protective alleles (Table 1) while

HLA class II alleles, DRB1*13 and DQB1*16, recently associated

with HIV non-progression, were both present in the LTNP-EC.

Table 1. Patient genotype.

CCR5 haplotype HHC/HHF*2

Other polymorphisms

HCP5 731T.G wt/wt

HLA- C35 wt/mut

HLA class I alleles

A*0301 A*0201

B*4402 B*3501

Cw*0501 Cw*0401

HLA class I I alleles

DRB1*1301 DRB1*1501

DRB3*0202 DRB5*0101

DQB1*0603 DQB1*0602

doi:10.1371/journal.pone.0031928.t001

Table 2. Viruses titter in TZM-bl and replicative capacity in
U87.CD4. CCR5 or CXCR4 cells and PBMCs.

TZM-bla CCR5* CXCR4* PBMC*

a1 1.160.26102 2 2 2

a2 6.461.36103 + nd 2

a3 6.564.86102 2 2 2

b1 2.261.26103 + nd 2

LTNP 64 5.3636104 +++ nd +

RIS 3C6 6.5616103 + nd +

RIS3 C9 5.3636102 ++ nd +

RIS 6C2 1.460.26105 ++ nd +

89ES061 2.060.46103 2 ++ +

NL4.3 cloned 2.3606103 2 +++ ++

NL4.3 6.461.36105 2 ++ +

SF162 1.3606104 ++++ nd ++

aTissue culture Infectious Dose 50% (TCI D/ml).
*Positive replication is considered when an increase in p24 production was
observed in p24 production between the third and 14 days in culture for cells
U87.CD4.CCR5 or CXCR4 or 17 days for PBMCs.
+ represents 2 to 100 fold increase, ++ 102–103 fold increase, 103–104 fold
increase and ++++ .105. nd- not done.
doi:10.1371/journal.pone.0031928.t002
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Replicative capacity of LTNP-EC’s chimeric virus
In order to study the virological factors potentially associated

with viral control, we cloned the gp160 sequence of env gene from

four different variants, three (a1, a2 and a3) corresponding to the

different subgroups within the initial ‘‘a’’ virus, and strain b1

corresponding to the superinfecting virus (Figure 2). As shown by

the very low quasispecies heterogeneity of 0.9360.22 for group

‘‘a’’ viruses (after more than 20 years of infection) and 1.1560.34

for group ‘‘b’’ (after more than 13 years), viral evolution was very

limited in the patient. The mean genetic distance from the selected

a1 strain to its subgroup was 0.18%60.1, 0.260.1 for a2 virus and

0.660.2 for a3 and 1.7%60.4 for b1 strain. Thus, the four gp160

clones selected were representative of the different variants present

in the patient (Figure 2).

The chimeric viruses derived from the patient were functional

but gave low titers in TZM-bl cells ranging from 1.160.26102 to

2.261.26103 TCID/ml (Table 2). Replicative capacity of the four

selected variants was also tested in U87.CD4.CCR5 cells because

they showed a CCR5 genotype in PSSM tool. To discard that the

cloning methodology could affect the results, different control

viruses were cloned in the same background. Fourteen days after

infection, the SF162 reference virus replicated at high p24 levels

(around 103 ng/ml of p24) as well as the three variants (Ris 6 C2-

2, Ris 3 C6-1 and Ris 3 C9-2) from the rapid progressor patient

(RIS) and virus from the patient 64 (Figure 3A). The LTNP-EC

variants a2 and b1 produced positive but low levels of p24 (below

1 ng/ml) whereas viruses a1 and a3 did not show any evidence of

replicative capacity in this cell line (Figure 3A). As expected the

NL4.3 virus, the chimeric virus containing the NL4.3 gp160

region as well as the full length 89ES061 virus, with CXCR4

tropism, did not replicate in this cell line. These viruses were tested

in the U87.CD4.CXCR4 cell line and replicated to high p24 levels

(.103 ng/ml, data not shown). To reject that the lack of

replication of a1 and a3 viruses in U87.CD4.CCR5 cells was

due to a CXCR4 tropism, both viruses were assayed in the

CXCR4 expressing cell line with negative results (,0.1 ng/ml of

p24, data not shown).

The replicative capacity of the recombinant variants from the

LTNP-EC was studied in heterologous PBMC that represent more

physiologic conditions (Figure 3B). All control viruses, SF162 and

Figure 3. Replicative capacity of the recombinant viruses. Viral replication was measured by the p24 production, showed in logarithmic scale
in the Y axis, in U87.CD4.CCR5 in panel A) and PBMC cells in panel B). In X axis are represented days of culture.
doi:10.1371/journal.pone.0031928.g003

Strong Immunity and Deleterious Virus in HIV-SI
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NL4.3 viruses, a gp160 NL4.3 recombinant cloned in the same

genetic background or the complete virus from the molecular

clone 89ES061 replicated to high levels measured by p24

production. Viruses obtained for patient LTNP 64 or rapid

progressor RIS also replicated in PBMCs. In contrast, none of the

LTNP-EC viruses showed any replication after 17 days in culture

in these cells (Figure 3B). All these data showed that the chimeric

viruses with the envelopes from the LTNP-EC viruses were

functional but replicated poorly in U87.CD4.CCR5 cells or did

not replicate at all in PBMCs.

Gp160 mutations analysis
In order to investigate the mutations or defects that could

explain the lack of replication of a1, a2, a3 and b1 viruses, the

complete amino-acid sequence of the gp160 region was

determined (Figure 4). No relevant deletions or stop codons

were observed in the sequence of both viruses. In addition,

cysteines and functional sites including the gp120/41 cleavage

site, residues related with the receptor and co-receptor binding

sites or functional domains in the gp120 and gp41 regions were

all conserved. The sequences of the infecting and superinfecting

viruses diverged by more than 9.4% [24]. Analysis of unusual

residues in conserved positions (more than 85% conservation)

in the Los Alamos HIV Sequence Data Base identified 5, 7

and 11 unusual residues in the primo-infecting a1, a2 and a3

variants, while more than 24 unusual aminoacids were iden-

tified in the super-infecting b1 virus (Table 3). In ‘‘a’’ viruses

three residues G237E, N611D and G825R were represented

below 1% in the data base (Table 3). Two changes in relation to

the B consensus, N616D in a2 virus and N611S in a2 and a3

viruses produced loss of N–glycosylation sites (Table 3). There

are many differences between the two viruses with replicative

capacity (a2 and b1), although they showed only two amino

acids in common which are different in the viruses a1 and a3;

L34 located close to the signal peptide which changed to the

unusual residue S in a1 virus and W in a3 virus; and G355,

located in the C3 region, that changed to G355E in a1 virus,

and G355K in a3 virus. These mutations need to be further

analyzed to investigate the potential role in the replication

capacity. Overall, we did not found in any of the variants

studied defects in the env gene that could be clearly associated

with the poor replication capacity.

Figure 4. Gp160 amino-acid sequences of LTNP-EC viruses. Amino acid sequences of viruses a1, a2, a3 and b1 are shown. Underlined residues
marked the N-glycosylation sites. Empty vertical arrows signal CD4+ binding residues. Cysteines in the variable loops in gp120 are marked with
asterisks. Shaded areas correspond to the signal peptide, variable regions in gp120, fusion peptide, homology regions and lentivirus lytic peptide
(LLP1-2) region in gp41. In green are shown the two positions in common for a2 and b1 viruses and that are different from the non-replicating
viruses.
doi:10.1371/journal.pone.0031928.g004

Strong Immunity and Deleterious Virus in HIV-SI
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Magnitude and breadth of HIV-specific CTL response in
LTNP-EC

To estimate the role of the cellular immune response in the

control of viral replication, we evaluated CTL responses of the

LTNP-EC in the first sample available after SI (1995 sample). The

LTNP-EC responded to a total of 27 peptides (OLP). Of the 27

responses, 6 (22.2%) targeted Gag protein, 3 (11.1%) targeted Nef,

2 (7.04%) Protease, 11 (40%) Reverse Transcriptase, 3 (11.1%)

Integrase and 2 (7.04%) Gp120 (Figure 5). The total magnitude of

these responses was 35.727 SFC/million PBMC; with the

strongest responses targeting p24 and Nef. The response in gag

(OLP p2-p7-p1-p6) contains a HLA-DR1*13 restricted T helper

epitope (Figure 5). Among the 27 OLP responses, 6 OLP

contained optimal CTL epitopes for which the LTNP-EC

expressed the known restricting HLA class I alleles (Table 4).

For 4 of these 6 optimal epitopes, the autologous viral sequence

showed the presence of classical HLA footprint mutations in

different genes associated with the LTNP-EC’s HLA, indicating

that the virus had likely adapted to and escaped from this host

immune response (Table 4).

Table 3. Unusual mutations in the gp160 patient viruses compared to the consensus subtype B sequence.

Subtype B Consensus Patient viruses

a1 a2 a3 b1

pos* REGION aa % (n6 seq) mut % (n6 seq) mut % (n6 seq) mut % (n6 seq) mut % (n6 seq)

34 C1 L 87,4 614 S 3,3 22 w 1,3 8

59 C1 K 94,7 665 N 0,0 0,0

63 C1 T 87,3 613 P 2,1 14,0

105 C1 H 88,6 622 Q 10,4 72,0

113 C1 D 98,0 687 E 1,4 10 E 1,4 10 E 1,4 10

125 C1 L 97,7 686 F 0,4 3,0

128 C1 T 95,3 669 S 1,3 9,0

177 V2 Y 86,5 607 N 7,6 53,0

200 C2 I 98,7 693 T 1,1 7

203 C2 Q 98,7 693 K 0,1 1,0

204 C2 A 97,8 687 T 1,2 9,0

237 C2 G 99,0 693 E 0,7 5

287 C2 Q 89,6 629 H 10,0 70,0

318 V3*epitope CTL Y 86,2 605 H 3,0 21,0

384 C3 Y 97,7 686 F 1,7 12,0

392 V4 N 91,0 639 D 2,1 15,0

434 C4 M 96,0 674 I 2,8 20,0

492 C5 E 94,6 664 Q 1,1 8,0

494 C5 L 93,9 659 I 4,0 28,0 I 4,0 28,0

580 HR1 V 89,0 625 I 7,4 52 I 7,4 52 L 3,1 22,0

593 HR1 L 96,6 678 M 3,2 24,0

605 HR1 T 93,8 659 P 3,9 27,0

611 HR1 N 99,0 698 D 0,2 2

616 HR1 N 96,6 678 S 1,4 10 S 1,4 10

617 HR1 K 86,8 609 R 12,0 85 R 12,0 85,0

704 MSD I 89,0 625 V 6,0 42,0

735 E 89,7 630 G 9,5 67,0

752 F 88,0 616 L 10,0 71,0

769 LLP2 H 92,0 646 R 7,6 53

807 LLP1-2 L 94,6 664 I 5,4 38,0

808 LLP1-2 K 90,0 632 Q 3,3 23 Q 3,3 23 Q 3,3 23 R 6,1 43,0

825 LLP2 G 99,0 692 R 0,7 5

856 LLP1 L 86,6 608 Q 8,7 61 Q 8,7 61 Q 8,7 61 Q 8,7 61,0

TOTAL 5 7 11 24

*Position relative to HXB2 sequence (accession number K03455).
Unusual residues in conserved positions (more than 85% conservation) are shown.
Those residues present below 99% in the los Alamos Data Base are underlined.
doi:10.1371/journal.pone.0031928.t003
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We also compared the CTL responses of the first sample

available after SI (1995) with a second one taken 8.8 years later

(sample 2004). In this second sample the study subject had a total

breadth of 23 responses, of which 13 (56.5%) were already

detected at the first time point. In this case, the total magnitude

was 26.080 SFC/million PBMC (Table 5). A relative shift from

Gag p24-specific responses towards targets in Integrase and Nef-

specific responses was noted (Figure 5). Of note, is that 26 of these

T cell targets are located in relatively conserved regions.

In order to compare these cellular immune responses to

reactivities in HIV controllers and non-controllers, we compared

the data from the SI LTNP-EC with data from a cohort of 250

treatment naı̈ve Peruvian patients (Table 5) with heterogeneous

immunological and virological markers (median of 385 CD4+ T

cells/ml and a median viral load of 35.732 copies of RNA/ml

(range ,40 to .750.000). The median breadth of OLP responses

in this cohort was 15, placing the response breadth in the study

subject in the 85 percentile with the first sample and the 80

percentile with the second sample. When comparing the median

magnitude of the CTL responses in the Peruvian cohort (median

5.202 SFC/million PBMC), the study subject response fell into the

99.5 and 98 percentile in the two samples analyzed, respectively

Figure 5. IFN-c ELISPOT analysis of the HIV-1 specific CD8+ T cell response in the LTNP-EC. The analysis was performed in the first sample
available after SI (&) and on a second one taken 8.8 years later (&). The results are expressed as spot-forming cells (SFC) per million inputs PBMC in Y
axis. The X axis shows the overlapping peptides in viral proteins along the genome eliciting a positive response.
doi:10.1371/journal.pone.0031928.g005

Table 4. Mutations found in optimal epitopes along the LTNP-EC viral genome.

LTNP-EC
HLA PROTEIN SEQUENCE

MAGNITUDE CTL (SFC/106

PBMC) 1995 sample
MAGNITUDE CTL (SFC/106

PBMC) 2004 sample

A*0301 P-17 GAG-3 EKIRLRPGGKKKYKLKHI 533 0

LTNP-EC EKIRLRPGGNKKYRLK HI

B*4402 P-24 GAG-42 LRAEQASQEVKNWMTETL 390 0

LTNP-EC LR AEQA SQDVKNWMTETL

A*0301 NEF NEF-11 QVPLRPMTYKAAVDLSHF 273 135

LTNP-EC QVPLRPMTYKAAVDMSHF

B*3501 RT RT-16 KKKSVTVLDVGDAYFSV 2873 1680

LTNP-EC KKRSVTVLDVGDAYFSV

Sequence of the OLP (GAG-3, GAG-42, NEF-11 and RT-16) are shown in bold.
Optimal CLT epitopes are underlined. Underlined and in cursive residues represent the mutations in optimal residues found in LTNP-EC virus.
doi:10.1371/journal.pone.0031928.t004
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(i.e. only one patient out of the 250 subjects studied in Lima had a

greater magnitude than the study subject). In addition, the

response in the SI individual was also compared to responses in

a group of 25 HIV controllers (EC, viremic controllers and LTNPs

individuals) from a cohort in Barcelona not expressing HLA-B*57,

HLA-B*58 or HLA-B*27 (Table 5). This cohort showed a median

viral load of 2.072 (range ,40 to ,10.000) of RNA/ml and a

median of 696 CD4+ T cells/ml and had a median breath of 23

OLP with a total magnitude of 19.345 SFC/million PBMC. The

response seen in the LTNP-EC still scored high, exceeding the

median breadth and magnitude of the responses in this controller

cohort at both time points (67% and 69% percentile in 1995 and

2004, respectively for breadth, and 71% and 88% percentile,

respectively for magnitude). Thus, the LTNP-EC mounted HIV

specific T cell responses that were in the highest percentiles in a

large cross-sectional, unrestricted HIV infected cohort and still in

the top third when compared to a more limited, specific controller

cohort. These data suggest that the study subject had broad, strong

and sustained CTL response to HIV, including responses to high

conserved regions of the HIV genome, which could contribute to

viral control ‘‘in vivo’’.

Neutralization assay
The neutralization capacity of the LTNP-EC plasma samples

was assayed against a mini-panel of six recombinant viruses with

envelopes from different subtypes and tropisms (see Materials and

Methods). Previous work determined that the recombinant viruses

in the panel adequately represented the global HIV-1 diversity

[33]. Table 6 summarizes the neutralization activity of the study

subject serum at four different time points. No differences in the

neutralization activity were observed between the sample close to

SI (around 1995–1996) and the sample analyzed three years latter

(Table 6). The LTNP-EC achieved 50% neutralization against 4

(V1 191, NL4.3, 92BR025 and 92UG024) out the 6 recombinant

viruses assayed at 1/100 dilution and against one (NL4.3) at 1/

1000 dilution. This result was compared with the neutralization

results obtained in a previous work from 248 samples for 191

untreated patients (Table 7) [33]. Only 18.5% of samples showed

50% neutralization at 1/200 dilution against 4 of the panel viruses

as LTNP-EC patient did. These results indicate that the patient

has a neutralization response above the average response in HIV-1

infected patients.

Discussion

In this work we described a very uncommon case of SI in an

HIV-1 LTNP-EC. This study subject, who maintained the EC

status for 20 years even after SI, showed natural control of the two

viruses in the absence of protective HLA class I alleles. The

investigation of the viral and immune factors associated with viral

control identified a strong and sustained broad CTL and high

neutralization response, beneficial HLA class II alleles as well as

the presence of deleterious viruses as potential factors contributing

for the observed clinical outcome.

Host genetic factors, like co-receptors polymorphisms and HLA

I alleles, have been strongly associated with long term virological

control [11]. However, these markers account only for 20% of the

‘‘controllers’’ phenotype [34] and more than 25% of the elite and

viremic controllers patients lack HLA class I protective alleles [35].

The LTNP-EC studied did not carry any protective HLA class I

haplotypes but showed HLA-DRB1*13 and DQB1*06 MHC class

II haplotypes that have been associated to slow disease progression

[12]. How these alleles or the CD4+ T cell responses restricted by

Table 5. Patient CTL response in comparison with Peruvian Cohort of treatment naı̈ve chronically HIV-1 infected individuals and
Barcelona Controllers.

Mean CTL Magnitude Mean Breadth of Responses

(EC Percentile) (EC Percentile)

SI Patient 1995 sample 35.725 27

Peru Cohort 5.202 (99) 15 (85)

Barcelona Controllers 19.345 (88) 23 (69)

SI Patient 2004 sample 26.080 23

Peru Cohort 5.202 (98) 15 (80)

Barcelona Controllers 19.345 (71) 23 (67)

doi:10.1371/journal.pone.0031928.t005

Table 6. Neutralization activity of patient’s sera samples.

Numbers indicate the percentage 6 SD of infectivity after neutralization (100% infectivity is 0% neutralization).
Infectivity is indicated as follows: &,10% & 10–30% & 30–50% % .50% infectivity.
doi:10.1371/journal.pone.0031928.t006
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these alleles mediate their beneficial effect remains unclear, but

may include the induction of potent CD4+ T cell responses that

could maintain effective CTL activities [36,37]. In fact a strong

response in Gag which contains a HLA-DR1*13 restricted T

helper epitope has been observed. Alternatively, these HLA-class

II restricted CD4+ T cell responses may also exert direct cytolytic

effects on infected cells; a possibility that could not be tested due to

sample limitations [38].

Due to the extremely low viral load and to the selection of the

fittest variant when the co-culture method is applied [39,40,41,42],

we were unable to obtain the initial and the SI viruses from the

LTNP-EC’s patient by this method. Although it is established that

defective variants could be found in the proviral population [43],

the only possibility for the analysis of the viruses from the LTNP-

EC was the amplification of proviral sequences from PBMCs DNA

in longitudinal samples. To analyze the replicative capacity of the

viruses present in the LTNP-EC, four variants, representative of

the different sub-group of sequences from the two viruses, were

selected for the generation of chimeric viruses. It is worth to

highlight that the LTNP-EC’s viruses displayed a very limited

genetic variability within each virus, as can be deduced from the

short length of the branches in the phylogenetic tree indicating a

strong control of viral replication after many years of infection

(Figure 2).

It is well known that provirus from patients may include many

defective viruses, i.e. viruses that are not able to replicate [43]. In

contrast, the study patient presented deleterious virus, i.e. viruses that

are functional but poorly replicating. This is supported in the fact that

the four chimeric viruses with HIV-1 envelopes derived from the

different viruses of the primo and SI showed functional envelopes as

shown by the replication in TZM-bl cells (Table 2). However, only

two of these viruses were able to replicate although at low levels in

U87.CD4.CCR5 cells (Figure 3). We did not found in any of the

variants studied defects in the env gene that could be clearly associated

with the poor replication capacity. However a high number of

unusual mutations were observed. This result is in agreement with the

results obtained by Alexander et al that suggested that unusual,

difficult-to- revert polymorphisms in HIV-1 can be associated with

slow progression or non-progression in a majority of cases [4].

The presence of viruses with limited replicative capacity before

and after SI could be explained by two hypotheses: i) the study

subject was infected twice by viruses with a very low replicative

capacity. Although this option could not be rejected, it seems

unlikely because it is known that there is wide spectrum of

phenotypic characteristics among primary isolates [44]. Conse-

quently the probability to be infected two times with deleterious

viruses that are possibly more difficult to be transmitted, should be

very low. ii) The LTNP-EC was infected by phenotypically diverse

viruses, but during the infection, the remarkable immune cell

response of the LTNP-EC was able to eliminate the cells infected

with highly replicating viruses. This mechanism would lead to the

accumulation of reservoir cells with low replicating or defective

variants and could explain the low in vitro replicative potential

observed.

Accumulation in the proviral quasispecies of impaired viruses

with truncated env in absence of nef function has been previously

observed [3]. Plasma viruses from ES did not replicate in sufficient

amount to be archived as suggested by the discordance observed

between gag sequences from plasma virus and virus archived in T

cells [45]. Other authors reported that cells expressing intact

antigens were eradicated, leaving only the cells containing the

HIV defective genomes [46].

In the reported SI cases in HIV-1 infections, viral control is

generally lost after SI even in EC patients [23]. HIV-1 SI despite

broad CD8+ T cell responses containing replication of the primary

virus was observed [47] and the responses generated after SI were

not sufficiently effective to contain the second virus [48]. Our

results suggest that the LTNP-EC immune response was able to

control two very divergent viruses (9,4% of genetic distance

between ‘‘a’’ and ‘‘b’’ viruses [24]. Although we analyzed one

sample close to SI and the second sample eight years later, the

CTL response was maintained and it was considerably broader

and stronger than in typical or non progressor patients (Figure 5

and Table 5).

Previous work shows that the impact of T cell responses on

control of viral replication cannot be explained by quantification

of the magnitude and breadth of this response [49]. Multiple

studies have shown that is the poly-functionality of the CTL

response in EC patients the responsible of the immune control

[50]. Poly-functional analyses in this study could have provided

additional information on the potential quality of these responses

but the lack of samples did not permit the analysis. However, it has

recently shown that frequent and strong responses to conserved

regions are associated with relatively controlled HIV infection

[51]. In our study, 26 of the CTL response are located in relatively

conserved regions suggesting that the cellular immune response

could indeed have contributed to the control shown by the patient.

The neutralizing antibody response of this LTNP-EC was

analyzed measuring heterologous neutralization against a panel of

reference strains. The observation that neutralizing antibodies are

capable of preventing infection in animal models [52] initially

suggested that this kind of response might be able to prevent SI in

humans. In support of this hypothesis is a study in which the lack

of neutralizing antibody response had been associated with a

predisposition to SI [53]. However, a more extensive study showed

that SI can occur even in the presence of a good neutralizing

response [54]. LTNP-EC sera were capable of neutralizing 4 out

of the 6 strains analyzed from 5 different subtypes. The good

neutralizing response observed in this individual contrasts with the

poor heterologous response previously reported for LTNPs

[15,16,18,55,56]. This unexpected good response observed in this

patient, is also high when compared to the neutralizing response

from samples taken from patients with typical progression. These

results are in agreement with a previous work in which dual HIV-1

infection by genetically distant strains, as in the SI LTNP-EC

patient, correlated with significantly increased potency and

breadth in anti-HIV-1 neutralizing antibody response [57].

In summary, this study associates the ability to contain two

divergent HIV infections with the maintenance of a strong HIV-1-

specific CD8+ T cell response, beneficial HLA class II alleles as

well as a good humoral neutralization response in a SI HIV-1

Table 7. Neutralization capacity of control group.

Number of neutralized viruses % of samples with 50% neutralization

0 6.05

1 24.19

2 20.16

3 14.52

4 18.55

5 11.69

6 4.84

doi:10.1371/journal.pone.0031928.t007
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LTNP-EC. In addition, representative variants from the primo

and SI viruses showed impaired replicative capacity in U87-CCR5

and PBMCs cells.

Whether the strong cellular and humoral immune responses

were indeed mediating viral control and how other SI LTNP-EC

contain their secondary viruses will require the identification of

larger numbers of dually or super-infected LTNP-EC and close

monitoring of these subjects from early infections time points.

Although the latter may be complicated as secondary infections

may go clinically unnoticed, such studies may warrant the effort as

they could be highly informative for HIV vaccine immunogen

development.
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