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Abstract

Understanding the conditions underlying the proliferation of infectious diseases is crucial for mitigating future outbreaks.
Since its arrival in North America in 1999, West Nile virus (WNV) has led to population-wide declines of bird species,
morbidity and mortality of humans, and expenditures of millions of dollars on treatment and control. To understand the
environmental conditions that best explain and predict WNV prevalence, we employed recently developed spatial modeling
techniques in a recognized WNV hotspot, Orange County, California. Our models explained 85–95% of the variation of WNV
prevalence in mosquito vectors, and WNV presence in secondary human hosts. Prevalence in both vectors and humans was
best explained by economic variables, specifically per capita income, and by anthropogenic characteristics of the
environment, particularly human population and neglected swimming pool density. While previous studies have shown
associations between anthropogenic change and pathogen presence, results show that poorer economic conditions may
act as a direct surrogate for environmental characteristics related to WNV prevalence. Low-income areas may be associated
with higher prevalence for a number of reasons, including variations in property upkeep, microhabitat conditions conducive
to viral amplification in both vectors and hosts, host community composition, and human behavioral responses related to
differences in education or political participation. Results emphasize the importance and utility of including economic
variables in mapping spatial risk assessments of disease.
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Introduction

Understanding the environmental conditions that lead to

infectious disease outbreaks, though challenging, is often crucial

for management and control [1]. The recent introduction of West

Nile virus (WNV) to North America serves as a poignant reminder

of the impact that a novel infectious disease may have on a naı̈ve

biological community. In the last decade, WNV has infected

numerous vector and host species [2–4], leading to continental-

wide declines in bird populations [5,6], an estimated 3 million

infections [7] and thousands of deaths in human hosts, and the

expenditure of millions of dollars on control and vaccination

efforts [8]. These efforts have focused on disease ‘‘hotspots’’, where

WNV-infected vectors (mosquitoes), primary hosts (birds), and

secondary mammalian hosts (including humans) co-occur in close

proximity. Predictors such as natural ecological conditions [9,10],

urbanization or other anthropogenic factors [10,11], and land

cover characteristics [9,12], have all been associated with human

WNV hotspots. A number of mechanisms can contribute to

disease outbreaks, including higher absolute pathogen prevalence,

increased density of vectors and hosts, or increased rates of

transmission due to variation in host behavior. The seemingly

unpredictable nature of localized outbreaks and the fact that high

WNV incidence has been reported from across a broad range of

ecological conditions [12–15] has made forecasting WNV hotspots

virtually impossible [16,17].

Orange County, California, is a recognized hotspot of WNV,

having recorded positive mosquito and human cases every year

since 2004 and the third highest number of reported human cases

per county in the United States in 2008 (the Southern California

area reported 4 out of the 5 highest number of WNV human cases

per county this same year, USGS, http://diseasemaps.usgs.gov).

The region comprises an area of approximately 40660 km and is

characterized by spatially variable ecological conditions, including

shallow valleys that have been dramatically altered by urbaniza-

tion. The result is a heterogeneous topographic and economic

landscape comprised of high-income communities in valleys and

coasts, and lower-income communities within major urban

centers. Recent financial downturn has led to a rise in both the

number of home foreclosures and neglected (unchlorinated)
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swimming pools [18]. During the primary months of WNV

activity (May-October), the entire study region experiences high

average daily temperatures and little to no rain. As a result,

vectors, and the hosts on which they feed, must rely on natural and

artificial standing water sources. While several mosquito species

have been identified as WNV vectors in Southern California, the

dominant WNV vector in Orange County is the Southern House

mosquito, Culex quinquefasciatus Say, which is an important vector of

WNV [19] and other mosquito-borne pathogens across much of

the southern United States [20], Hawaii [21] and Central and

South America [22].

Here we investigate WNV prevalence in vector populations and

secondary human hosts in Orange County, California, between

2004–2008, using a combination of machine learning algorithms

and spatially explicit ecological modeling. To best capture

conditions that might be associated with WNV incidence, we

used a diversity of predictors, including both ecological and

economic variables. We attempt to accurately predict future

prevalence hotspots in both vectors and hosts using observed

prevalence levels and their relationship to the current environ-

mental and economic landscape.

Results

Using a combination of economic and environmental variables

and various machine learning algorithms, we were able to explain

a significant proportion of variation in WNV prevalence in

vectors, and accurately predict both prevalence in vectors, and

disease incidence in human hosts. The explained variation in

WNV prevalence in vectors was highest in 2008, with a maximum

of 95% of the variation explained and a root mean square error

(RMSE) of 9.6% of the total variation (Table 1). Models for years

2004 and 2005 also explained much of the observed variation

(2004: 85%, RMSE of 14%, 2005: 92%, RMSE of 11.2%), while

prevalence levels for 2006 and 2007 were too low for statistical

analysis. In attempting to predict test data not used in model

construction, we were able to explain a maximum of 56% of the

variation in WNV prevalence in 2008, 6% in 2004, and 34% in

2005.

Across all years, economic variables explained the largest

amount of variation in WNV prevalence in vector populations

(Figure 1). Per capita income was the most important predictor

variable, and was a significant contributor to all random forests

explaining the spatial distribution of prevalence of WNV in vectors

(Figures 1, S4). Inspection of the relationship between per capita

income and WNV prevalence also revealed that higher prevalence

levels in vectors were consistently associated with lower-income

areas (Figure 2).

Previous research indicates that both natural and artificial water

sources may play a role in determining West Nile virus incidence

levels [23–25]. We found that, in addition to per capita income,

the density of neglected swimming pools within 1 km of observed

prevalence was a particularly important variable in years with high

WNV prevalence. The region receives little rainfall during the

months of WNV activity (Figure S2), underscoring the likely role

of artificial neglected pools acting as potential vector breeding

locations. During the study period, the county experienced a rise

in the number of foreclosed homes and neglected pools [18]. This

suggests that neglected swimming pools may promote WNV

amplification, and may represent a direct link between declining

economic conditions and a favorable environment for WNV

propagation.

Spatially continuous interpolation of WNV prevalence across

the study area predicted strong heterogeneity in WNV prevalence,

with low-income, densely populated areas showing higher

prevalence of WNV in vector populations. Although the highest

observed values of WNV prevalence varied between years

(Figure 2), the relationship between lower per capita income and

higher prevalence of WNV in vectors remained constant across

years (Figure S5). This permitted predictions of future WNV

prevalence using only data from previous seasons. For example,

models constructed using 2005 prevalence data were able to

explain 52% of the observed prevalence variation in 2008, with

consistent WNV hotspots across years (Figure 3).

Using niche modeling to capture presence of WNV in human

hosts, predictive models performed well (AUC2004 = 0.951;

AUC2005 = 0.933; AUC2008 = 0.940), detecting a significant

relationship between human WNV infections and environmental

and economic variables. Jackknifing of predictor variables showed

that for 2004, per capita income was the single best variable for

model performance, and resulted in the largest decrease in model

performance when omitted (Figure S6). Under the same criteria,

density of neglected swimming pools and per capita income were

the most important variables in explaining variation in 2005 and

2008. Spatial predictions identified areas of high incidence of

WNV in secondary human hosts, which closely corresponded to

those representing high prevalence in WNV vectors (Figures 3,

S6). In sum, WNV presence in both vector and secondary human

host populations can best be explained using the same predictor

criteria, suggesting a common ecological mechanism driving viral

occurrence.

Discussion

We found that economic conditions best explain WNV

hotspots. By documenting the occurrence of this widespread,

recently introduced virus in vector and host populations, we

identified the correlates of disease occurrence and how these can

be used in forecasting future outbreaks. While predictors of West

Nile virus are likely to vary with local conditions [26,27], our

results consistently show that lower income areas represent

habitats conducive to West Nile virus amplification in vectors,

leading to higher occurrence of the disease in secondary human

hosts.

West Nile virus prevalence in vectors may be higher in lower-

income communities for at least three reasons. First, densely

populated areas generally occur on flatlands at lower elevations,

characterized by older infrastructure with antiquated water runoff

systems. These factors could contribute to poor drainage and

favorable mosquito breeding habitats [28]. However, elevation

Table 1. Relationship between observed versus predicted
values of WNV vector prevalence under random forest models
using the same data set for testing and training, and under
models where ,36% of the data was separated from training
and used as test data (36).

2004 2005 2008

Single Model 88% (14%) 92% (11.2%) 95% (9.6%)

Separate Testing and
Training Models

6% 34% 54%

Root mean square error (RMSE) percentage of observed prevalence range are
reported for single models (parentheses), whereas out-of-bag (OOB) error rates
were used in calculations of percent variation explained in the separate random
forest models.
doi:10.1371/journal.pone.0015437.t001
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was an important variable in predicting WNV prevalence in only

one year of the study, and never contributed more to explaining

prevalence than did economic variables. Second, lower-income

communities are likely to invest less in private property upkeep.

This is supported by our data showing an increase in prevalence

with higher densities of neglected pools. Neglected swimming

pools were a significant predictor across years, and provide

evidence that untreated artificial water sources associated with a

rise in home foreclosures [18] may promote an increase in

outbreaks of West Nile. Finally, income is positively correlated

with education, and better-educated people are more likely to be

politically engaged in demanding pest control services, such as

mosquito management [29].

Each of the possible factors above imply that higher prevalence

of West Nile virus in lower-income communities can simply be

attributed to more vector breeding sites or higher abundances of

vectors in these areas. However, there were no significant

associations between vector abundance and economic conditions

in our study (See Methods). This suggests that lower-income

communities represent complex ecological microhabitats condu-

cive to viral amplification in vectors and hosts, rather than just

locations conducive to increased vector breeding. Enzootic cycles

of West Nile virus can be affected by numerous factors, including

temperature [30], precipitation [24], and vector and host

heterogeneity [27,31]. Higher avian diversity has been associated

with lower occurrence of WNV in a variety of habitats [27,32]. As

a result, a loss of primary host diversity may lead to increased

prevalence of West Nile virus, particularly when remaining species

are effective reservoir hosts. In Orange County, mosquito blood-

meal analysis [33] suggests that House Finches and House

Figure 1. Variable importance scores under random forest models for both ecological and economic predictors of West Nile virus
prevalence in a West Nile virus hotspot. Percent mean square error indicates the increase in error in out-of-bag samples when that variable is
permuted, with higher increases indicative of more important variables. Negative changes in mean square error percentage (2004) suggest that
random permutations of a variable perform better under random forest than actual values, indicating a poor predictor. There were not enough West
Nile virus positives in vectors for years 2006 and 2007; thus, these years were excluded from analyses.
doi:10.1371/journal.pone.0015437.g001

Figure 2. Relationship between average per capita income and West Nile virus prevalence. Results are shown for vectors in Orange
County, California, for 2004, 2005, and 2008. Prevalence is measured as MLE. Dashed lines indicate the bifurcation between high and low prevalence
values as determined by tree regressions. Horizontal lines indicate mean values of prevalence for points above and below this bifurcation (Wilcoxon
rank-sum tests for these means were significant for each year, p,0.001). Although absolute measures of WNV prevalence varied between years,
relationships between predictors (per capita income in this case) and WNV prevalence were stable throughout the study period.
doi:10.1371/journal.pone.0015437.g002
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Sparrows are the most frequently-fed upon, competent hosts of

West Nile virus, both of which are highly abundant in urban

habitats and have previously been implicated in playing important

roles in WNV amplification and transmission [34–36] in

California. Further, open water sources, such as neglected

swimming pools, may bring WNV vectors and hosts in close

proximity, aiding in disease transmission [24]. Southern Califor-

nia, in particular Orange County, is characterized by urban

development that includes extensive housing tracts of small single-

family homes in lower-income areas, many of which have

swimming pools. Although most homeowners are above the

poverty level, amenities such as swimming pools may not receive

regular upkeep as economic conditions worsen. Neglected pools

have the potential to become eutrophic water bodies capable of

supporting high densities of immature mosquitoes. These factors,

combined with microhabitat ecological conditions particularly

suitable for the primary vector, C. quinquefasciatus, may be

responsible for the elevated infections of West Nile virus observed

in vectors and human hosts in lower-income areas.

While the conditions leading to West Nile outbreaks have

proven difficult to determine, the observed power of economic

variables in predicting the impacts was remarkable. In this regard,

it is unlikely that Orange County is unique; in fact, high incidences

of West Nile virus have recently been attributed to both

urbanization [10] and the homogenization of landscapes and

avian communities [32,37,38] across diverse environments.

Considering these trends, WNV is likely to continue to pose

public health risks in urban areas. Our findings demonstrate the

Figure 3. Spatial predictions of West Nile virus in vectors and human populations. (A) Data layer representing per capita income across
the county, as collected as part of the 2000 U.S. National Census. (B) Predictions of WNV prevalence in vectors across the study area for 2008 based on
the 2005 WNV prevalence model. Circles indicate observed WNV prevalence levels in 2008 using the same color codes. (C) Predictions of WNV
presence in human hosts in 2008 across the study area, determined using niche modeling (Maxent; 25). Scale bar is an approximation, as scale varies
according to perspective.
doi:10.1371/journal.pone.0015437.g003
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importance of including economic factors in predicting future

outbreaks and emphasizes the need for additional research into the

specific ecological variables that may be driving these patterns.

Materials and Methods

For vector data collection, batches of mosquitoes (hereafter

referred to as mosquito pools) were sampled from 2004–2008

throughout Orange County by the Orange County Vector

Control District (OCVCD). In each year, sampling sites were

distributed across Orange County, with a core of ,20 sites where

data were collected yearly, and an additional 5–10 satellite sites

that were sampled during a single year. Mosquitoes were collected

from May-October using either CDC-style light traps [39]

intended to capture a wide variety of potential WNV vectors

(primarily mosquitoes in the Culex genus) or gravid traps [40] that

were specifically baited to capture the most prominent WNV

vector in the area (C. quinquefasciatus). For each mosquito pool we

calculated WNV prevalence as the Maximum Likelihood Estimate

(MLE) [41] of mosquitoes positive for WNV. MLE is often

regarded as a more accurate measure of prevalence than the

percentage of infected mosquito pools, because it accounts for the

possibility that more than a single mosquito is infected per tested

mosquito pool. While more recent vector-based surveillance

measures have been implemented in an attempt to dissect the

contribution of individual vectors to WNV spread [26,42], we used

only a measure of infection rate (as measured by MLE) as a

representative of WNV prevalence levels, for the following

reasons: 1) comprehensive measures of vector abundance (a

requirement for determining relative importance of each WNV-

positive vector) were not recorded for years 2004 and 2005, 2) for

years in which these abundance measures were taken (2006–2008),

spatial heterogeneity of vector abundance did not vary dramat-

ically across our study period (no more than an order of

magnitude, in comparison to several orders of magnitude in

previously studied systems), 3) WNV transmission is likely driven

by a single dominant vector, C. quinquefasciatus, as evidenced by a

relatively homogenous vector community composition. During the

year (2008) in which abundance data was methodically collected

and WNV prevalence was high, measures of Vector Index and

MLE values were highly correlated (Adj. R2 = 0.69, p = 1.361028).

In addition, the overlap in prediction areas based on our MLE

estimates and the human cases reported in our study area (see

Results, Figures 2, S5) suggests that our measures of vector

prevalence are successfully capturing the risk of WNV infections to

secondary hosts. Only sites that were sampled $15 times during

the WNV season (defined as weeks 18 through 43 of each year)

were used for analyses. In addition, to ensure that our sampling

effort was spatially and temporally unbiased, we checked for both

spatial autocorrelation (see supporting information Methods Text

S1, Table S1, Figure S3), and continuous distribution of sampling

throughout the season, with no obvious clusters of sampling dates,

or gaps in sampling effort. West Nile virus prevalence levels were

too low in years 2006 and 2007 to establish statistically meaningful

relationships; for this reason we restricted our analyses to years

2004, 2005, and 2008.

Locations of confirmed infections of WNV infections in humans

in 2004 (n = 61), 2005 (n = 17), and 2008 (n = 75) were compiled

and provided by the Orange County Health Care Agency

(OCHCA). These confirmed infections included WN neuroinva-

sive disease, WN fever, and positive blood donors. OCHCA only

included cases for which infections most likely occurred in Orange

County, and omitted those that may have occurred outside the

county. For privacy considerations, random spatial error was

introduced (less than 1 km) to the locations by OCHCA. Because

the introduced error was random and within the nightly ranges of

primary WNV vectors, it is unlikely that this procedure affected

any analyses, especially in any particular direction. We are

therefore confident that the associations presented here are not the

result of data treatment.

To assess the influence of environmental heterogeneity on

WNV prevalence in a GIS-framework, we used a set of

environmental variables comprising raw measurements and

derived products from the Advanced Spaceborne Thermal

Emission and Reflection Radiometer (ASTER) instrument. From

ASTER images taken in May 2005, we used the red, green, and

blue visible bands as individual variables, as well as the thermal

band, which measures surface kinetic temperature. We used

images from May, as this is the first month for which positive West

Nile virus samples were used for analyses. Analysis of spatial

heterogeneity in temperatures for three years in Orange County,

California, at nine ground stations (provided by the Ames

Research Center and collected through the National Climatic

Data Center, NCDC, www.ncdc.noaa.gov) suggested that tem-

perature was homogenic across the study area, and more

importantly that patterns of heterogeneity did not change over

the course of summer months (Figure S1). Measures of

precipitation taken from these nine ground stations from May-

October (the study period for each year) were minimal (Figure S2),

suggesting that natural precipitation levels or spatial heterogeneity

in precipitation does not contribute appreciably to explaining

variation in WNV prevalence during these months. Precipitation

measurements as summarized in layers made available by the

WorldClim group [43] corroborated the finding that there is little

spatial heterogeneity in our study area.

Visible ASTER bands were used at the native resolution of

15 m, and the thermal band was reaggregated to the same grid cell

size, while retaining its native 90 m resolution. In addition,

Normalized Difference Vegetation Index (NDVI), a vegetation

index that correlates well with plant leaf density in most

environments, was computed through the normalized difference

in surface reflectances at near-infrared (NIR) and red wavelengths.

This was derived by first atmospherically correcting ASTER

bands 2 (red) and 3n (IR) using the software ATCOR 2

(Atmospheric Correction for Flat Terrain, ReSe Applications

Schläpfer) with the default coefficients, in order to obtain accurate

surface reflectance values, and then applying the equation:

NDVI~
NIR{RED

NIRzRED

Previous studies suggested a relation between WNV prevalence

and the presence of standing natural and artificial water sources

[11,23–25], and because precipitation was minimal during study

period months, we also included a layer capturing the density of

neglected swimming pools in our analyses. Neglected pools were

defined as untreated (un-chlorinated) pools that could be potential

breeding sites for mosquitoes, and were identified by OCVCD

through a combination of aerial surveys and ground-truthing. The

total number of neglected pools for 2004, 2005, and 2008 was 417,

448, and 1,428 respectively. For each 15615 m gridcell, we

calculated the density of neglected pools within a 1 km radius, an

estimate within the nightly range of relevant mosquito species [44].

As natural standing water bodies may also act as potential

breeding sites for mosquitoes, and because we expected elevation

to affect the amount of standing water available to vectors and

hosts (lower valley areas are hypothesized to have more runoff and

Economy Predicts West Nile Virus Prevalence
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standing water pools than higher elevation sites), we included a

25 m resolution elevation value for all sites surveyed in analyses.

We obtained this layer from the ASTER Global Digital Elevation

Model data set made available free-of-charge from a joint venture

between the Ministry of Economy, Trade, and Industry (METI) of

Japan and the United States National Aeronautics and Space

Administration (NASA) (http://www.ersdac.or.jp/GDEM/E/).

To assess the role of heterogeneity in economic conditions on

WNV prevalence, we extracted ‘mean population density’ and

‘per capita household income’ from Census 2000 data available at

the California Spatial Information Library (http://casil.ucdavis.

edu/casil/society/) and US Census Bureau (http://www.census.

gov). ‘Per capita household income’ is generally considered to be a

good descriptor of the economic situation in residential areas.

Although more recent socioeconomic data are available, we used

the data from 2000, because these data are at the highest

resolution currently available (block group level, containing 600–

3000 people, with an optimum of 1500). Potential caveats of using

data summarized at the census block level are that the sizes of

block groups vary, and that potential sharp transitions of

socioeconomic measures among block groups may not reflect the

true socioeconomic and related environmental conditions at block

group boundaries. In addition, even when the recorded sharp

transitions among block groups are accurate, prevalence levels of

WNV in these boundary areas may be influenced by proximity to

different socioeconomic or environmental conditions. To reduce

the potential for drawing incorrect conclusions due to these

limitations and boundary effects, we computed the average ‘mean

population density’ and ‘per capita household income’ within a

radius of 1 km, effectively resulting in layers with smoothed

transitions among block groups.

Processing of spatially explicit data was carried out in ArcMap

9.2 (ESRI, Redlands, CA). Economic GIS data layers were

converted from feature data to raster grids. Because the modeling

software packages require that input data layers are in the same

format, all GIS data layers were reaggregated to 15 m grid cell

resolution, corresponding to that of the visible band layers derived

from the ASTER instrument.

To model prevalence levels of WNV in vector pools across the

study area, we used a suite of economic (per capita income, human

population density, and density of neglected swimming pools) and

ecological (vegetation, temperature, and topography) variables in

tree regression [45] and random forest models [46] in the R

statistical framework [47] to assess the relative importance of each

variable in predicting WNV prevalence in vectors. Regression tree

models implement binary recursive partitioning procedures to

measure the amount of variation in a response explained by each

predictor used in the model. No a priori assumptions are made

about the relationship between predictor and response variables,

allowing for the possibility of non-linear relationships with

complex interactions. The resulting bifurcation is presented as a

tree in which the nodes represent the predictor variables that split

the response variable data set into two partitions, such that the

homogeneity within each partition is maximized (see supporting

information Methods Text S1, Figure S4). Homogeneity is

measured by the Gini index [46], and splitting continues until

further partitioning does not reduce the Gini index. The length of

the branches following each partition indicates the relative

importance of the partitioning predictor variable. Unlike typical

regressions, these non-linear, non-parametric functions can

indicate the comparative amount of variation explained by each

variable [48,49]. Random forests represent iterations of regression

trees, where both records and predictor variables are randomly

permuted to assess the robustness of classifications found. These

permutations include bagging procedures [50,51] where a random

subsample of the original dataset is taken to construct regression

trees. The samples that are not included in the random subsample

- the out-of-bag samples - are subsequently used to test the model

predictions from the bagged samples. These methods also

incorporate a randomization of predictor variables used to

construct each of the numerous regression trees [51]. The iterative

nature of these models provides statistically rigorous statements

about the relationships between predictor and response variables,

as measured by the percent of variation explained by the full

forest, and by measures of individual variable importance [48],

and results have been shown to outperform traditional regression

techniques [49,52]. In our analyses, environmental and economic

data values corresponding to the grid cell at the sampling locations

were extracted, and 2000 iterations were run with ,36% of the

samples used as out-of-bag samples. In order to visualize our

spatially explicit predictions of WNV prevalence across the study

region, we predicted the prevalence at 20,000 random points in

our study area using the relationships between WNV prevalence

and predictor variables as determined by random forest. To

interpolate a continuous surface among these points, we used both

a deterministic (Inverse Distance Weighted) and a geostatistical

interpolation method (Ordinary Kriging [53] with linear and

spherical models to describe the semivariance [54]), which all

resulted in qualitatively comparable surface estimates. Predictions

from random forest models were confirmed using Generalized

Dissimilarity Modeling (see supporting information Methods Text

S1, Table S2), which produced comparable patterns of prevalence

across the study area.

To model the spatial distribution of WNV infections in humans

across Orange County and to identify the associated environmen-

tal or economic variables, we used Maxent (Version 3.1.0), a

machine learning algorithm, which has previously been used for

modeling of species distributions [55]. Maxent is a general-purpose

algorithm that generates predictions or inferences from an

incomplete set of information. The Maxent approach is based

on a probabilistic framework. The main assumption is that the

incomplete empirical probability distribution (determined by

occurrence data) can be approximated with a probability

distribution of maximum entropy (the Maxent distribution) subject

to certain environmental constraints, and that this distribution

approximates the potential geographic distribution of the group of

interest [56]. The input data consist of a set of environmental

layers for the study region and the observed case-presence

localities within that region. Maxent then uses these data to build

a distribution of the niche space observed at the presence localities,

and estimate the environmental properties that are suitable for the

taxonomic unit studied. Predictive maps generated by Maxent

express suitability of each grid cell as a function of the

environmental variables at that grid cell. A high value of the

function (in units of logistic probability) at a particular grid cell

indicates that the grid cell is predicted to have suitable conditions

for the studied unit [56]. Maxent runs with presence-only point

occurrences and performs well with few point localities [55]. As a

consequence, in a recent large model intercomparison project with

15 other algorithms, Maxent’s performance was generally rated

among the highest [57]. We modeled WNV infections in humans

using the provided presence records throughout the study area

with the following predictor variables at 15 m resolution: per

capita income, population density, density of neglected pools in the

study year, NDVI, elevation, temperature, and the ASTER visible

bands. We used the default settings of Maxent: 10,000 background

points; linear and quadratic hinge features; regularization

multiplier = 1.0; maximum iterations = 500; convergence thresh-

Economy Predicts West Nile Virus Prevalence
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old = 0.00005. To assess the importance of each predictor

variable, we ran the jackknifing procedure implemented in

Maxent. The area under the receiver operator curve (AUC),

implemented in Maxent, was used to assess overall model

performance, where an AUC score of 0.5 indicates random

prediction, and a score of 1 a perfect prediction. In order to assess

the robustness of the model to sampling variation, we used data

from 2008 and ran twenty additional models with 75% training

and 25% test sites that were randomly selected from the original

dataset. We compared the AUC scores of these test runs to that of

the full model to determine if any major deviations (i.e. low model

performance, with AUC values ,0.8) were present that would

suggest sensitivity to sampling variation. Except for 2004, for

which the random forest model performed poorly compared to the

other years, ecological niche models of WNV infections in humans

showed a spatial pattern that was highly concordant with

prevalence levels of WNV in mosquitoes (Figures 3, S5).

Supporting Information

Text S1 (DOC)
Figure S1 Average monthly ground temperature in Orange

County, California, for years 2004-2006. Shaded areas represent

months for which West Nile virus data was collected. Temperature

differences between nine ground stations across the study area

were fairly consistent across months and across years; thus,

heterogeneity in surface kinetic temperatures recorded in May (the

beginning of each sampling period) were used as a surrogate for

the spatial heterogeneity seen across the study area for the entire

sampling period. (TIF)
Figure S2 Average monthly precipitation in Orange County,

California, for years 2004-2006. Shaded areas represent months

for which West Nile virus data were collected. Little precipitation

fell during the months for which West Nile virus data were

collected, warranting an exploration of artificial and standing

water sources in our analyses. (TIF)
Figure S3 Spatial autocorrelation results for prevalence levels of

WNV in mosquitoes, as measured by the Maximum Likelihood

Estimate. Blue lines indicate the autocorrelation coefficient r, red

lines indicate 95% confidence levels of 999 randomizations of

sampling localities and bars indicate 95% confidence levels of 1000

bootstrap replicates. Negative correlations suggest that similar

MLE values are more dispersed than expected at random. (TIF)

Figure S4 Tree regression results for WNV prevalence in

vectors. At each node, the splitting variable for that node is

indicated. The branch left of the node represents lower values for

the splitting variable, whereas the branch right of the node

represents higher values. Figures at the terminal ends indicate

prevalence levels (as measured by maximum likelihood estimates).

(TIF)

Figure S5 Model predictions for WNV prevalence in vectors

and humans for 2004, 2005, and 2008. Predictions in vectors are

based on random forest models, whereas Maxent was used to

predict WNV in humans. Colors indicate the relative prevalence

in vectors and probability of human cases within each year (see

color bars). Colors for the predicted WNV prevalence in vectors

are scaled for each year to span the entire range of predicted

prevalence levels in the corresponding year. Scale bar is an

approximation, as scale varies according to perspective. (TIF)

Figure S6 Jackknifing results to test for variable importance in

Maxent models for the distribution of WNV infections in humans

in 2004, 2005, and 2008. Light blue bars indicate model

performance when the variable is omitted. Dark blue bars indicate

model performance when the variable is used by its own. Blue,

green, red = visual ASTER bands; elevation = ASTER digital

elevation model (DEM) at 25 m resolution; NDVI = Normalized

Difference Vegetation Index; neglected pools = neglected

swimming pools in the study year; income = per capita income;

population density = human population density; temperature =

surface kinetic temperature measured by ASTER. (TIF)

Table S1 (DOC)

Table S2 (DOC)
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