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Abstract

Background: Sonic hedgehog (Shh) is a palmitoylated protein that plays key roles in mammalian development and human
cancers. Palmitoylation of Shh is required for effective long and short range Shh-mediated signaling. Attachment of
palmitate to Shh is catalyzed by Hedgehog acyltransferase (Hhat), a member of the membrane bound O-acyl transferase
(MBOAT) family of multipass membrane proteins. The extremely hydrophobic composition of MBOAT proteins has limited
their biochemical characterization. Except for mutagenesis of two conserved residues, there has been no structure-function
analysis of Hhat, and the regions of the protein required for Shh palmitoylation are unknown.

Methodology/Principal Findings: Here we undertake a systematic approach to identify residues within Hhat that are required
for protein stability and/or enzymatic activity. We also identify a second, novel MBOAT homology region (residues 196–234) that
is required for Hhat activity. In total, ten deletion mutants and eleven point mutants were generated and analyzed. Truncations at
the N- and C-termini of Hhat yielded inactive proteins with reduced stability. Four Hhat mutants with deletions within predicted
loop regions and five point mutants retained stability but lost palmitoylation activity. We purified two point mutants, W378A and
H379A, with defective Hhat activity. Kinetic analyses revealed alterations in apparent Km and Vmax for Shh and/or palmitoyl CoA,
changes that likely explain the catalytic defects observed for these mutants.

Conclusions/Significance: This study has pinpointed specific regions and multiple residues that regulate Hhat stability and
catalysis. Our findings should be applicable to other MBOAT proteins that mediate lipid modification of Wnt proteins and
ghrelin, and should serve as a model for understanding how secreted morphogens are modified by palmitoyl
acyltransferases.
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Introduction

Sonic Hedgehog (Shh) is a secreted morphogen that signals in a

concentration dependent fashion [1]. Shh signaling is essential for

the proper growth, differentiation and patterning of a variety of

tissue types during embryogenesis, including the brain, central

nervous system and proximal and distal limb elements[1–4]. In

addition to its role in development, aberrant Shh signaling has

been implicated in the formation and maintenance of multiple

human cancers, including medulloblastoma, melanoma, liver,

pancreatic, and urogenital tumors [5,6].

All members of the Hedgehog family undergo a unique series of

post-translational processing reactions [7]. Shh is initially synthe-

sized as a 45-kDa precursor protein containing an N-terminal

signal sequence which promotes entry into the secretory pathway.

Upon cleavage of the signal sequence, the C-terminal Shh

autoprocessing domain catalyzes an autocleavage reaction,

producing a C-terminal 25-kDa fragment and a 19-kDa N-

terminal signaling molecule (ShhN) [8]. Two lipid modifications of

ShhN then occur. The newly generated C-terminus of ShhN is

modified with cholesterol during the autocleavage reaction [9].

Palmitate is attached via amide linkage to the N-terminal cysteine

in a reaction catalyzed by Hedgehog acyltransferase (Hhat) [10].

Hhat mediated Shh palmitoylation can occur independently of

autocleavage or cholesterol modification [11].

Palmitoylation of Shh is essential for proper signaling. Mutation

of the N-terminal Cys to Ser diminishes Shh patterning activity in

the mouse limb and neural tube, and essentially eliminates Hh

signaling activity in Drosophila [4,12–15]. When tested in an in vitro

differentiation assay, fatty acylated forms of Shh are significantly

more active than non-acylated Shh [10,15]. The hydrophobic

character of palmitate appears to be critical for Shh signaling as

chemical modification of the N-terminus with other hydrophobic

groups or amino acids can in part rescue signaling by non-acylated

forms of Shh [16]. Attachment of cholesterol to the C-terminus of

Shh is also important for Shh function, particularly for long range

signaling [14,17–20]. Dual lipid modification of Shh has been

shown to enhance interaction with lipoprotein particles and
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formation of soluble multimeric forms of Shh, both of which have

been implicated in formation of the Shh signaling gradient and

long-range transport throughout tissues [21–23].

In a recent study, we reported the purification of Hhat to

apparent homogeneity and demonstrated that Hhat is sufficient

for palmitoylation of Shh [11]. Hhat is a member of the MBOAT

(membrane-bound O-acyltransferase) family of multipass trans-

membrane proteins [24,25]. MBOAT family members are

characterized by the presence of a region of highly conserved

residues (MBOAT Homology Domain) within which an invariant

histidine residue has been implicated in catalysis [26–30]. The

majority of MBOAT family members transfer fatty acids and

other lipids onto hydroxyl groups of membrane-bound lipids

[24,25,28,31,32]. Examples include enzymes that catalyze phos-

pholipid acyl chain remodeling, formation of cholesterol esters and

the formation of cellular stores of triglycerides [25,27–29,31–35].

The most studied MBOAT proteins are the ACATs (Acyl-

CoA:Cholesterol Acyltransferases) ACAT1 and ACAT2 that

catalyze formation of cholesterol esters. The invariant His is

required for the activity of both enzymes. In addition, several other

residues/regions have been implicated in protein stability,

substrate binding and/or catalytic activity [27,29,35,36]. Recent

studies have also identified conserved motifs within MBOAT

family members that act as lysophospholipid acyltransferases

(LPATs) [33]. However it is not clear which, if any, of these

residues/regions would be important in the context of fatty acid

transfer to a protein substrate.

Besides Hhat and its Drosophila homologue Rasp, only two other

MBOAT proteins, Porcupine (Porc) and GOAT (ghrelin O-acyl

transferase), transfer fatty acids to proteins. Porc is a putative

palmitoylacyltransferase (PAT) implicated in acylation of Wnt/Wg

proteins, another family of secreted morphogens. GOAT is the

transferase mediating attachment of octanoate to the appetite-

stimulating hormone proghrelin [30,37–39]. Apart from highly

conserved histidine and aspartate/asparagine residues, the impor-

tance of other residues or regions within Hhat, Porc and/or

GOAT for catalysis has not been investigated.

In this study, we generated truncations, deletions and point

mutations within Hhat in order to identify specific regions and

residues required for protein stability and enzymatic activity. We

also identified a second region of homology within the MBOAT

family members that acylate protein substrates. Mutagenesis of

residues within this region compromised Hhat PAT activity in vitro.

Finally, we purified two Hhat mutants that had expression and

stability levels similar to wild-type Hhat, but exhibited decreased

PAT activity. These mutants displayed altered kinetic character-

istics that may explain their defects in catalysis.

Materials and Methods

Reagents and Antibodies
Coenzyme A, CoA synthetase, octylglucoside, anti-Flag and anti-

HA antibodies, Flag M2 agarose and 3xFlag peptide were purchased

from Sigma (St. Louis, MO). Anti-Shh antibodies were purchased

from Santa Cruz Biotechnology. Anti-GFP antibodies were pur-

chased from Roche. [125I] NaI was obtained from Perkin Elmer.

Mammalian expression plasmids, cell culture and
transfection

Plasmids encoding HA-tagged and HAFlag6xHis- tagged Hhat,

and 1–44 Shh:GFP were generated as previously described [11]; WT

Hhat corresponds to GenBank Accession #CAI22284. PCR

fragments encoding Hhat HA D1–28, D1–89, D460–493, and

D429–493 were ligated into the BamHI/EcoRI sites of pcDNA3.1.

Hhat HAFlag6xHis D153–158, D187–192, D228–234, D313–320,

D368–380, D417–426, S182A, Y207A, G217A, S221A, F338A,

D339A, L346A, Y351A, F372A, W378A, H379A constructs were

generated by site directed mutagenesis using the Quikchange

mutagenesis kit (Stratagene). A plasmid encoding full length human

Shh was a generous gift from Dr. Jessica Treisman (New York Univ,

NY). All constructs and mutations were confirmed by DNA

sequencing. COS-1 cells and 293FT cells (Invitrogen) were grown

and maintained as described [11]. Transfections were carried out

using Lipofectamine (Invitrogen).

Synthesis of 125 I-iodo-palmitate analogues
Radioiodination of iodo-palmitate with [125I] NaI and synthesis

of 125 I-iodo-palmitoyl CoA using CoA synthetase were performed

as previously reported [40,41]. The final concentration of purified
125I-iodo-palmitoyl CoA was determined from the absorbance at

260 nm using the extinction coefficient for palmitoyl-CoA.

In Vivo palmitate labeling
COS-1 cells expressing Shh and either WT or the indicated

mutant Hhat construct were starved for 1 hr in DMEM

containing 2% dialysed fetal calf serum, followed by incubation

with 10–20 mCi/ml [125I] iodo-palmiate [41] for 4 hrs at 37uC.

Cell lysates were processed and subjected to immunoprecipitation,

electrophoresis on 12.5% SDS-PAGE gels, and phosphorimaging

as described [11]. Phosphorimaging screens were analyzed on a

FLA-7000 phosphorimager (Fuji). Protein levels were determined

by SDS-PAGE and Western blot analysis. Labelings were

performed in duplicate and repeated three times.

Expression and purification of recombinant Shh and
HhatHAFlagHis

Shh24-197 was purified from recombinant E. coli as previously

described [11]. For Hhat purification, 106100 mm plates of 293FT

cells were transfected with WT, W378A, or H379A HhatHAFlagHis

cDNA or pcDNA3.1 empty vector. 48 hrs post transfection,

membrane fractions were generated, solublized and subjected to

purification by Flag affinity chromatography as described previously

[11]. Samples of the final purified fractions were subjected to SDS-

PAGE and Western blotting. Protein concentrations were deter-

mined using the DC Protein Assay (Bio Rad).

In vitro palmitoylation assay
10 ml of total cell lysate (20 mg), or a P100 membrane fraction

(10 mg) generated from cells transfected with the indicated Hhat

constructs [11], was combined with 10 ml of recombinant Shh

(0.2 mg/ml in 20 mM MES, pH 6.5, 1 mM EDTA, 1 mM DTT),

followed by the addition of 30 ml of reaction buffer (167 mM

MES, pH 6.5, 1.7 mM DTT, 0.083% Triton X-100, 167 mM
125I-iodo-palmitate CoA). After 1 hr at room temperature (unless

otherwise indicated), the reaction was stopped by addition of 50 ml

of 26 sample buffer with 40 mM DTT. Samples were

electrophoresed on 12.5% SDS-PAGE gels, stained with Coo-

massie Blue, dried and exposed to a phosphorimager screen for

12–18 hrs. Each Shh containing gel band was then excised and
125I-iodo-palmitate incorporation was measured by counting in a

Perkin-Elmer Gamma counter. Non-enzymatic incorporation of
125I-iodo-palmitate into Shh was corrected for by subtraction of

counts from matched pcDNA 3.1 mock controls.

Determination of apparent Km and Vmax values
10 ml of purified WT, W378A, and H379A HhatHAFlag6xHis

(,20 ng) in elution buffer (20 mM HEPES [pH 7.3], 100 mM
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NaCl, 1% octylglucoside, 1% glycerol) were reacted with

saturating concentrations of either recombinant Shh (40 mM) or
125I-iodo-palmitate CoA (100 mM) in the presence of the indicated

concentrations of the other substrate for 30 min at room

temperature. The reaction mix was separated and quantified as

described above. Km and Vmax values were determined by non-

linear regression using the enzyme kinetic module in Graph Pad

Prism.

Protein Stability Assay
COS-1 cells transfected with the indicated Hhat constructs were

split into 60 mm dishes and incubated at 37uC for 24 hrs. The

cells were placed in DMEM media supplemented with 10% FBS,

100 mg/ml cycloheximide, and 40 mg/ml chloramphenicol and

incubated for the indicated times. Cells were washed 26 in 2 ml of

STE and scraped in 500 ml of 2xSB containing 40 mM DTT.

Samples were electrophoresed on 12.5% SDS-PAGE gels,

transferred onto PVDF membranes and probed with anti-HA

antibody to determine protein levels.

Bioinformatics
The Kyte-Doolittle plot of Hhat hydrophobicity was gene-

rated using the website: http://www.vivo.colostate.edu/molkit/

hydropathy/index.html. Multiple sequence alignment was car-

ried out using the TCoffee alignment program. The graphics

were modified from images generated by the Swiss Institute of

Bioinformatics website: http://tcoffee.vital-it.ch/cgi-bin/Tcoffee/

tcoffee_cgi/index.cgi?stage1=1&daction= TCOFFEE::Regular. Hhat

membrane topology prediction was performed via the TMHMM

Server v. 2.0: http://www.cbs.dtu.dk/services/TMHMM-2.0/.

Results

N- and C-terminal truncation mutants of Hhat lack
palmitoylation activity and exhibit reduced protein
stability

In an attempt to isolate a minimal domain required for Hhat

palmitoyl acyltransferase (PAT) activity, we engineered mutant

constructs of Hhat truncated at either the N or C terminus.

Truncation points were chosen based on transmembrane topology

modeling and were predicted to delete one or two transmembrane

segments from either end of the Hhat polypeptide (Fig. 1A). COS-

1 cells were co-transfected with cDNAs encoding Shh and

either wild type (WT) or mutant Hhat, and labeled with
125I-Iodopalmitate, a radioiodinated palmitate analog [40]. Shh

was immunoprecipitated from cell lysates, and the amount of

radiolabeled palmitate incorporated into Shh was determined by

phosphorimaging analysis after SDS-PAGE. The truncation

mutants were expressed at levels similar to WT Hhat, but none

of the mutants promoted Shh palmitoylation above levels achieved

with mock-transfected (empty vector) controls (Fig. 1B, D).

We next prepared membrane fractions from cells expressing

either WT Hhat or the truncation mutants, and analyzed PAT

activity in an in vitro Shh palmitoylation assay. The assay consists of

membranes from Hhat transfected cells, purified recombinant Shh

protein, and 125I-Iodopalmitoyl CoA, and monitors incorporation

of 125I-Iodopalmitate into Shh (11). None of the truncation

mutants were able to support Shh palmitoylation above control

levels (Fig. 1C, D). Analysis by indirect immunofluorescence and

confocal imaging revealed that the subcellular localization pattern

of each of the four truncation mutants was indistinguishable from

WT Hhat (data not shown), suggesting that the defect in Hhat

PAT activity observed was not due to gross mislocalization of the

mutant proteins.

Loss of enzyme activity could be the result of altered protein

folding and/or stability. In order to address this possibility, Hhat

transfected COS-1 cells were treated with cycloheximide, to block

new protein synthesis, and levels of WT and Hhat truncation

mutant proteins were monitored as a function of time. WT Hhat

appeared to be quite stable, with approximately 60% of the initial

level remaining 24 hrs after cycloheximide addition (Fig. 2). By

contrast, in the absence of ongoing protein synthesis, all four

truncation mutants exhibited reduced stability, with less than 20%

of initial levels of mutant Hhat protein remaining after 24 hrs

(Fig. 2). These findings suggest that the N- and C-terminal

truncation mutants are misfolded, and that this defect might

account for the deficiency in PAT activity, although other

explanations are also possible.

Figure 2. Stability of Hhat truncation mutants. COS-1 cells
transfected with the indicated Hhat constructs were incubated in
DMEM supplemented with 10% FBS, 100 mg/ml cycloheximide, and
40 mg/ml chloramphenicol. At each indicated time point, cells were
lysed and subjected to SDS-PAGE and Western blotting with anti-HA
antibodies. The amount of HA signal at each time point was determined
using ImageJ software. Data are expressed as percent of 0 h controls,
which were set to 100%. Experiments were carried out in duplicate and
repeated three times. Values for the percentage of Hhat protein
remaining at 24 h were: WT, 58%; D1–28, 17%, D1–89 19%, D460–493
11%, D429–493 14%. Estimated half-lives for the mutants were 3–7 h,
compared to .20 h for WT Hhat.
doi:10.1371/journal.pone.0011195.g002

Figure 1. N and C Terminal truncation mutants of Hhat lack PAT activity. A. Transmembrane topology model of Hhat generated using the
TMHMM v. 2.0 Server. Gray bars indicate predicted transmembrane helices. Arrows denote approximate truncation points. B. COS-1 cells were
transfected with the indicated constructs and labeled with 125I-iodo-palmitate for 4h. Cell lysates were analyzed directly by Western blotting or after
immunoprecipitation of Shh. Upper panel: 125I-iodo-palmitate incorporation into immunoprecipitated Shh as detected by phosphorimaging. Lower
panels: Western blots of the same extracts probed with anti-HA, anti-Shh, and anti-b-tubulin (b-Tub) antibodies. EV, empty vector. C. An in vitro
palmitoylation assay was performed with P100 membranes generated from 293FT cells transfected with WT and mutant Hhat constructs. Upper
panel: 125I-iodo-palmitate incorporation into Shh detected by phosphorimaging. Lower panels: Western blots of the same samples probed with anti-
HA and anti-Shh antibodies. D. Quantification of the experiments in panels B and C. Levels of 125I-iodo-palmitate incorporation were corrected for
Hhat protein expression and normalized to WT Hhat levels (100%). Each bar represents the average of three experiments and is expressed as the
percent of WT activity (set to 100%).
doi:10.1371/journal.pone.0011195.g001
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Mutational analysis of predicted loop regions
Transmembrane topology modeling of Hhat predicts two large

loop regions between residues 153–235 and 311–426 (Fig. 1A). In

order to address the functional requirement for amino acids within

one or both of these potential loops, we generated constructs with

residues deleted within one or the other regions. Deletions were

specifically targeted to residues/regions of Hhat predicted to be

relatively hydrophilic as judged by the Kyte-Doolittle hydropathy

scale (Fig. 3A). We then assayed these deletion mutants for their

ability to catalyze Shh palmitoylation in in vitro palmitoylation assays.

The majority of the Hhat deletion mutants were compromised

for PAT activity towards Shh. However, two deletions within the

predicted loop between residues 153 and 235 retained either full

(D153–158), or partial (D187–192) PAT activity, suggesting that

these residues are not strictly required for activity (Fig. 3B,C). We

next compared the stability of the deletion mutants to that of WT

Hhat. As expected, the D153–158 mutant, which had PAT activity

equivalent to WT, was also as stable as WT Hhat (Fig. 3D,

Table 1). One mutant, D313–320, was considerably less stable

than WT with approximately 90% of the protein degraded

after 24 hrs (Fig. 3D, Table 1). However, the other deletion

mutants that had partial (D187–192) or complete loss of activity

(D228–234, D368–380, D417–426) displayed stability similar to or

within 45–75% of WT Hhat (Fig. 3D). Thus, deletion of these

regions does not dramatically affect protein stability and instead

may alter substrate binding and/or catalysis.

Identification of critical conserved residues by alanine
scanning mutagenesis

One of the hallmarks of the MBOAT family of acyltransferses is

the presence of two highly conserved residues, Asp/Asn (position 339

in Hhat) and His (position 379 in Hhat) within the MBOAT

homology region, that have been shown to be required for activity in

other MBOAT family members [24,29,30]. In addition to these

residues, previous studies have identified several highly conserved

hydrophobic residues whose role in Hhat PAT activity has not been

explored [42–44]. In an attempt to identify novel residues required

for recognition and palmitoylation of protein substrates, we

performed a global sequence alignment of MBOAT family members

with known protein substrates – Hhat, Porc and GOAT. We

included GUP1 (Hhat-like protein), an MBOAT protein involved in

GPI-anchor remodeling [26] that exhibits high homology to Hhat

(Fig. 4A). In addition to the MBOAT homology region previously

reported, we identified a second area of high conservation located

between residues 196 and 234 of Hhat (Fig. 4A). To address the

importance of this region, as well as the previously reported

hydrophobic residues, we mutated eleven of these residues to alanine

(arrows in Fig. 4A) and assayed the effect on Hhat PAT activity.

The point mutants can be separated into three groups based on

their effects on Hhat activity. Five of the mutations did not

substantially affect Hhat activity (S182A, S221A, L346A, Y351A,

F372A) indicating that the targeted residues are not required for PAT

activity (Fig. 4B). The second group of mutants retained partial (20–

50% of WT) activity (G217A, F338A, W378A, H379A). The finding

that the H379A mutation causes an approximately 50% reduction in

Hhat PAT activity agrees with our previous report [11]. Two mutants

(Y207A, D339A) were severely affected (,10% of WT activity)

(Fig. 4B). When we compared the relative stability of the point

mutants to WT Hhat, only the Y207A mutation affected Hhat

stability, with a 95% reduction in protein level after 24 hrs (Fig. 4C).

Taken together, these analyses identify five residues that likely

contribute to the PAT activity of Hhat.

Enzymatic characterization of Hhat mutants reveals
defects in catalysis

We next performed experiments to identify a mechanism to

explain how Hhat mutations altered PAT activity. We chose Hhat

constructs with mutations that affected PAT activity without

Table 1. PAT activity and stability measurements of Hhat
deletion mutants.

Hhat PAT Activitya Stabilityb

Relative
Activity SEM

% remaining
at 24 hr SEM

WT (HA) 100 0 58.5 0.2

D 1–28 2.9 2.2 17.3 1.3

D 1–89 0 0 18.6 0.2

D 460–493 3.5 3.5 10.9 0.6

D 429–493 3.8 3.8 14.3 0.9

WT (HAFlag6XHis) 100 0 46.1 2.3

D 153–158 112.5 6.9 57 14.6

D 187–192 27.3 2.4 62 0.5

D 228–234 0.8 0.8 34.5 6.6

D 313–320 3.8 2.8 7.5 7.5

D 368–380 0.3 0.3 43.4 8.2

D 417–426 3 2.7 25.5 6.2

S182A 104.5 0.6 ND

Y207A 1.8 0.5 2.6 2.6

G217A 19.8 2.8 35.5 9.7

S221A 87 2 ND

F338A 32.5 4.5 49.6 6.7

D339A 9.8 6.2 44.5 7

L346A 111.5 16.5 ND

Y351A 122 9 ND

F372A 105.7 4.3 ND

W378A 30 4.4 53.3 3.3

H379A 49.3 6.2 49.6 2.2

aAssays were performed using P100 membranes generated from transfected
293FT cells.

bRelative stability of Hhat deletion mutants after 24 hr incubation with
cycloheximide and chloramphenicol, as described in Figure 2. Data is
expressed as a percentage of zero hr controls.

All experiments were performed in duplicate and repeated three times.
doi:10.1371/journal.pone.0011195.t001

Figure 3. PAT activity and stability measurements of Hhat constructs containing deletions within predicted loop regions. A. Kyte-Doolittle
hydropathy plot of Hhat with the window size set at 19. Asterisks indicate regions of high hydrophilicity that were targeted for mutagenesis. B.
Representative in vitro palmitoylation assay. P100 membranes isolated from 293FT cells expressing the indicated Hhat constructs were reacted with Shh and
125I-iodo-palmitate CoA as described in Materials and Methods. EV, empty vector. C. Quantification of the palmitoylation assays performed three times.
Levels of 125I-iodo-palmitate incorporation were corrected for Hhat protein expression and normalized to WT Hhat (100%). Data are expressed as a percent
of WT activity. D. Relative stability of Hhat deletion mutants after 24 h incubation with cycloheximide and chloramphenicol, as described in Figure 2. Data
are expressed as a percentage of 0 h controls. Experiments were performed in duplicate and repeated three times.
doi:10.1371/journal.pone.0011195.g003
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compromising stability. Our working hypothesis is that some

mutations will affect the ability of Hhat to bind Shh and/or palmitoyl

CoA. First, both co-immunoprecipitation and pulldown assays were

performed to monitor Hhat interactions with Shh and palmitoyl

CoA, but we were unable to detect stable or specific interactions with

either substrate. We therefore performed direct kinetic analyses to

compare the apparent Km and Vmax of candidate mutants to WT

Hhat. Candidates were selected that had expression and stability

levels similar to WT, and retained more than 10% of WT activity.

Five mutants met these criteria: D187–192, G217A, F338A, W378A,

and H379A. The yield of three of these mutants, D187–192, G217A,

F338A, was several fold lower than WT Hhat. However, we

succeeded in purifying W378A and H379A to levels similar to WT

with sufficient yield to carry out kinetic analyses (Fig. 5A).

Figure 4. Identification of MBOAT Homology Regions. A. Multiple sequence alignment of MBOAT family members that acylate protein
substrates generated using the TCoffee server. The sequence from GUP-1/Hhat-like protein was included based on its high homology to Hhat and the
functional characterization of GUP-1 from the yeast S. cerevisiae [26]. Arrows indicate residues mutated to alanine. B. Quantification of in vitro
palmitoylation assays performed three times. Levels of 125I-iodo-palmitate incorporation were corrected for Hhat protein expression and normalized
to WT Hhat (100%). Data is expressed as a percent of WT activity. C. Relative stability of Hhat point mutants after 24 h incubation with cycloheximide
and chloramphenicol. Data are expressed as percent of 0 h controls. Experiments were carried out in duplicate and repeated three times.
doi:10.1371/journal.pone.0011195.g004
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Mutation of W378 caused a 3-fold reduction in the apparent

Vmax and a 2–3 fold increase in the apparent Km for both Shh and

Iodopalmitoyl CoA substrates (Fig. 5B,C and Table 2). These

alterations could explain the defect in PAT activity observed for

this mutant. By contrast, the H379A mutant exhibited apparent

Km and Vmax values for Iodopalmitoyl CoA that were within 1.1–

1.4-fold those of WT Hhat. This mutant appears to bind palmitoyl

CoA with similar affinity to WT Hhat when Shh levels are high

(40 mM). However, Hhat H379A exhibited a clear defect in

catalysis when Shh levels were limiting (Fig. 5B, C and Table 2),

suggesting that H379 may play a role in binding of Shh to the

enzyme.

Discussion

The presence of multiple transmembrane domains has ham-

pered biochemical studies of MBOAT acyltransferases in general,

and Hhat in particular. With the exception of two residues that

have been shown to be required for enzymatic activity, there has

been no structure-function analysis of Hhat. In this study, we

identify specific regions and multiple residues within Hhat that

regulate protein stability and/or catalysis. Of note, alignment of

the sequences of MBOAT proteins that acylate protein substrates

revealed the presence of an additional region of high sequence

conservation (Fig. 4) that had not been previously identified. Here

we report the results of our analyses of 10 deletion mutants and 11

point mutants within Hhat.

Many of the mutants exhibited increased rates of protein

degradation compared to WT Hhat, and nearly all of the mutants

in this class had defects in Shh palmitoylation activity. This

was particularly evident when truncations were made at the N- or

C-terminus of Hhat. However, steady state levels of these mutants,

as detected by anti-HA Western blotting in the absence of

cycloheximide, appeared to be similar to that of WT Hhat. We

quantified the rate of synthesis of Hhat using Tran-35S-labeling,

and found no change in the rate of synthesis of the mutants

compared to WT Hhat (data not shown). One possible

explanation to reconcile the observed differences in stability is to

postulate that ongoing protein synthesis is required to maintain

mutant Hhat protein levels. If the Hhat truncation mutants are

misfolded, they could be present at equivalent levels to WT Hhat

but would likely be more susceptible to degradation, especially

when protein levels are not replenished (ie in the presence of

cycloheximide). In this case, misfolding of the mutant proteins

might account for the decreased Hhat activity. Alternatively, the

truncation mutants could be inactive because regions involved in

substrate recognition or catalysis were deleted.

Most of the internal deletion and point mutants were as or

nearly as stable as WT Hhat but had reduced PAT activity. In

Hhat, these include deletions of residues 187–192, 228–234, and

368–380, as well as the point mutants F338A, D339A, W378A,

and H379A. The equivalents of residues F338 and D339 are

moderately conserved in the MBOAT family (FD in Hhat and

GUP1, FN in LPAT5, and WN in the other family members).

W378 and H379 are present in all MBOAT family members,

except for GUP1 (Leu in place of His) and Porc and ACAT1 and 2

(Leu or Val in place of Trp). Mutations of residues corresponding

to H379A or W378A have been reported in both LPAT and

ACAT family members. Mutating either residue abolishes activity

in all LPAT family members tested [33]. The conserved His is also

absolutely required for ACAT activity [27,29]. However, mutation

of the Val residue at the position corresponding to W378

Figure 5. Kinetic analyses of purified Hhat mutants. A. The
indicated Hhat constructs were expressed in and purified from 293FT
cells as described in Materials and Methods. Aliquots of each purified
protein were analyzed by SDS-PAGE and Western blotting using anti-
Flag antibody. EV, empty vector. B. Each purified HhatHAFlagHis
construct was incubated with Shh at the indicated concentration in the
presence of 100 mM 125I-iodo-palmitoyl CoA for 1 h at room temper-
ature. C. Each purified HhatHAFlagHis construct was incubated with
125I-iodo-palmitoyl CoA at the indicated concentration in the presence
of 40 mM Shh. Shh protein bands were excised from dried gels and the
amount of 125I-iodo-palmitate incorporation was determined by
gamma counting. Graphs represent the average of three experiments
corrected for non-specific incorporation of 125I-iodo-palmitate as
described previously [11].
doi:10.1371/journal.pone.0011195.g005

Table 2. Kinetic analyses of purified Hhat mutants.

Hhat Shha Palmitoyl CoAb

Km (mM) Vmax (pmol/min) Km (mM) Vmax (pmol/min)

WT 2.9 0.34 21 0.24

W378A 8.8 0.12 37 0.09

H379A 5.4 0.24 30 0.21

Km and Vmax values represent best fit values generated by nonlinear regression
of the data in Figure 5A, B using Graph pad Prism software.
aShh titration was performed at 100 mM [125I]Iodopalmitoyl CoA.
bPalmitoyl CoA titration was performed at 40 mM Shh.
doi:10.1371/journal.pone.0011195.t002

Hhat Structure-Function

PLoS ONE | www.plosone.org 8 June 2010 | Volume 5 | Issue 6 | e11195



compromises not only enzymatic activity but also protein

expression, complicating its analysis [27].

In addition to the canonical MBOAT homology domain, we

also identified residues in a second region (residues 196– 234) that

are highly conserved in family members that transfer fatty acids

onto protein substrates. Of these, the Tyr at position 207 is also

conserved in both LPAT and ACAT family members, whereas the

Gly at position 217 is conserved among LPAT but not ACAT

family members. In ACAT family members the residue at this

position is either Ala or Cys. To date there are no other reports of

mutation within this region of another MBOAT family member. It

will be interesting to see if residues within this region are important

specifically for transfer of fatty acids onto proteins or if they are

more broadly required for activity within the MBOAT family.

A prior study reported that an Hhat construct with both D339

and H379 mutated to Ala was not able to rescue the phenotype of

an Hhat-defective mutant [42]. We have analyzed the effects of

each of these mutations separately. D339A Hhat was essentially

inactive (,7% of WT activity). H379 has been proposed to be part

of the active site of MBOAT proteins. Mutation of this conserved

Histidine residue completely abrogates activity for all tested

members of the MBOAT family leading to the stipulation that it is

directly involved in catalysis. However, the H379A mutant retains

50% of the activity of WT Hhat, suggesting that this residue is not

absolutely required for catalysis. Kinetic analyses performed on

purified H379A Hhat revealed that this mutant binds palmitoyl

CoA with an affinity similar to WT Hhat (Fig. 5). This suggests

that H379 may be more important for recognition and binding of

Shh. Mutation of the adjacent residue, W378, caused a more

severe effect on Hhat activity. W378A Hhat exhibited alterations

in apparent Km and Vmax for both Shh and Iodopalmitoyl CoA

substrates. Given the effect on both parameters it is not clear

whether the W378A mutant is compromised in catalytic activity,

has a severe defect in substrate binding, or a combination of the

two. Direct measurements of substrate binding will be required to

determine which is the case.

One of the hallmarks of the palmitoylation reaction catalyzed by

the other family of PATs, DHHC PATs, is their ability to

autoacylate [45]. By contrast, we have not detected acyl-enzyme

formation for Hhat and palmitate. Co-immunoprecipitation and

pulldown assays aimed at monitoring Hhat interactions with Shh

and palmitoylCoA were performed using full length Shh,

recombinant ShhN purified from E.coli, as well as a biotinylated

Shh peptide that we have previously shown acts as a Hhat

substrate in vitro [11]. We were unable to detect stable or specific

interactions of Hhat with any of these substrates. This is not

surprising given the hydrophobic nature of the players involved

and the fact that enzymes are not expected to bind with high

affinity to their substrates as this would tend to hinder enzymatic

turnover. Thus, we have not been able to utilize direct binding

assays to quantify the interactions between Hhat and its two

substrates. Instead, we purified two Hhat mutants, W378A and

H379A, to apparent homogeneity, and showed that these mutants

exhibited kinetic alterations that may explain their catalytic defects

as described above.
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