
Differential Proteome Analysis of Bone Marrow
Mesenchymal Stem Cells from Adolescent Idiopathic
Scoliosis Patients
Qianyu Zhuang1, Jing Li2, Zhihong Wu1, Jianguo Zhang1, Wei Sun3, Tao Li1, Yujuan Yan3, Ying Jiang3,

Robert Chunhua Zhao2., Guixing Qiu1.*

1 Department of Orthopedics, Peking Union Medical College Hospital, Beijing, People’s Republic of China, 2 Center of Excellence in Tissue Engineering, Institute of Basic

Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China, 3 State Key

Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, People’s Republic of China

Abstract

Adolescent idiopathic scoliosis (AIS) is a complex three-dimensional deformity of the spine. The cause and pathogenesis of
scoliosis and the accompanying generalized osteopenia remain unclear despite decades of extensive research. In this study,
we utilized two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry (MS) to
analyze the differential proteome of bone marrow mesenchymal stem cells (BM-MSCs) from AIS patients. In total, 41
significantly altered protein spots were detected, of which 34 spots were identified by MALDI-TOF/TOF analysis and found
to represent 25 distinct gene products. Among these proteins, five related to bone growth and development, including
pyruvate kinase M2, annexin A2, heat shock 27 kDa protein, c-actin, and b-actin, were found to be dysregulated and
therefore selected for further validation by Western blot analysis. At the protein level, our results supported the previous
hypothesis that decreased osteogenic differentiation ability of MSCs is one of the mechanisms leading to osteopenia in AIS.
In summary, we analyzed the differential BM-MSCs proteome of AIS patients for the first time, which may help to elucidate
the underlying molecular mechanisms of bone loss in AIS and also increase understanding of the etiology and pathogenesis
of AIS.
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Introduction

Adolescent idiopathic scoliosis (AIS) is a complex three-

dimensional deformity of the spine occurring mostly in girls

between 10 and 16 years of age during the pubertal growth spurt.

The general incidence of AIS has been reported to range from

2.0% to 4.0% [1–3]. In Hong Kong, for instance, the prevalence

rate of AIS increased from 2.7% in 1998 to 4.0% in 2003 among

school children [4]. If untreated, severe scoliotic deformity

affecting the thoracic region can progress, impairing cardiopul-

monary function, thereby increasing the mortality rate [5,6].

The main treatment of AIS includes full-time bracing [7], which

may cause back pain along with psychological disorder, and

pedical screw instrumentation, which inevitably leads to major

operative trauma, decreased spinal range of motion [8], and even

permanent catastrophic neurologic or vascular injury in case of

screw malposition [9]. With the ultimate hope of developing more

specific treatments and avoiding the above risks, extensive studies

are carried out from different aspects, including histological,

immunofluorescent, genetic and molecular biological studies of

blood and tissue specimens from different animal models and AIS

patients, as well as the imaging, cognitive, endocrinological, and

neurological researches in AIS paitents [10–16]. However, no

single factor can explain the whole clinical picture of AIS, and the

pathogenesis remains largely unknown [17,18].

The low bone mineral density (BMD) in AIS reported by many

authors suggested the possibility of bone metabolism disturbance

[19–25]. Moreover, a bone biopsy study reported diminished

number of osteoblasts and a corresponding reduction in osteoclast

number in patients with AIS [26], indicating disturbance in the

bone metabolism as a primary change. In spite of the presence of

much controversy engendered by all the hypotheses and

considerable gaps in the related knowledge, there is a growing

consensus that anomalies of bone growth and development are

strongly related to the onset and progression of scoliosis.

Mesenchymal stem cells (MSCs) are well known for playing a

pivotal role in bone growth, bone modeling, and bone remodeling.

MSCs are able to act as a source of progenitors for osteoblasts, and

also regulate osteoclastogenesis via their expression of RANKL

and OPG [27–31]. Furthermore, MSCs are indispensable in both

intramembranous and endochondral bone formation. Intramem-

branous bone formation requires periosteal MSCs to undergo

osteogenic differentiation and form bone without a preceding

cartilage step. Endochondral bone formation, running alongside
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the intramembranous process, begins with the differentiation of

condensed MSCs into chondroprogenitors and osteoprogenitors,

both of which will undergo coupled proliferation and differenti-

ation programs and ultimately form mature cartilage and bone

[27].

Given the functional characteristics of MSCs in bone formation

and resorption, it is very likely that MSCs play a significant role in

the etiology and pathogenesis of AIS. A recent study, which

supports our speculation, observed lower osteogenic differentiation

abilities and alkaline phosphatase activities of MSCs from AIS

patients [32], indicating that the decreased osteogenic differenti-

ation ability of MSCs might be a possible mechanism leading to

low bone mass in AIS. However, to the best of the authors’

knowledge, there have been virtually no reports on the proteomics

of MSCs from AIS patients in the literature up to this point.

Therefore, to gain an insight into the pathogenesis of AIS, we

studied specific alterations in the proteome of MSCs by using two-

dimensional fluorescence difference gel electrophoresis (2D-

DIGE)and mass spectrometry (MS). This study focused on

depicting the differential proteome of bone marrow mesenchymal

stem cells (BM-MSCs) from AIS patients, by comparing the MSCs

proteomic profile of AIS patients with that of lower-leg fractured

non-AIS patients.

Methods

Patients and Specimens
Bone marrow (BM) aspirates were obtained from six AIS

patients (mean age 12.3 years, range 11–14) and six non-AIS

patients with lower-leg fracture (mean age 12.6 years, range 11–

14). In the AIS group, all of the patients underwent full clinical

and radiological examinations to rule out other causes of scoliosis

and to ascertain the diagnosis of AIS. The subject exclusion

criteria were scoliosis of congenital, neuromuscular, or metabolic

etiology, skeletal dysplasia, known endocrine and connective tissue

abnormalities, and mental retardation. In the control group, each

of the six age- and gender- matched subjects with no history of

spinal disease had a straight spine and a normal forward bending

test on the physical examination. They were confirmed to be free

of any associated medical diseases, spinal deformities, or

neurological problems when entered to the study. The study was

approved by the Ethics Committee of Chinese Academy of

Medical Sciences and Peking Union Medical College Hospital.

Written informed consent was obtained from all subjects and their

parents before entering the study.

Isolation and Culture of Cells from Human Bone Marrow
Mononuclear cells were separated by Ficoll gradient centrifu-

gation (density 1.077 g/cm3) and depleted of hematopoietic cells

using MACS CD45, GlyA, and CD34 micromagnetic beads

(Miltenyi Biotec, Inc., Auburn, CA, USA) [33,34]. The cells were

washed twice and plated in T-75 tissue culture flasks at a density of

16106/ml. Expansion medium contained 57% DMEM/F-12

(Gibco Life Technologies, Paisley, UK), 40% MCDB-201 (Sigma,

St.Louis, MO, USA), 2% fetal calf serum (FCS; Gibco), 16 insulin

transferrin selenium (ITS; Gibco), 1028 M dexamethasone

(Sigma), 1024 M ascorbic acid 2-phosphate (Sigma), 10 ng/ml

epidermal growth factor (EGF; Sigma), 10 ng/ml platelet-derived

growth factor BB (PDGF-BB; Sigma), 100 U/ml penicillin, and

100 mg/ml streptomycin (Gibco). Once adherent cells were more

than 70% confluent, they were detached with 0.125% trypsin and

0.01% EDTA, and replated at a 1:3 dilution under the same

culture conditions. Confluent cells (approximately 26106) at the

third passage were used for the experiments.

Immunophenotype Analysis
For immunophenotype analysis of BM-MSCs, the cells were

detached and washed with phosphate buffered saline (PBS)

containing 0.5% bovine serum albumin (BSA; Sigma), and

incubated with primary antibodies for 30 min at 4uC. Working

concentrations for primary antibodies against human CD29,

CD31, CD34, CD44, CD45, CD73, and CD105, (BD Biosciences)

were 10 ng/ml. We used same-species, same-isotype irrelevant

antibody as the negative control. After washing with PBS

containing 0.5% BSA, the cells were incubated with fluorescein

isothiocyanate (FITC)-conjugated secondary antibodies for 30 min

at 4uC. After three washes, cells were resuspended in PBS and

analyzed by flow cytometry with a FACSCalibur flow cytometer.

Each measurement contained 10000 events.

Osteogenic and Adipogenic Differentiation
To identify the MSC capacity for multilineage differentiation,

MSCs were cultured under differentiation conditions.

The culture-expanded cells at a density of 26104/cm2 were

induced in the following osteogenic medium for 2–3 weeks:

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with

10% FCS, 10 mmol/L b-glycerophosphate, 1028 mol/L dexa-

methasone, and 0.2 mmol/L ascorbic acid (all from Sigma). Cells

were then stained with the alkaline phosphatase (ALP) staining kit

(Beyotime, China) to reveal osteogenic differentiation.

To test the adipogenic differentiation ability, the culture-

expanded cells at a density of 26104/cm2 were induced for 3

weeks in DMEM supplemented with 10% FCS, 0.5 mmol/L

hydrocortisone, 0.5 mmmol/L isobutylmethylxanthine, and

50 mg/ml indomethacin (all from Sigma). At the end of the

culture, the cells were fixed in 10% formalin for 10 min and

stained with fresh Oil red-O solution (Sigma) to show lipid droplets

in induced cells.

Protein Sample Preparation
Cell pellets were dissolved in lysis buffer (7 M urea, 2 M

thiourea, 4% CHAPS, 10 mM Tris). For improved cell lysis, the

solution was sonicated on ice for 1 min with 1 s pulse-on and 1 s

pulse-off to prevent overheating. After incubation for 30 min at

room temperature with repeated vortexing, the samples were

centrifuged at 400006g for 60 min at 10uC to remove unbroken

cells from the homogenate. The supernatant was stored in aliquots

at 280uC. Protein concentration was determined with the

Bradford assay kit (BioRad) using albumin diluted in lysis buffer

as the standard.

DIGE Labeling and Two-Dimensional(2D) Electrophoresis
Cell lysates were labeled with Cy2, Cy3, and Cy5 following

the protocols described in the Ettan DIGE User Manual (18-

1164-40 Edition AA, GE Healthcare). The DIGE experimental

design is shown in Table 1. Typically, 50 mg of lysates (25 mg62)

were labeled with 400 pmol of Cy3 or Cy5, while the same

amount of the pool standard containing equal amounts of all

samples were labeled with Cy2. Labeling was carried out in the

dark on ice for 30 min. Reactions were then quenched by the

addition of 1 mL of 10 mM lysine for 10 min on ice. After

labeling and quenching, differentially labeled samples were

mixed with the pooled Cy2-labeled extracts, and an equal

volume of 26 sample buffer (7 M urea, 2 M thiourea, 4%

CHAPS, 2% Bio-Lyte, pH 3–10 nonlinear, 2% dithiothreitol)

was added to the sample, then the total volume was made up to

450 ml with rehydration buffer (7 M urea, 2 M thiourea, 4%

CHAPS, 20 mM DTT, 1% Biolyte).

Differential Proteome Analysis of AIS BM-MSCs
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Two dimensional electrophoresis (2-DE) was performed as

previously described with some modifications [35]. IPG strips

(24 cm, pH 3–10 nonlinear, GE) and Ettan IPGphor System

(GE Healthcare) were used for the first-dimension IEF under the

following conditions: 30 V, rapid, 6 h; 60 V, rapid, 6 h; 200 V,

rapid, 1 h; 500 V, rapid, 1 h; 1000 V, 1 h, 1000–10000 V,

linear, 3 h; and 10000 V, rapid, 60000 Vh. The strips were then

treated with a two-step reduction and alkylation step prior to the

second-dimension SDS-PAGE. After equilibration with a

solution containing 6 M urea, 2% sodium dodecyl sulfate

(SDS), 30% glycerol, 50 mM Tris-Cl (pH 8.8), and 0.5% w/v

dithiothreitol (DTT) for 15 min at room temperature, the IPG

strips were treated with the same solution containing 4.5% w/v

iodoacetamide instead of DTT for another 15-min incubation at

room temperature. For the second-dimension SDS-PAGE, the

strips were overlaid onto 12% polyacrylamide gels (20624 cm),

immobilized to a low-fluorescent glass plate and electrophoresed

for 1 h at 10 mA and then for approximately 15 h at 20 mA per

gel using an Ettan DALT Six (GE Healthcare). After 2-DE, gels

were scanned on the Typhoon 9410 scanner (GE Healthcare)

with Ettan DALT gel alignment guides using excitation/emission

wavelengths specific for Cy2 (488/520 nm), Cy3 (532/580 nm),

and Cy5 (633/670 nm). The intensity was adjusted to ensure

that the maximum volume of each image was between 60,000

and 90,000.

Image Acquisition and Analysis
DeCyder v.6.5 was used to analyze the DIGE images as

described in the Ettan DIGE User Manual (GE Healthcare). A

DeCyder differential in-gel analysis (DIA) module was performed

for image analysis between samples within the same gel, while a

DeCyder biological variation analysis (BVA) module was

performed for pairwise image analysis among multiple gels.

Briefly, in DIA, the Cy2, Cy3, and Cy5 images for each gel were

merged, spot boundaries were automatically detected, and

normalized spot volumes ( protein abundance) were calculated.

The resulting spot maps were exported to BVA. The best internal

standard image was assigned as the ‘‘Master,’’ which was used as

a template. The protein spots on the remaining internal standard

images were all matched to the master gel to ensure that the same

protein spots were compared between gels. Matching of the

protein spots across all gels was performed after several rounds of

extensive land marking and automatic matching. The match was

then checked manually to ascertain the accuracy of the match

process. Dividing each Cy3 or Cy5 spot volume with the

corresponding Cy2 (internal standard) spot volume within each

gel gave a standard abundance, thereby correcting integral

variations.

The Student’s t test was used for statistical analysis of the

data. Protein spots that were differentially expressed between the

AIS and control groups (|ratio|$1.3, p#0.05) were marked.

Only spots altered consistently in all gels were selected for

identification.

Spot Excision and In-gel Tryptic Digestion
Separate preparative gels were run to obtain sufficient amounts

of protein for MS analysis. These gels were fixed and stained with

colloidal Coomassie Brilliant Blue (cCBB; Amresco) [36]. Proteins

of interest, as defined by the 2D-DIGE/DeCyder analysis, were

excised from the cCBB-stained gels for a modified in-gel tryptic

digestion procedure. Gel pieces were first destained with 50%

ACN and 25 mM of ammonium bicarbonate. Following vacuum

drying, the gel pieces were incubated with sequencing-grade

modified trypsin (Promega) at a final concentration of 0.01 mg/

mL in 25 mM of ammonium bicarbonate (Fluka) or 16 h at 37uC.

Then the tryptic peptides were extracted from the gels with 5%

TFA at 40uC. After extraction for 30 min, the gels underwent

sonication for 3 min with an ultrasonic processor and then another

30 minutes’ extraction. After collecting the supernatants, the gels

were treated with 2.5% TFA, 50% ACN at 30uC for half an hour,

then sonicated for 3 min and subsequently treated with the same

solution for another half an hour. The extracts were pooled,

vacuum-dried, and redissolved in 0.1% TFA for MS analysis.

MALDI-TOF/TOF Analysis
A total of 0.8 ml peptides were spotted on to the 384-well

stainless steel MALDI target plates and dried, followed by 0.6 ml

MALDI matrix (7 mg/mL CHCA and 0.1% TFA and 50% ACN)

spotted on the same point. Samples on the MALDI target plates

were then analyzed using an ABI 4800 Proteomics Analyzer

MALDI-TOF/TOF mass spectrometer (Applied Biosystems). For

MS analyses, typically 1000 shots were accumulated for each spot,

while for MS/MS analysis, 2000 shots were accumulated. MS/MS

analyses were performed using air, at collision energy of 2 kV.

MASCOT search engine (version 2.1, Matrix Science) was used to

search all of the tandem mass spectra. GPS ExplorerTM software

version 3.6.2 (Applied Biosystems) was used to create and search

files with the MASCOT search for peptide and protein

identification. The IPI human database v3.53 (http://www.ebi.

ac.uk/IP/IPIhelp.html) was used for the search and was restricted

to tryptic peptides. Searches were performed to allow for

carbamidomethylation, oxidation, and a maximum of one missed

trypsin cleavage. Precursor error tolerance was set to ,0.2 Da and

MS/MS fragment error tolerance ,0.3 Da. The confident

identification had a statistically significant (p#0.05) protein score

(based on combined mass and mass/mass spectra) and best ion

score (based on mass/mass spectra). Proteins that appeared in the

database under different names and accession numbers were

eliminated. If more than one protein was identified in one spot, the

single protein member with the highest protein score (top rank)

was singled out from the multiprotein family.

Western Blot Analysis
Five differentially expressed proteins of the 25 identified

proteins, pyruvate kinase M2 (PKM2), annexin A2, heat shock

27 kDa protein (HSP27), c-actin and b-actin were further

validated by Western blot analysis, using ubiquitous housekeeping

protein GAPDH as the loading control.

Samples were run on 12% SDS-polyacrylamide gels and

transferred onto nitrocellulose (NC; GE) membranes in a trans-

Table 1. DIGE experimental design for samples from AIS
group and control group.a

Gel Cy2 Cy3 Cy5

01 Pool of (A 1–6+C1–6) (50 mg) C1+C2
(25 mg each)

A1+A2b

(25 mg each)

02 Pool of (A 1–6+C1–6) (50 mg) A3+A4
(25 mg each)

C3+C4
(25 mg each)

03 Pool of (A 1–6+C1–6) (50 mg) C5+C6
(25 mg each)

A5+A6
(25 mg each)

a) A total of 150 mg of labeled proteins were loaded on each gel for 2D
electrophoresis.

b) 6 samples from AIS group and 6 samples from control group were randomly
numbered as A1,A6 and C1,C6, respectively.

doi:10.1371/journal.pone.0018834.t001

Differential Proteome Analysis of AIS BM-MSCs
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blot electrophoresis transfer cell (Bio-Rad). The membranes were

blocked for 1 h at room temperature in 20 mM Tris-HCl,

140 mM NaCl, pH 7.5, 0.05% Tween-20 (TBST) containing

5% skim milk. The primary antibodies used were anti-glyceral-

dehyde-3-phosphate dehydrogenase (GAPDH) mouse monoclonal

antibody (diluted 1:2000, ProteinTech), anti-b-actin mouse

monoclonal antibody (diluted 1:1000, ProteinTech), anti-c-actin

mouse monoclonal antibody (diluted 1:1000, Sigma), purified anti-

annexin A2 mouse monoclonal antibody (diluted 1:500, BD), anti-

HSP27 mouse monoclonal antibody (diluted 1:1000, Cell Signal

Technology), and anti-PKM2 rabbit polyclonal antibody (diluted

1:1000, Cell Signaling Technology). After washing five times with

TBST, 3 min each time, membranes were incubated with each

primary antibody at room temperature for 2 h. Blots were then

washed for additional five times with TBST and incubated with

corresponding rabbit anti-mouse or goat anti-rabbit peroxidase-

conjugated secondary antibody (diluted 1:10000, Zhongshan

Goldenbridge Technology) for 1 h at room temperature. After

washing five times with TBST, immunoreactive complexes were

visualized using ECL reagents (Supersignal West Pico Chemilu-

minescent Substrate, Thermo). All of the membranes were

exposed on the same X-ray film and scanned by Image Scanner

(UMAX, Amersham Biosciences). A semiquantitative analysis

based on OD was performed by QuantitiOne software (Bio-Rad).

Results

The Biological Characteristics of MSCs
All of the cultured cells from AIS patients and non-AIS patients

with lower-leg fracture grew well and displayed fibroblast-like

morphology in culture medium when observed under a light

microscope. To demonstrate that these isolated cells were MSCs,

we investigated their immunophenotypes coupled with multi-

lineage differentiation capacities. These cells from both the AIS

and control groups were persistently negative for CD31, CD34,

and CD45, but expressed high levels of CD29, CD44, CD73, and

CD105 (Figure 1). Furthermore, they can be differentiated into

osteoblasts and adipocytes, which was verified by ALP and Oil

Red O staining (Figure 2).

Identification of Proteins Using 2-DE
We analyzed the MSC proteome of a group of 12 individuals

(six AIS patients and six non-AIS controls) by 2D-DIGE. Globally,

1658637 spots (mean 6 SD; n = 6, AIS; n = 6, non-AIS controls)

were detected on each analytical gel loaded with 50 mg of total

protein lysate per sample type (AIS or control).

As for the analyzed gel spots, we selected those fulfilling two

criteria: expression change of at least 1.3-fold compared to the

control group and a significant t test result (n = 6 in each group,

p,0.05). The comparison between MSCs from AIS and control

groups resulted in the identification of 41 significantly different

spots, the locations of which on the 2D gels were labeled with spot

ID (Figure 3). These spots were excised manually from silver-

stained gels and were identified by MS. A total of 34 spots of the

41 excised (82.9%), representing 25 different gene products, were

unambiguously identified as either up-regulated or down-regulat-

ed. The mass spectra of five significantly differential proteins

related to bone metabolism, including PKM2, annexin A2, , b-

actin, c-actin, and HSP27, are presented in Figure S1, S2, S3, S4,

S5, respectively.

Table 2 provides a list of identified proteins with their respective

spot ID, protein name, IPI ID, the theoretical pI/MW, the

percentage of sequence coverage, p-value, total protein score, best

ion score, and peptide sequence determined by MS. Five of these

25 identified proteins were found in more than one spot, according

to similar molecular masses and pIs: UDP-glucose dehydrogenase

(IPI 00031420) was found in spots 9 and 10; ATP synthase subunit

a, mitochondrial (IPI 00440493) in spots 13, 14, and 16; c-actin

(IPI 00021440) in spots 21, 22, 23, 24, and 25; b-actin (IPI

00894365) in spots 26 and 27, and annexin A2 (IPI 00455315) in

spots 29 and 32.

Functional Classification and Subcellular Location of
Identified Proteins

The proteins listed in Table 2 were classified into different

groups according to their biological process, molecular function,

and cellular component using the GOFACT program (http://61.

50.138.118/gofact) based on Gene Ontology (GO) terms [37].

The majority of proteins that changed at least 1.3-fold (with

p,0.05) were involved in cellular metabolic (57.1%), biological

regulation (38.1%), and biosynthetic processes (23.8%) (Figure 4A).

Furthermore, an analysis of subcellular distribution of the

differential proteins allowed the differentiation of 9 different

categories (Figure 4B). The majority of proteins were located in the

following five subcellular positions: cytoplasm (66.7%), cytoskele-

ton (23.8%), membrane (19%), mitochondrion (19%), and nucleus

(19%), while the remaining reside in the vesicle, extracellular

region, ribonucleoprotein complex, and endoplasmic reticulum.

Interestingly, five of twenty-five differentially expressed proteins

(b-actin, c-actin, HSP27, WD repeat-containing protein 1, and

moesin) were localized in the cytoskeleton, all of which were down-

regulated in our experiment. Additionally, the classification of the

gene products based on their molecular function resulted in 8

different categories (Figure 4C), among which the binding function

represents the largest group (90.5%). The proteins were classified

into the following categories: binding, catalytic activity, hydrolase

activity, enzyme regulator activity, transport, signal transducer

activity, structural molecule activity, and transcription regulator

activity.

Protein Validation by Western Blot
Significantly differential proteins that were most likely to have

biological importance, including PKM2, annexin A2, HSP27, c-

actin, and b-actin, were detected by Western blot analysis for their

expression. The results are displayed in Figure 5. The expression

of b-actin, HSP27, c-actin, and annexin A2 was down-regulated,

and that of PKM2 was up-regulated in the AIS group. All of these

change patterns of the selected proteins were in agreement with 2-

DE results. Therefore, the results of Western blot analysis

confirmed the reliability of the proteomic analysis.

Discussion

The etiology and pathophysiologic process underlying AIS

remains unclear despite the number of studies performed. Current

views maintain that AIS is a multifactorial disease involving

genetic [10,38], skeletal [39,40], environmental [41–43], bio-

chemical [13], and neurohormonal factors [14–16].

It is generally recognized that abnormal growth is associated

with the development and progression of the scoliotic curves [44–

45]. Furthermore, persistent general osteopenia of AIS patients

indicates imbalance between bone resorption and bone formation

in AIS [19–25]. Interestingly, recent findings [26,32] of dimin-

ished numbers of osteoblast and lower osteogenic differentiation

abilities of MSCs from AIS patients rendered the MSCs

impairment one possible mechanism of osteopenia in AIS, which

has aroused growing concern.

Differential Proteome Analysis of AIS BM-MSCs
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The findings of abnormal bone growth and development in

AIS, together with functional characteristics of MSCs, strongly

suggest that MSCs may play a significant role in the etiology and

pathogenesis of AIS. However, due to the lack of research in this

area, we know very little of the biological characteristics,

proteomic alterations, and the possible role of MSCs in the

pathogenesis of AIS and accompanying generalized osteopenia.

Therefore, to investigate the molecular mechanism of decreased

osteogenic differentiation ability of MSCs and gain an insight into

the pathogenesis of AIS, we employed 2D-DIGE and MS-based

proteomic approaches to explore the differential protein expres-

sion patterns in MSCs of AIS and non-AIS controls. To the best of

our knowledge, this study is the first research on AIS in the field of

proteomics, and also one of only a few studies focused on MSCs

from AIS patients.

As previously described, 41 spots were revealed with at least 1.3-

fold changes in expression and 25 differentially expressed proteins

were successfully identified by MALDI-TOF/TOF-MS. Due to

their significant expression alterations as well as potential

functional relevance to bone growth and development, five of

these proteins, including PKM2, annexin A2, HSP27, c-actin, and

b-actin, were chosen to be further validated by Western blot

analysis. These five differential proteins will be discussed in the

following section.

PKM2
It is well known that different isoenzymes of pyruvate kinase are

expressed depending on the metabolic responsibilities of the

various cells and tissues. Among them, pyruvate kinase isoenzyme

type M2 (PKM2, M2-PK) is characteristic of cells with high rates

of nucleic acid synthesis, including most of the proliferating cells,

such as adult stem cells, embryonic cells, and tumor cells [46,47].

According to previous reports, PKM2 plays an important role in

both cell proliferation and differentiation. In tumor cells, PKM2

has been regarded as an important metabolic sensor to adapt

tumor metabolism to varying nutrient and oxygen supply

conditions, thus facilitating cell proliferation and survival [48]. It

was also observed in the BB13 cell line that PKM2 translocated to

the nucleus by IL-3 enhanced EGF-induced proliferation [49]. In

addition, using NIH3T3 cell line, Gilles A’s finding suggested that

PKM2 could regulate cell proliferation, cell growth and apoptosis

in a glucose supply-dependent manner [50].

Figure 1. The immunophenotypes of MSCs from control and AIS groups. The figure shows immunophenotypes of MSCs isolated from non-
AIS patients with lower-leg fracture (control) and AIS patient detected by FACS.
doi:10.1371/journal.pone.0018834.g001

Differential Proteome Analysis of AIS BM-MSCs
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More importantly, inhibition of PKM2 induces a significant

decrease in the population doubling (PDL) and cell proliferation

rates, as well as an increase in cell size [50]. Contrary to this,

overexpression of PKM2 was found to enhance cell proliferation

in the absence of interleukin-3 [49]. All of these studies suggest

that PKM2 plays an important role in cell proliferation.

Furthermore, it has been reported that PKM2 is able to

stimulate Oct-4-mediated transcriptional activation. Oct-4, as a

central mediator of the undifferentiated pluripotent state of

embryonic stem cells, may prevent expression of genes activated

during differentiation [51]. These observations indicate that

PKM2 could negatively regulate cell differentiation through

modulating the transactivation potential of the Oct-4 transcription

factor.

In our study, PKM2 was significantly up-regulated in the MSCs

of AIS, suggesting that the proliferation ability of MSCs in AIS

might be increased. In contrast to our speculation, Park et al found

the proliferation rate of MSCs obtained from AIS patients to be

similar to that of the control subjects [32]. However, the author

also states that the number of patients included in their study was

relatively small and suggests performing larger studies. Therefore,

the exact alteration of MSC proliferation ability in AIS needs

further large-scale studies to clarify.

Additionally, due to the negative correlation between PKM2

and cell differentiation, up-regulation of PKM2 in the AIS-MSCs

in our experiment indicates decreased differentiation ability of

MSCs in AIS, which not only support previous observation of

reduction of osteogenic differentiation ability of AIS-MSCs, but

also provide a possible mechanism of persistent general osteopenia

of AIS patients.

Annexin A2
In this study, annexin A2 was differentially down-regulated in

MSCs obtained from AIS patients. These molecules belong to the

annexin protein family, which have in common that they bind to

acidic phospholipids in the presence of calcium [52–55]. Annexin

A2 contains four 70–80 amino acid repeats with an annexin

consensus sequence. These four repeats form the conserved core

region, which is responsible for the Ca2+-dependent binding of the

proteins to phospholipids [56].

Annexin A2, which is highly expressed by osteoblasts [57],

osteoarthritic chondrocytes [58,59], hypertrophic and terminally

differentiated growth plate chondrocytes [60], has been demon-

strated to play a significant role in both intramembrane and

intrachondral ossification.

Figure 2. Cell morphology, osteogenic and adipogenic differentiation abilities of MSCs from control and AIS groups. (A) Cell
morphology of MSCs of the control and AIS groups at the 3rd passage (Magnification 1006). (B) Oil red O staining of MSCs of the control and AIS
groups after adipogenic induction for two weeks (Magnification, 2006). (C) ALP staining of MSCs of the control and AIS groups after osteogenic
induction for two weeks (Magnification, 2006).
doi:10.1371/journal.pone.0018834.g002
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In growth plate chondrocytes, it has been found that annexin

A2 is essential to form Ca2+ channels in both the plasma

membrane [56] and matrix vesicles [61], which are particles

released from the plasma membrane of mineralizing cells, and

thereby initiating the mineralization process. The annexin-

mediated alteration in Ca2+ homeostasis thereby regulates a

whole sequence of events eventually leading to matrix minerali-

zation. Furthermore, it has also been reported that inhibiting

annexin channel function prevents terminal differentiation and the

mineralization of growth plate chondrocytes in vitro [60].

Similarly, human osteoarthritic chondrocytes also release

annexin A2-containing matrix vesicles, which initiate mineral

formation [57]. Annexin A2, which is not detectable in the upper,

middle, and deep zones of healthy human articular cartilage, is

expressed by chondrocytes in the upper zone of early- and late-

staged human osteoarthritic cartilage [57].

Annexin A2 has also been shown to play an important role in

the mineralization of osteoblastic cells. It was found that

overexpression of annexin A2 led to increased ALP activity,

which would be further elevated following differentiation [62].

Figure 3. Identification of the differentially expressed proteins using 2-DE. The figure displays Representative 2D-DIGE images of MSCs
labeled with Cy3(B) , Cy5(C),Cy2(D) and overlay of the three color images(A) derived from a single gel. Spots for which the quantitative statistical
analysis revealed .1.3-fold protein expression change and a Student’s t test p value less than 0.05 in the AIS group were annotated by numbers
according to pI and Mw. The annotated protein spots were cut out of the gel and subjected to tryptic digestion followed by MS analysis.
doi:10.1371/journal.pone.0018834.g003
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Table 2. Differentially expressed proteins identified in MSCs from AIS group and Control group by 2-DE and MS or MS/MSa).

Spot
No.b)

Protein
descriptionc) IPI Nod) MWe) PIf)

Sequence
coverageg) P value

Average
Ratioh)

Total
protein
Scorei)

No.of
matched
peptide
(MS)j) Peptides sequencek)

3 Moesin IPI00872814 67644.8 6.09 25% 0.026 21.4 99 16 APDFVFYAPR(48)

4 Glycyl-tRNA
synthetase

IPI00783097 83086.6 6.61 18% 0.006 21.35 131 12 LPFAAAQIGNSFR(50)
TLYVEEVVPNVIEPSFGL(43)

5 Heat shock
70 kDa protein 9

IPI00007765 73634.8 5.87 25% 0.026 21.51 258 14 LLGQFTLIGIPPAPR(49)
AQFEGIVTDLIR(43)
VQQTVQDLFGR(40)

6 WD repeat-
containing
protein 1

IPI00746165 66151.9 6.17 23% 0.0082 21.34 97 15 VFASLPQVER(28)

7 FK506 binding
protein 10

IPI00334818 51992.1 5.23 22% 0.0076 1.31 114 11 NTLVAIVVGVGR(38)

8 T-complex protein
1 subunit alpha

IPI00290566 60305.6 5.8 20% 0.012 21.34 140 10 EQLAIAEFAR(38)

9 UDP-glucose
dehydrogenase

IPI00031420 54989.2 6.73 42% 0.0039 21.44 238 13 RIPYAPSGEIPK(45)
VLIGGDETPEGQR(41)
LAANAFLAQR(38)

10 UDP-glucose
dehydrogenase

IPI00031420 54989.2 6.73 35% 0.02 21.39 234 15 EQIVVDLSHPGVSEDDQVSR(56)
LAANAFLAQR(47)

11 Glucose-6-
phosp-hate
1-dehydrogenase

IPI00289800 59219 6.39 26% 0.0029 1.34 288 17 LSNHISSLFR(48) IIVEKPFGR(38)

12 Tubulin, beta IPI00645452 47736 4.7 25% 0.019 1.49 235 11 FPGQLNADLR(56) YLTVAAVFR(48)
GHYTEGAELVDSVLDVVR(41)

13 ATP synthase
subunit alpha,
mitochondrial

IPI00440493 59713.6 9.16 26% 1.00E-05 1.35 170 11 TGAIVDVPVGEELLGR(66)
EAYPGDVFYLHSR(47)

14 ATP synthase
subunit alpha,
mitochondrial

IPI00440493 59713.6 9.16 31% 0.046 1.77 190 13 TGAIVDVPVGEELLGR(53)
EAYPGDVFYLHSR(50)

15 Pyruvate
kinase M2

IPI00847989 49865.9 7.96 41% 0.042 2.81 185 10 LDIDSPPITAR(42)

16 ATP synthase
subunit alpha,
mitochondrial

IPI00440493 59713.6 9.16 26% 0.0048 1.56 183 11 TGAIVDVPVGEELLGR(61)
EAYPGDVFYLHSR(51)

17 Alpha-enolase IPI00465248 47139.3 7.01 35% 0.0033 21.3 264 12 VVIGMDVAASEFFR(64)
AAVPSGASTGIYEALELR(59)
VVIGMDVAASEFFR(41)

18 Cytochrome
b-c1 complex
subunit 1,
mitochondrial

IPI00013847 52612.4 5.94 27% 0.014 1.34 227 10 DVVFNYLHATAFQGT
PLAQAVEGPSENVR(102)
IAEVDASVVR(59)

19 Serpin H1 IPI00032140 46411.2 8.75 28% 0.021 1.51 188 10 LYGPSSVSFADDFVR(71)
DTQSGSLLFIGR(54)

20 Ornithine
aminotransferase,
mitochondrial

IPI00022334 48504.2 6.57 32% 0.038 1.32 206 13 HQVLFIADEIQTGLAR(50)
FAPPLVIKEDELR(48)

21 c-actin IPI00021440 41765.8 5.31 51% 0.015 22.02 263 15 SYELPDGQVITIGNER(54)
QEYDESGPSIVHR(45)

22 c-actin IPI00021440 41765.8 5.31 44% 0.016 21.82 411 12 DLYANTVLSGGTTMYPGIADR(118)
SYELPDGQVITIGNER(92)
IWHHTFYNELR(59) AVFPSIVGRPR(41)

23 c-actin IPI00021440 41765.8 5.31 50% 0.014 21.45 482 14 DLYANTVLSGGTTMYPGIADR(104)
SYELPDGQVITIGNER(79)
TTGIVMDSGDGVTHTV
PIYEGYALPHAILR(63)
IWHHTFYNELR(56)
AGFAGDDAPR(49)

24 c-actin IPI00021440 41765.8 5.31 46% 0.0068 21.34 403 13 DLYANTVLSGGTTMYPGIADR(129)
SYELPDGQVITIGNER(95)
IWHHTFYNELR(55) AVFPSIVGRPR(39)
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Since ALP has been considered a valuable indicator for bone

development and differentiation, annexin A2 may alter ALP

activity, thereby facilitating mineralization, a terminal step in the

differentiation process of osteoblastic cells.

In studies of other cell types, there is much evidence to support

the association between annexin A2 and cellular differentiation. For

instance, annexin A2 expression is affected when myeloid cell lines

are induced to differentiate by stimulation with all-trans-retinoic

acid (ATRA) [63]. As discussed above, annexin A2 may therefore be

an important player in cellular differentiation and related disorders.

In this study, we demonstrated that annexin A2 was down-

regulated significantly in MSCs from AIS patients, which was

consistent with the previously described decrease in osteogenic

differentiation ability. It is likely that annexin A2 plays an

important role in osteogenic differentiation of MSCs from AIS

patients and exerts further influence on both intramembrane and

endochondral ossification in AIS. Therefore, annexin A2 might be

responsible, at least in part, for the low bone mass in AIS, although

the exact mechanism in etiology of AIS needs further research.

HSP27
The mammalian small stress protein HSP27 (also denoted

HSP28 and in murine cells, HSP25) belongs to the HSP family

whose synthesis is induced or stimulated by heat shock and other

forms of stress [64]. We would like to discuss HSP27 from the

following two aspects.

(1) HSP27 and Cell Differentiation. Recent studies have

revealed that expression of the small heat shock (or stress) proteins

(sHSP), including that of HSP27, is closely linked to changes in the

state of cell differentiation. During the process of endochondral

bone formation, sHSPs are differentially expressed in a stage-

specific manner [65]. Similar expression of sHSPs was observed

during the differentiation of various mammalian cell types, such as

embryonal carcinoma, embryonic stem cells [66], mouse Ehrlich

ascites tumor cells [67,68], normal B cells, B lymphoma [69],

osteoblasts, promyelocytic leukemia cells [70] and NB4

promyelocytic cells [71].

In addition, transient accumulation of HSP27 has been

observed during phorbol ester-induced monocytic differentiation

of human HL-60 cells [72], as well as during ATRA-induced

granulocytic differentiation of these cells [73].

In this study, HSP27 was down-regulated in MSCs from AIS

patients. Together with the findings of previous studies, HSP27,

as a mediator of cell differentiation, might be related to decreased

differential ability of MSCs and clinical osteopenia in AIS

patients.

Spot
No.b)

Protein
descriptionc) IPI Nod) MWe) PIf)

Sequence
coverageg) P value

Average
Ratioh)

Total
protein
Scorei)

No.of
matched
peptide
(MS)j) Peptides sequencek)

25 c-actin IPI00021440 41765.8 5.31 48% 0.027 21.63 339 14 SYELPDGQVITIGNER(82)
DLYANTVLSGGTTMYPGI(77)
IWHHTFYNELR(53)

26 b-actin IPI00894365 39200.5 5.4 24% 0.013 21.46 88 7 SYELPDGQVITIGNER(43)

27 b-actin IPI00894365 39200.5 5.4 27% 0.017 21.4 70 8 SYELPDGQVITIGNER(35)

28 Macrophage-capping
protein

IPI00027341 38493.5 5.88 16% 0.0043 1.51 71 4 QAALQVAEGFISR(57)

29 Annexin A2 IPI00455315 38579.8 7.57 35% 0.038 21.38 80 8 GVDEVTIVNILTNR(46)

30 Elongation factor
1-delta

IPI00023048 31102.8 4.9 39% 0.022 21.38 284 10 SLAGSSGPGASSGTSGDHGELVVR(79)
IASLEVENQSLR(68)

31 Inorganic
pyrophosphatase

IPI00015018 32639.2 5.54 32% 0.041 21.34 140 8 VIAINVDDPDAANYNDINDVKR(68)

32 Annexin A2 IPI00455315 38579.8 7.57 33% 0.03 21.47 103 10 GVDEVTIVNILTNR(62)

36 Heterogeneous
nuclear
ribonucleoprotein K

IPI00514561 47527.6 5.46 28% 0.024 21.31 135 9 LLIHQSLAGGIIGVK(66)

37 Heat shock 27 kDa
protein

IPI00025512 22768.5 5.98 36% 0.022 21.52 163 8 LFDQAFGLPR(61)
LATQSNEITIPVTFESR(40)

39 Glyoxalase I IPI00220766 20764.2 5.12 27% 0.033 1.4 121 7 RFEELGVK(37)

40 Proteasome subunit,
beta type

IPI00789577 12074.3 9.86 57% 0.0062 21.38 68 5 LYIGLAGLATDVQTVAQR(39)

a)Spots for which the volume ratio was $1.3 based on DeCyder software analysis were identified by MALDI-TOF/TOF MS.
b)Spots referring to Figure 3.
c)Protein description: name of each matched protein in IPI human database v3.53 (http://www.ebi.ac. uk/IP/IPIhelp.html) by data searching.
d)IPI No: Protein ID accessed from IPI human database v3.53.
e)MW: theoretical molecular weight of the matched protein in Da.
f)PI: theoretical isoelectric point of the matched protein.
g)Percent of identified sequence to the complete sequence of the known protein.
h)Average volume ratio in AIS group compared to control group.
i)Total protein score based on combined mass and mass/mass spectra.
j)No.of matched peptides: the number of peptides (MS) matched to the candidate protein.
k)All the spots had high-probability results by MASCOT search, and there was at least one peptide analyzed by MS/MS in each spot. Parts of the sequence, determined

by MS/MS, indisputably confirm the peptide.
doi:10.1371/journal.pone.0018834.t002
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Figure 4. Functional classification and subcellular location of identified proteins. Distribution of the identified proteins are presented
according to their (A) biological processes, (B) cellular component, and (C) molecular function. Assignments were made using the GOFACT program
(http://61.50.138.118/gofact) based on Gene Ontology (GO) terms. Prior to the analysis, the differentially regulated proteins were listed as up-
regulated or down-regulated. For example: 57% of the total 34 proteins (or 25 gene products), including 33.3% down-regulated proteins and 23.8%
up-regulated proteins, were involved in the cellular metabolic process.
doi:10.1371/journal.pone.0018834.g004
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(2) HSP27, HSP70 and Enviornmental Suscep-

tibility. Many etiological studies of AIS suggest that idiopathic

scoliosis is a genetic trait modified by environmental factors. Van

Rhijn et al [74] stated that differences in the development and

progression of scoliosis, as well as age at detection (juvenile vs.

adolescent) may be caused by environmental influences. In

another study, van Rhijn et al [41] noted that only half of twin

pairs showed a difference in lateral Cobb angles of less than 10u,
suggesting that curve severity may be affected by environment. In

addition, Hermus [43] reported a monozygotic twin pair that was

described to be concordant for idiopathic scoliosis, but with

different apical levels, magnitudes, and age at detection, further

stressing the importance of environmental factors. However, the

molecular mechanism of environmental susceptibility in AIS

patients remains unclear.

Both HSP27 and HSP70 have been demonstrated as essential to

ensure proper folding and intracellular localization of newly

synthesized polypeptides [75,76]. The expression of HSPs

(including HSP27 and HSP70), which is activated by unfolded

proteins, can enhance the cell’s capacity not only to prevent

protein aggregation and disassociate such aggregates once formed,

but also to isolate such polypeptides in inclusions and selectively

degrade them [77,78].

Since HSP27 and HSP70 can promote refolding, solubilization,

and degradation of damaged polypeptides, the loss of this

protective response should deteriorate the cell’s capacity to handle

the mutant or damaged proteins. In Parkinson’s disease or

Alzheimer’s disease, for instance, such changes in the cell’s

proteolytic capacity, and the general increase in unfolded

molecules, should further limit the capacity of the cell to deal

with mutant proteins or other abnormal polypeptides and may

thus indirectly contribute to the development of these disorders

[78–80].

Our study showed down-regulation of both HSP27 and HSP70

in MSCs from AIS patients. If these proteins contribute a similar

protective factor in AIS as in the diseases we discussed above, then

its lower expression might subsequently compromise the capacity

of MSCs to cope with aberrant polypeptides or damaged proteins

caused by environmental pathogenic factors of AIS.

Taken together, it is tempting to speculate that the loss of these

protective mechanisms, at least in part, renders AIS patients more

susceptible to environmental factors, and thus eventually leads to

the development and progression of scoliosis. The underlying

mechanism of HSP27 and HSP70 in the etiology of AIS needs

further elucidation.

b-actin and c-actin
b-actin is usually found to be constitutively expressed, with the

expression values often used for normalization of expression data.

Interestingly, in our study, we found significantly decreased b-actin

levels in MSCs from AIS patients.

It has been demonstrated that the actin cytoskeleton, consisting

of both b-actin and c-actin, changes from a large number of thin,

parallel microfilament bundles extending across the entire

cytoplasm in undifferentiated MSCs to a few, thick actin filament

bundles located at the outermost periphery in MSC-differentiated

osteoblasts [81]. Therefore, it is postulated that the actin

cytoskeleton may play a pivotal role in determining the hMSC

mechanical properties and modulation of cellular mechanics

during stem-cell osteodifferentiation [82].

During osteogenic differentiation, it was also observed that

alterations in the cytoskeletal organization affect the expression of

osteogenic differentiation markers, including alkaline phosphatase

activity and calcium deposition [81]. More interestingly, it was

revealed that disrupting actin in hMSCs increased adipogenesis

and decreased osteogenesis when compared to untreated controls,

suggesting that the actin cytoskeleton might be important in the

commitment process [83]. In addition, it was reported that

disruption of the actin cytoskeleton blocks osteoblastic differenti-

ation of cells infected with constitutively active RhoA, which is one

of the key regulators of cytoskeletal contractility [84].

Both b-actin and c-actin were down-regulated in MSCs from

AIS patients in our study, which was in agreement with previous

reports of decreased osteogenic differentiation capacity of MSCs in

AIS patients. Therefore, these data suggest that alteration of the

actin cytoskeleton might be involved in the pathological

mechanism of persistant general osteopenia in AIS. Additionally,

it is worth mentioning that all five identified proteins in our

experiment that were localized in cytoskeleton (b-actin, c-actin,

HSP27, WD repeat-containing protein 1, and moesin) were

differentially down-regulated, indicating that disruption or inhibi-

tion of the cytoskeleton might contribute to the development and

progression of AIS.

Down-regulation of b-actin, HSP27, c-actin, and annexin A2,

and up-regulation of PKM2, was reported for the first time as

associated with the etiology of AIS in this experiment. Further-

more, the expression alterations of these five proteins indicate

increased proliferation ability of MSCs and decreased osteogenic

differentiation ability in AIS, the latter of which was also consistent

with previous studies of AIS-MSC and might be one of

mechanisms causing clinical osteopenia of AIS. In addition, the

discovery of a total of 25 differentially expressed proteins in AIS

patients may provide a valuable basis for further research on the

characteristics of AIS-MSCs as well as the abnormal bone growth

and development in AIS.

In summary, we have described the differential proteome of

BM-MSCs from AIS patients for the first time. Our high-

throughput proteomic approach based on 2D-DIGE technology

followed by MS analysis has produced the differential proteome

profile of BM-MSCs in AIS. A total of 25 proteins were identified

as either up-regulated or down-regulated. These proteins might

be involved in proliferation, differentiation, and other activities of

MSCs. Furthermore, these differentially expressed proteins might

play a significant role, in not only the causal mechanism of

osteopenia in AIS, but also the AIS initiation and development.

The identification of these proteins provides us important

informations in understanding the underlying etiological mech-

anisms of AIS. Further studies are required to clarify the

Figure 5. Validation of five differentially expressed proteins. The figure shows validation of the differential expression of (A) b-actin, (B)
PKM2, (C) HSP27, (D) c-actin, and (E) annexin A2 (ANXA2) by western blot analysis and comparative data (with fold changes and Student’s t test
values) for their corresponding filtered spots by Decyder software. The expression patterns of these proteins show good correlation. Control = control
group; AIS = AIS group. 1) Representative 1-D Western blot analysis of above proteins (all performed on 6 AIS samples and 6 control samples), GAPDH
was used as the internal control. 2) Densitometric analysis of bands from western blot images by ImageQuant software. Values were presented as
relative ratio of differentially expressed protein/GAPDH(y-axis) in MSCs from the control and AIS groups (x-axis), normalized to 1 in control group,
n = 6, p,0.05, Student’s t test. Fold changes of the ratio in the AIS group compared to the control group are also presented. 3) Graphic views show
the standardized log abundance of spot volume (y-axis) against the changes of proteins between the AIS and Control groups (x-axis) in all three gels
(with fold changes and Student’s t test values). DeCyder Software 3D view of these 5 differentially expressed protein spots is also shown.
doi:10.1371/journal.pone.0018834.g005
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association between the possible changes of MSCs and the

pathogenesis of AIS.

Supporting Information

Figure S1 The MS and MS/MS spectra of PKM2. The

figure displays the MS spectrum (A) and MS/MS spectrum

marked with b ions and y ions (B) for PKM2 identification. The

sequence of precursor at m/z1197.61 was analyzed by MS/MS to

be LDIDSPPITAR. This protein was identified to be PKM2 after

database searching.

(TIF)

Figure S2 The MS and MS/MS spectra of annexin A2.
The figure displays the MS spectrum (A) and MS/MS spectrum

marked with b ions and y ions (B) for annexin A2 identification.

The sequence of precursor at m/z1542.88 was analyzed by MS/

MS to be GVDEVTIVNILTNR. This protein was identified to be

annexin A2 after database searching.

(TIF)

Figure S3 The MS and MS/MS spectra of b-actin. The

figure displays the MS spectrum (A) and MS/MS spectrum

marked with b ions and y ions (B) for b-actin identification. The

sequence of precursor at m/z1790.97 was analyzed by MS/MS to

be SYELPDGQVITIGNER. This protein was identified to be b-

actin after database searching.

(TIF)

Figure S4 The MS and MS/MS spectra of c-actin. The

figure displays the MS spectrum (A) and two MS/MS spectra

marked with b ions and y ions (B, C) for c-actin identification. The

sequences of precursor at m/z1516.66 and m/z1790.82 were

analyzed by MS/MS to be QEYDESGPSIVHR and

SYELPDGQVITIGNER, respectively. This protein was identified

to be c-actin after database searching.

(TIF)

Figure S5 The MS and MS/MS spectra of HSP27. The

figure displays the MS spectrum (A) and two MS/MS spectra

marked with b ions and y ions (B, C) for HSP27 identification. The

sequences of precursor at m/z1163.58 and m/z1905.92 were

analyzed by MS/MS to be LFDQAFGLPR and LATQSNEI-

TIPVTFESR, respectively. This protein was identified to be

HSP27 after database searching.

(TIF)
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