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Abstract

Familial dysautonomia (FD) is a developmental neuropathy of the sensory and autonomous nervous systems. The IKBKAP
gene, encoding the IKAP/hELP1 subunit of the RNA polymerase II Elongator complex is mutated in FD patients, leading to a
tissue-specific mis-splicing of the gene and to the absence of the protein in neuronal tissues. To elucidate the function of
IKAP/hELP1 in the development of neuronal cells, we have downregulated IKBKAP expression in SHSY5Y cells, a
neuroblastoma cell line of a neural crest origin. We have previously shown that these cells exhibit abnormal cell adhesion
when allowed to differentiate under defined culture conditions on laminin substratum. Here, we report results of a
microarray expression analysis of IKAP/hELP1 downregulated cells that were grown on laminin under differentiation or non-
differentiation growth conditions. It is shown that under non-differentiation growth conditions, IKAP/hELP1 downregulation
affects genes important for early developmental stages of the nervous system, including cell signaling, cell adhesion and
neural crest migration. IKAP/hELP1 downregulation during differentiation affects the expression of genes that play a role in
late neuronal development, in axonal projection and synapse formation and function. We also show that IKAP/hELP1
deficiency affects the expression of genes involved in calcium metabolism before and after differentiation of the
neuroblastoma cells. Hence, our data support IKAP/hELP1 importance in the development and function of neuronal cells
and contribute to the understanding of the FD phenotype.
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Introduction

Familial dysautonomia (FD) is a recessive autosomal neurode-

generative disease that affects the sensory and autonomous

nervous systems. Patients suffer a wide range of symptoms that

include gastrointestinal dysfunction, vomiting crises, recurrent

pneumonia, altered sensitivity to pain and to temperature

perception, and cardiovascular instability [1]. Also, both bone

mineral density and metabolism are affected in FD patients,

making them prone to bone fractures, spinal cord curvature,

osteoporosis and osteopenia [1,2,3].

The gene IKBKAP, which encodes the IKAP/hELP1 (IKAP)

protein, was found to be mutated in all FD patients; the mutation

in 99% of the patients is a TRC nucleotide transition in the donor

splice site of intron 20. This mutation causes the skipping of exon

20 and the generation of a truncated IKAP protein because of a

premature stop codon that occurs as a result of the mis-splicing

event [3,4]. An additional, rarer mutation is a GRC transversion

in exon 19 that results in an arginine to proline substitution and

consequently, to disruption of a consensus serine/threonine kinase

phosphorylation site (RIVTRPIVT) [4], suggesting that IKAP

must be phosphorylated at certain domains to be fully active.

The expression of the human IKBKAP gene is differential,

being highest in the cerebellum and other neuronal tissues [4].

Also differential is the mis-splicing of exon 20 in homozygous

mutation carriers (FD patients) [3,5], where the mis-spliced variant

is dominant mostly in central and peripheral neuronal tissues,

leading to undetectable IKAP protein in these tissues [6].

IKAP is a subunit of the RNA Pol II Elongator complex [7,8].

This complex was shown to be involved in varied cellular processes

in yeast [9] and in mammalian cells [10]. However, recently a

specific role for IKAP, not as a component of Elongator, was

found in Drosophila, where IKAP has an RNA-dependent-RNA

polymerase activity and is involved in RNAi processing [11].

The failure to generate an IKBKAP KO mouse demonstrated

that the gene is essential [12] as are the IKBKAP orthologs of C.

elegans and Drosophila [11]. These results and the FD phenotype in

humans define FD as a developmental disease. The peripheral

nervous system, mostly affected in FD, is developed from the

neural crest cells, a multipotent population of migratory cells

unique to the vertebrate embryo. These cells arise at the lateral

edge of the neural plate and migrate throughout the embryo to

give rise to a wide variety of cell types including peripheral and

enteric neurons and glia, cartilage and bone, smooth muscle, and

pigment cells [13].

An analysis of the role that IKAP may play in the development

of peripheral neuronal cells is impaired by the fact that to date

there is no good model in which the importance of IKAP in early
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developmental stages of peripheral neurons can be examined. We

therefore used in our studies SHSY5Y, a neuroblastoma cell line of

neural crest origin [14] amenable to differentiation in vitro [15]. We

reduced the expression of IKAP in these cells and we studied the

effect of IKAP downregulation on gene expression in these cells in

regular growth and under differentiation.

Results

To gain an understanding of the roles played by IKAP in

neuronal cell growth and differentiation, we carried out a DNA

microarray experiment with RNA extracted from two cell lines of

SHSY5Y cells: i) IKAP-DR, in which IKAP expression was Down

Regulated by an shRNA against the IKBKAP gene and ii) control

cells transfected with the empty vector. The cells were grown on

laminin - coated plates under two different conditions: non-

differentiation; in growth medium containing 10% FC serum

(NDF) or differentiation; by growth in medium with serum and the

addition of retinoic acid for 5 days, followed by serum-free

medium supplemented with BDNF for 3 days (DF). Figure 1A

shows that IKBKAP shRNA reduced significantly the expression

of the IKBKAP gene at the RNA level in non differentiation

growth conditions (IKAP-DR, NDF). IKBKAP mRNA expression

was further reduced upon differentiation (DF) in both control and

IKAP-DR cells. These results are consistent with the microarray

results, where IKBKAP was reduced in IKAP-DR cells in both

NDF and DF growth conditions compared to control cells (Tables

S1 and S4). Figure 1B shows IKAP protein expression of control

and IKAP-DR cells at both NDF and DF growth conditions. Note

that here too, IKAP expression is further reduced in both control

and IKAP-DR cells in differentiation growth conditions, as

reported previously [16]. The reduced expression of IKAP under

differentiation is not related to the shRNA expression as it happens

in control cells as well. Although reduced, IKAP protein is still

present in control cells during differentiation while in IKAP-DR

cells it is greatly diminished.

Effect of IKAP depletion in non-differentiated cells
(IKAP-DR-NDF versus control-NDF)

To examine the effect of IKAP deficiency on gene expression

under non-differentiation conditions, we compared the expression

data of IKAP-DR to control cells under NDF conditions.

Choosing a threshold of at least 1.5 fold induction or reduction

in expression, we found a total of 105 affected genes (Table S1).

The expression of 78 genes was reduced while the expression of

the remaining 27 genes was increased. Analysis of GO term

enrichment among these genes using ToppGene [17] revealed 5

enriched biological processes ordered by statistical significance

(Fig. 2A). The most significant and large category is ‘‘Nervous

system development’’ which includes 22 genes. The other

categories are: ‘‘Cell localization’’ (18 genes), ‘‘Enzyme-linked

receptor protein signaling pathway/protein kinase signaling’’ (13

genes) and ‘‘Cell adhesion’’ (17 genes). In addition, one molecular

function, ‘‘Calcium binding’’, was also enriched (16 genes).

Analysis of the results shows some degree of overlap between the

various categories (Fig. 2B; Table S2).

Thirteen genes in the category of ‘‘Nervous system develop-

ment’’ exhibited reduced expression in the IKAP-DR strain.

These included the genes encoding semaphorins Sema3C and

Sema5a, DPYSL3 (Dihydropyrimidinase, necessary for Sema3

signaling), and others such as TNR (tenascinR), TNC (tenascinC),

and NAV2 (neuron navigator), all directly linked to neuronal

growth. As opposed to Sema3C and Sema5a, the expression of the

repulsive axon guidance semaphorin 3A (Sema3A), increased 3.6

fold in IKAP-DR cells (Table S2). Also increased was the

expression of 9 genes (out of 22 in this category), including

CHRNA3 (acetylcholine receptor), NTNG1 (netrin G1), ENC1

(actin binding protein involved in neural crest development),

DOK4 (docking protein) and CD9 (tetraspanin). Thus, IKAP

deficiency, already in non differentiation growth conditions, seems

to affect nervous system development by disturbing the expression

of genes involved in both pattern formation and signaling (see

below).

Under non-differentiated growth conditions most of the genes

related to adhesion (11 out of 17) were down-regulated in the

IKAP-DR cells compared to the control (Table S2). Among these

were CDH11 (cadherin11) (Fig. 2C), CADM1 (Cell adhesion

molecule 1, involved in neuronal migration) and LAMA4 (laminin

alpha 4, mediates cellular attachment and migration in embryonic

development). On the other hand, the expression of genes like

CDH18, a calcium-binding adhesion molecule that is expressed in

the nervous system [18,19] was elevated (Fig. 2C). Also, genes

encoding Contactin 1(Fig. 2C) and Contactin-associated protein4

(Table S1) were expressed at higher levels. These results are

consistent with the enhanced adhesion observed in IKAP-DR

cells, which we have shown to be dependent on Contactin 1 [16].

Another class of genes affected by IKAP down regulation is that

of transmembrane receptor protein tyrosine kinases (RTKs), which

Figure 1. IKAP/Elp1 expression. A, qRT PCR analysis of IKBKAP gene
of control (gray bars) and of IKAP-DR (Black bars) cells in non
differentiation (NDF) and differentiation growth conditions (DF).
Expression values of the ribosomal gene RS9 were used to normalize
the expression values of IKBKAP. Each histogram represents the average
of 2 different experiments each done in triplicate (a total of 6 samples)
with standard errors, * = p,0.05; B, Western blot analysis of IKAP/Elp1
expression of control and IKAP-DR cells in NDF and DF growth
conditions. The expression of b-actin was used as a protein loading
control. Proteins molecular weights in kDa appear on the right.
doi:10.1371/journal.pone.0019147.g001
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play a central role in the phosphorylation of tyrosine residues of

proteins involved in signal transduction pathways [20]. Interest-

ingly, the expression of all the nine RTKs was reduced in IKAP-

DR cells, compared to control. Thus, in cells with low IKAP

activity, several signal transduction pathways are down-regulated.

Among the genes affected by IKAP reduction and also related to

nervous system development is EGFR, an RTK from the ErbB

family. Insufficient signaling of this RTK is associated with

changes in gene expression, cytoskeleton arrangements and cell-

cell communications affecting development of multicellular

organisms [21],[22,23]. Also reduced was RET1, which is crucial

for neural crest development [24], [25,26]. Ret1 is a gene common

to several biological processes that emerge from our analysis

(adhesion, calcium metabolism, development, RTK signaling, and

cell localization) (Table S2). PDGFRA is also affected by IKAP

reduction; this gene belongs to a family of growth factors which act

as mitogens for cells of mesenchymal origin and have roles in the

regulation of many biological processes including embryonic

Figure 2. Gene expression of IKAP-DR versus control cells in non differentiation (NDF) growth conditions (1.5 fold change and
p,0.05 under FDR (false discovery rate) adjustment criteria). A, Toppgene enriched (1.5 fold change) biological processes and molecular
functions of IKAP-DR cells, diagrams show the number of genes in each group, the graph shows p-values (p,0.05 under Bonferroni correction).
B, Venn diagram showing common genes among 3 of the 5 different biological processes shown in A. C, Data validation by qRT PCR of the expression
levels of a few genes from the indicated groups in control (gray bars) and IKAP-DR cells (black bars) in NDF growth conditions. Each histogram
represents the average of 2 different experiments each done in triplicate (a total of 6 samples) with standard errors (only .0.05 are shown). RS9
expression was used as expression normalizer; * = p,0.05, ** = p,0.01.
doi:10.1371/journal.pone.0019147.g002
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development, angiogenesis, cell proliferation and differentiation,

hence contributing to the pathophysiology of some diseases [27].

Finally, another group of genes affected in the IKAP-DR strain

are those related to calcium metabolism. In fact, 8 out of the 16

genes in this category are related to cell adhesion and development

(Table S2), underscoring the important role that calcium

metabolism plays in these processes. Several of the genes in this

group are involved directly in calcium binding, such as the

calmodulin-encoding gene Calm3 (reduced) and CADPS (in-

duced), a neural/endocrine-specific cytosolic and peripheral

membrane protein required for the Ca2+-regulated exocytosis of

secretory vesicles [28]. Additional genes include CACNA1C

(alpha1) and CACNA2D1 (alpha2/delta), encoding subunits of

voltage gated calcium channels of type L [29,30]. Interestingly, the

expression of CACNA1C is reduced 2 fold while the expression of

CACNA2D1 is increased 2 fold (Table S2). It is thus likely that the

change in expression of these genes caused by IKAP deficiency

leads to a change in the activity of these important channels, which

may lead to disease [31].

We next validated the microarray results using qRT-PCR

(Figure 2C). As can be seen in this figure, genes related to neuronal

development: Sema5a, TNR and Ret are downregulated in IKAP-

DR cells; genes related to adhesion like contactin 1 and CDH 18

are overexpressed in the IKAP-DR strains, while the expression

of TNC, and CDH 11 is downregulated. The expression of

calcium related genes, Calm3 is downregulated and CADPS is

overexpressed.

Differentiation affects genes related to cell division, cell-
cell communication and synapse structure and function
(control DF/control NDF and IKAP-DR-DF/IKAP-DR NDF)

The neural crest origin of SHSY5Y cells enables their further

differentiation, manifested by the extension of neurites to

generate neuronal networks. To investigate possible roles of

IKAP during neuronal differentiation, we compared gene

expression changes in IKAP-DR and control cells in differenti-

ated versus non-differentiated conditions. Differentiation was

achieved by treating the cells with retinoic acid followed by

BDNF in serum-free medium.

As expected upon differentiation, the control cells exhibited a

massive reduction in the expression of genes that are involved in

cell cycle (649 genes with Fold change ,21.5) (Figure 3A). These

included genes involved in DNA replication, mitosis and cell

division, suggesting that the cells are in a cell-cycle-arrested state.

At the same time, expression of a large number of genes was

increased (441 with Fold change .1.5). These genes were mainly

annotated as being related to the development of the nervous

system, including NCAM2, Neurexin1, doublecortin, neurofascin,

synaptotagmins and synapsins to list a few, which affect both the

structure and the function of the nervous system. In addition, upon

differentiation of the control cells, the expression of many genes

that respond to calcium (53 genes) was also increased. Several of

these genes (such as Syt5, Syt9 and Syt11 encoding synaptotag-

mins; and a few CACNA genes encoding voltage gated calcium

channels) act in nerve impulse transmission.

The expression changes observed in the IKAP-DR cells upon

differentiation show a similar picture to that seen in the control

cells: reduced expression of cell cycle genes in DF versus NDF on

one hand and induction of genes related to neuronal development

and morphogenesis on the other (data not shown). However, close

inspection of the results reveals individual gene expression

differences between the two cell lines (Figure 3B). The majority

of the genes whose transcription was reduced upon differentiation

were common to both the IKAP-DR and the control cell lines.

IKAP-DR cells showed a larger number of unique genes whose

expression was increased, and a smaller number of unique genes

with reduced levels, compared to the control.

Among the unique genes that changed only in control cells were

genes with a role during the S and M-phases of the cell cycle,

including a group of histone genes involved in nucleosome and

chromatin assembly (12–15 genes, respectively), all of them from a

single histone cluster (located at chr6p22), whose expression was

reduced only in control cells but not in IKAP-DR cells upon

differentiation (Table S3A). Also, 21 genes related to calcium

binding and both synapse development and signal transmission

were induced only in control cells but not in IKAP-DR cells upon

differentiation (Table S3B). These included a large group of genes

encoding protocadherin beta 4, 6, 7, 10, 11,13, 18, and SLC25A2

which form a cluster located at chr5q31 [32], as well as

calsyntenin1 [33], calsyntenin2 [34] and secretogranin II [35].

On the other hand, 24 genes whose expression was enhanced

upon differentiation only in IKAP-DR cells were related to actin

and cytoskeleton binding (Table S3C). These results suggest a role

for IKAP in maintaining proper cytoskeleton state in the cells and

also in the proper differentiation of neuronal cells, especially in the

development of axons, dendrites and synapses.

Figure 3. Gene expression of IKAP-DR and control cells in DF
compared to NDF growth conditions. A, Clustering of increased
(red) and reduced (blue) genes of control cells (each in two biological
repeats) in both NDF (purple and green bars on the left) and DF (blue
and red bars on the left) conditions. Representative enriched biological
groups are listed at the top of the cluster (BP). B, Venn diagram
(proportional) featuring common and unique reduced genes (left)
and induced genes (right) between IKAP-DR and control cells in
differentiation.
doi:10.1371/journal.pone.0019147.g003

IKAP Deficiency in Differentiating Neuroblastoma

PLoS ONE | www.plosone.org 4 April 2011 | Volume 6 | Issue 4 | e19147



IKAP/hELP1 downregulation affects neuronal projection
and synapse formation in differentiating cells (IKAP-DR-DF
versus control-DF)

By comparing the expression data of IKAP-DR cells from those

of control cells in differentiated conditions, we identified 180 genes

whose expression was either elevated (99) or reduced (81) in the

IKAP-DR cells compared to control cells (Table S4). We divided

these genes into two categories: A) Those that were already

observed to be affected by IKAP deficiency in non-differentiating

conditions (38 genes), and B) Genes that were not significantly

affected in IKAP-DR NDF cells, but show an effect upon

differentiation (141 genes) (Fig. 4A). Many of category B genes

are related to development of the nervous system and specifically

to neuronal projection and synapse structure and function

(Figure 4B, Table S5). Some of the genes are common to these

3 biological groups (Fig. 4C).

Category A included the IKBKAP gene itself, which was

reduced in non-differentiated conditions because of IKBKAP

shRNA expression, and further reduced upon differentiation

(Figure 1). Among the other 37 genes in category A were Sema5a,

NetrinG1 and Contactin1, three genes with important roles in

neurites and axonal growth. Contactin 1 was overexpressed in

IKAP-DR cells in both NDF and DF growth conditions (see fig. 4D

for the validation of its expression in DF, compared to other

adhesion molecules). Sema5a belongs to Sema family of proteins

involved in axonal guidance during neuronal development; it acts

as a positive or repulsive cue for axonal guidance, depending on

the nature of extracellular matrix [35]. The expression of Sema5a

was reduced in IKAP-DR cells already in NDF conditions, and

was further reduced in these cells upon differentiation compared to

control (Fig. 2C, left panel and Fig. 4D, right panel, see also

Tables S1 and S4). NetrinG1 belongs to a family of extracellular

proteins that regulate the migration of neurons and axonal growth

cones [36]. These proteins use bifunctional signals that are chemo-

attractive for some neurons and chemo-repellent for others [37].

Interestingly, whereas the expression of NetrinG1 was induced in

both NDF and DF in IKAP-DR cells, the expression of NetrinG2

(the other netrin family member) was reduced in DF (Fig. 4D,

Table S4). Another category B gene, RGNEF, was induced upon

differentiation (Fig. 4D, Table S4). RGNEF is a RhoA-specific

guanine nucleotide exchange factor that regulates signaling

pathways downstream of integrins and growth factor receptors.

It functions in axonal branching, synapse formation and dendritic

morphogenesis [38,39].

Eight genes that change only in IKAP-DR but not in control

cells in differentiation encode calmodulin-binding proteins, Seven

of them are induced in differentiation, including CAMK4 (a

calcium dependent protein kinase), SLC8A1 (a calcium transport-

er during excitation), GAP43 (a major component of the axonal

growth cones) and MYH15 (Myosin heavy chain, an actin binding

protein). Another gene worth mentioning in this category is Nos1,

encoding nitric oxide synthase, also a calmodulin-binding protein

whose expression was dramatically induced in IKAP-DR cells in

differentiation (Fig. 4D). Nos1 plays important roles in a variety of

cellular functions involving cell signaling [40]. In the nervous

system, both central and peripheral, it acts as a neurotransmitter

[41]. Also shown in Figure 4D are Calm3, a calmodulin binding

protein that belongs to category A, and is reduced in both NDF

and DF, and CADPS, that was induced in NDF (Figure 2C), but

didn’t change significantly in DF.

Finally, among the genes that were reduced in IKAP-DR cells

compared to control in differentiation were also 9 genes encoding

proteins classified as carbohydrate binding proteins (Table S4),

among them APP (amyloid precursor protein) – involved in

neuronal adhesion and growth, VCAN (versican), encoding an

extracellular matrix protein that plays a role in cellular adhesion

and development, and two UDP-N-acetyl-alpha-D-galactosamine

transferases, GALNTL4 and the neuron-specific GALNT13 [42],

enzymes that transfer GalNAc to mucin peptides and modify

certain proteins by O-linked glycosylation.

We validated our results by measuring the level of Sema5a and

NetrinG2, two proteins involved in axon elongation. Figure 4E

shows that, in accordance to the DNA microarray and RT-PCR

results, the protein levels of Sema5a and NetrinG2 are reduced in

IKAP-DR compared to control upon differentiation. In addition,

we noticed a difference in the apparent molecular weight of

NetrinG2 in control cells upon differentiation. We hypothesize

that under non differentiating conditions, this protein may be

modified and hence shows slower migration in the protein gels.

Discussion

FD is a developmental neuropathy affecting the human

peripheral autonomic and sympathetic nervous systems caused

by a splicing mutation in the IKBKAP gene [3]. In the mouse, the

knock out of IKBKAP is lethal on early embryonic stage probably

because of poor development of the embryo neuronal system and

reduced development of extra embryonic constituents such as the

placenta and the yolk sac [12]. Thus, IKAP is essential for the

proper development of the nervous system in mammals, and

especially for the development of the peripheral nervous system in

humans.

All peripheral sensory and autonomic neurons (sympathetic,

parasympathetic and enteric) arise from neural crest cells that

migrate away from the neural tube and navigate to the location

where ganglia will form. Differentiating peripheral neurons further

promote axons and dendrites that must grow and connect the

periphery with the spinal cord. These processes rely upon

molecules that are attractive or repulsive to the migrating cells

or to growth cones of growing axons [43].

SHSY5Y are undifferentiated cells of neural crest origin, but

their precise developmental stage has not been characterized at the

molecular level as yet. We used these cells as a model system to

investigate the gene expression changes that take place upon IKAP

downregulation in growth conditions that maintain regular growth

and proliferation on one hand and in conditions that induce

differentiation on the other hand.

Analysis of gene expression of IKAP-DR cells compared to

control in non differentiation conditions showed expression

differences of genes important for the early stages of nervous

system development, cell adhesion, tyrosine kinases and calcium

metabolism. Among the affected genes were Sema3a, Sema3C,

Netrin and Ret, which are important for the migration of neural

crest cells in the development of the enteric and sympathetic

nervous systems (Reviewed by [43]). Snail, a transcription factor

active in migrating neural crest cells [44] was also downregulated

in IKAP-DR cells (Table S1). In addition, molecules of the neural

extracellular matrix such as TNR and TNC (tenascinR and

tenascinC, respectively), implicated in guidance of migrating

neurons as well as axons during development [45] were expressed

at reduced levels in IKAP-DR cells. These data point to the fact

that IKAP deficiency affects the expression of molecules that serve

as cues for the proper migration and guidance of neural crest cells

to their destinations. This may directly affect the number of cells in

the ganglia and the respective numbers of adequate projections

generated from them as observed in FD [1].

A number of microarray analyses of IKAP deficient cells were

previously reported; 1) Close et al. used inhibitory RNA against

IKAP Deficiency in Differentiating Neuroblastoma
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Figure 4. Gene expression of IKAP-DR versus control cells in differentiation (DF) growth conditions. A, Venn diagram showing the
number of genes with altered expression in IKAP-DR (DR) versus control (Con), common to NDF and DF growth conditions (category A genes) and
unique genes with altered expression only in DF conditions (Category B genes, left circle) or in NDF conditions (right circle). B, ToppGene enriched
biological processes and molecular functions of category B genes that change in IKAP-DR cells in differentiation (p,0.05 under Bonferroni
correction), diagrams show the number of genes in each group, graph shows p-values. C, Venn diagram showing common and unique genes among
the 3 indicated biological processes. D, qRT PCR validation of the expression levels of a few representative genes from the indicated groups, in
control (gray bars) and IKAP-DR (black bars) cells in DF. Each histogram represents the average of 2 different experiments, each in triplicate (a total of
6 samples) and standard errors (only .0.05 are shown). RS9 expression was used as expression normalizer. * = p,0.05, ** = p,0.01 *** = p,0.001. E,
Western blot analyses showing the expression of NetrinG2 and Sema5a proteins in control and IKAP-DR cells in both NDF and DF growth conditions.
The expression of b-actin was used as a protein loading control. Proteins molecular weights in kDa appear on the right.
doi:10.1371/journal.pone.0019147.g004
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IKAP in HeLa cells [46]; 2) Another study, by Lee et al., [47]

analyzed iPSCs generated from FD fibroblasts that were further

differentiated into neural crest cells. The genes affected in these

two studies did not significantly overlap our results, with the

exception of two genes involved in cell motility (TNC and gelsolin

that were reduced in HeLa cells and in our IKAP-DR cells - only

under NDF) and SNAP91 which was reduced in the iPSCs and in

our IKAP-DR cells only in differentiation. 3) Another study by

Cheishvili et al., [48], which compared gene expression of healthy

and FD brains, found that genes involved in myelination and

development of oligodendrocytes were significantly downregulated

in the FD brain. In our study we didn’t see significant changes in

genes that have an active role in myelination. Interestingly,

however, Contactin 1, its tenascine ligands and contactin

associated proteins, all involved in the formation of paranodal

axo-glial junctions in myelinated peripheral neurons and in the

signaling between axons and myelinating glial cells, are affected by

IKAP deficiency (Figures 2 and 4 and Tables S1 and S4). The

differences in gene expression patterns discussed above may be

attributed to the different cell/tissue types and growth conditions

used in these experiments.

Following cellular migration, neural crest cells differentiate into

more specific cells, as they produce and receive local cues for

proper differentiation. During differentiation cells undergo major

nuclear changes that include chromatin remodeling [49]. This is

accompanied by the transcriptional shut down of genes involved in

cell division, and in the induction of genes acting in specific

differentiation pathways. We induced neuronal differentiation and

show that the expression of cell cycle and cell division genes was

reduced. A few notable differences between control and IKAP-DR

cells in gene regulation were evident: A cluster of histone genes at

chromosome 6 was downregulated only in control cells, but not in

IKAP-DR cells. One interpretation of this result is that proper

regulation of this gene cluster may require the activity of IKAP,

which, as part of the Elongator complex, has been shown to affect

transcription [46]. The misregulation of histone genes in IKAP-

DR cells could affect chromatin structure and lead to reduced

expression of additional genes in differentiation. Alternatively, this

result and the fact that additional DNA replication and M phase

genes were affected may reflect the fact that IKAP-DR cells may

have a delay in reaching the G1 arrest required for differentiation.

Recently, a study by Keren et al. [50], found that FD fibroblasts

are partially arrested in G1 stage of the cell cycle. These and our

results suggest that IKAP deficiency affects also cell cycle

regulation.

A second group of genes, which was only induced in control but

not in IKAP-DR upon differentiation, is involved in calcium

metabolism and included a cluster of protocadherin genes at

chromosome 5, (Table S3B). Calcium is a mineral important for

many cellular functions including cell adhesion and cell signaling,

hence it is important for development in general, and for the

development of the nervous system in particular, where it is

regarded as a dominant second messenger [51]. Protocadherins

are specifically active in synapse signaling [32]. Our results show

changes in calcium-related genes in IKAP-DR cells in both NDF

and DF growth conditions. To the best of our knowledge, this is

the first report of the importance of IKAP in calcium homeostasis,

which is relevant to the FD phenotype that includes calcium-

related problems as spinal curvature and osteoporosis [1,2].

On top of that, genes related to cytoskeleton and actin-binding

were preferentially induced in IKAP-DR cells upon differentiation

(Table S3C). Cytoskeleton problems in cells lacking IKAP have

been reported [6,52,53]. IKAP was also found to co-localize with

filamin A, an actin-binding protein, to membrane ruffles of mouse

embryonic fibroblasts (MEFs) and in HeLa cells [52]. Moreover,

cells lacking IKAP showed a disorganization of actin and

migration problems even though there were no differences in

the expression of these proteins (actin and filamin A) [52]. Here we

show that IKAP deficiency induced the expression of cytoskeleton

and actin-binding proteins. Actin is a constituent of axonal growth

cones [54,55,56] and the abnormal overexpression of actin-

binding proteins in differentiation may cause aberrant actin

distribution both in the cytoskeleton and in growth cones, which

may lead to both migration and axonal growth problems. We and

others have indeed recently shown that IKAP deficient SHSY5Y

cells had abnormal looking neurite projections [16].

We have also shown that upon differentiation of IKAP-DR

cells, specific genes from advanced developmental stages have

abnormal expression patterns as compared to control cells. These

include genes involved in axon guidance, axonal growth, synapse

structure and synapse function. Genes like Sema3, Ret (and other

RTKs) and Snail that were affected in NDF conditions, did not

change further upon differentiation. In contrast, other genes like

Sema5a and NetrinG1 were affected under both NDF and DF

conditions, suggesting a role for these proteins in neuronal

guidance throughout neuronal migration and neurite outgrowth.

These proteins indeed use bifunctional signals during development

of certain neurons, and in relation to extracellular matrix [57],

supporting their suggested role throughout neuronal development.

Overall, our results show that SHSY5Y cells (resembling neural

crest cells), express genes required for their migration to the

pertinent destinations, and upon differentiation, they express genes

important for axonal growth and synapse formation. Deficiency of

IKAP leads to defects at all stages of these processes. The fact that

IKAP deficiency affects the expression of a large number of genes

involved in the nervous system development, points strongly to the

possibility that at least one of the mechanisms defective in cells

lacking IKAP is transcription regulation, most probably due to

lack of proper activity of the Elongator multi-protein complex of

which IKAP is a central component [7,8,46]. A few studies have

indeed shown that the elongator catalytic subunit, histone acetyl

transferase, Elp3 is reduced upon IKAP deficiency, suggesting that

although transcription of Elp3 is not hampered (Elp3 did not came

up in our screen), still its protein level is decreased as a result of

IKAP deficiency, causing reduced activity of elongator complex

[46,48,53]. This may be added to non-transcriptional IKAP

functions such as acetylation of a-tubulin which affects neuronal

outgrowth and development, as demonstrated both in mouse brain

and in C. elegans [53,58] or acetylation of other cytoskeleton

proteins, as was suggested [59].

In FD patients, IKAP depletion specifically affects the

development of the sensory, the enteric and the sympathetic

nervous systems. Also, FD patients exhibit severe skeleton

problems that worsen with age. Our findings of the changes in

the expression of genes involved in different neuronal develop-

mental stages and in calcium metabolism in IKAP deficiency are

strongly correlated with the FD phenotype.

Materials and Methods

Cell lines and Neuronal differentiation
SHSY5Y cells were grown in medium containing DMEM with

glutamine (Gibco), 10% heat inactivated FCS (Hyclone), 2 mM

sodium pyruvate (Invitrogen), and antibiotics (50 U/ml of

penicillin, streptomycin and nystatin) (Biological Industries, Israel).

The cell lines used in this study were described before [16]. Briefly,

stable SHSY5Y cell lines were generated with IKBKAP shRNA

TRCN0000037871 or with Control viruses carrying the pLKO.1-
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Puro control vector (Sigma) and were continually selected with

1 mg/ml puromycin (Sigma).

For differentiation, cells were plated on laminin-coated plates

and grown in medium containing 10 mM retinoic acid (Peprotech

Asia, Israel) for 5 days, than in serum free medium with 2 nM

BDNF (Peprotech Asia, Israel) for 3 days.

RNA extraction, microarray hybridization and data
analysis

Cells were harvested by brief trypsinization and washed with

PBS. Total RNA was extracted with Trisol reagent (Invitrogen),

according to reagent - supplemented protocol, treated and

hybridized to DNA microarrays (Affymetrix GeneChipH Human

Gene 1.0 ST arrays) according to the instructions manual, as

described in the Affymetrix website (http://www.affymetrix.com).

We used a total of 8 chips in 2 biological duplicates. Microarray

analysis was performed on CEL files using PartekH Genomics

Suite TM, version 6.5 Copyright � 2010 (http://www.partek.

com). Data were normalized and summarized with the robust

multi-average method [60], followed by analysis of variance

(ANOVA). Cluster analysis of the array was obtained by PartekH
Genomics Suite TM.

Gene expression data were sorted using cutoffs of p,0.05 under

FDR (false discovery rate) adjustment criteria of p,0.0002 for NDF

(Table S1) and of p,0.0005 for DF (Table S4) [61] and fold-

difference of 1.5. We used Toppgene [17] for analyses of biological

and functional groups. Data were verified by Gather [58] and by

David [59] - gene ontology tools. Venny was used to cross between

genelists (Oliveros, J.C. 2007: http://bioinfogp.cnb.csic.es/tools/

venny/index.html). All data is MIAME compliant and the raw data

has been deposited in a MIAME compliant database: https://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE26458.

Real Time PCR
Total RNA (0.5 mg) was reverse-transcribed into complemen-

tary DNA (cDNA) with Verso 1st Strand kit (ABgene, Surrey, UK)

using random hexamers and according to the manufacturer’s

instructions. qRT-PCR was carried out using Cyber green ready

mix (ABgene, Surrey, UK), and Rotor-Gene 6000 (Corbett, now

Qiagen), machine and software. Primers used in these study:

IKBKAP - Fwd: ATC ATC GAG CCC TGG TTT TAG, Rev:

ATT GAT TCT CAG CTT TCT CAT GC; RS9- Fwd: CGG

AGA CCC TTC GAG AAA TCT, Rev: GCC CAT ACT CGC

CGA TCA; Contactin1 (CNTN1) - Fwd: ACC TGA ACG AAC

AAC AAA ACC, Rev: ACA GGA TTT CCA AGT GCA AAA

C; TenascinR (TNR) - Fwd: CCA TCT CTC CAC TCC TCA

AG, Rev: CCA TCG AAG GAA AAT GAG AAG; SEMA5a -

Fwd: TAG CAT GGC TGT TCT CAA GC, Rev: CAG GGG

CCA ATT TCT TTA TAG; RET – Fwd: GAT CGG GAA AGT

CTG TGT GG, Rev: CTG AGG TGA CCA CCC CTA GC;

Cadherin11 (CDH11)-Fwd: ATC GAG AAG AGA GAG CCC

AG, Rev: ACG TTG GCA TGA TAG GTC TCG; Cadherin18

(CDH18) – Fwd: GTC GCA CTC CAA TTC TGA CA, Rev:

TCA CCC GTG GTA TCG TCA AT; Contactin4 (CNTN4) -

Fwd: CGA GGC TTT GGT TAT GTG GTG G, Rev: CAC

GCT CTC ATT CCT GAA CAC G; TenascinC (TNC) - fwd:

AGG GTG GCC ACG TAC TTA CC, Rev: TGA TCT CCC

AGG TTT CAA AAG C; CADPS – Fwd: TGA CTG TTG AAG

AAA AGG AAC, Rev: CGA CCA AAT GGA AAG CAA TAC;

CALM3 - Fwd: ATG GGA ATG GCT ACA TCA GC, Rev:

GAT CAT CTC ATC CAC CTC CTC; Nos1 - Fwd:

ACAGAGATTTGGACGGCAAG, Rev: TGT TGA GGA

CGA CAG GCA C; NetrinG2 – Fwd : ATG CTA CGG TCA

CTC CAA CC, Rev: CAG TGC TGA CCT CGC GTG;

RGNEF – Fwd: TGT CAA AAG CCT GGT GGT TC, Rev:

CTGCAGCAAGCAATGTCG. RS9 qRT-PCR results were used

to normalize each gene expression levels in NDF or DF conditions.

Reactions were performed with RNA extracted from two

biological repeats in technical triplicates.

Protein Preps and Western Blot analysis
Proteins were extracted from cell pellets using Ripa buffer

(Sigma-Aldrich Corp., Israel) Protein concentrations were checked

using BCA kit (Pierce Biotechnology, IL, USA). For Western

analysis, 30 mg proteins were loaded on 10% acrylamide gels or 4–

15% gradient gels (Bio Rad) in Tris glycin buffer. Proteins were

transferred to nitrocellulose membrane and blocked in 3% low fat

milk in TBST for 1 hr. Mouse momoclonal anti hIKAP (BD

Biosciences, Franklin Lakes, New Jersey,USA), or mouse anti b-

actin ((Sigma-Aldrich Corp., Israel) (both at 1:1000) were applied

for 1 hr at room temperature. Mouse polyclonal anti human

netrin G2 and anti human Sema5a antibodies (Novus biologicals;

USA) were used at 1:1000 for over night at 4uC. Secondary

antibody was Donkey anti-mouse –HRP conjugated (at 1:6000)

(Jackson ImmunoResearch laboratories, West Grove, PA, USA).

For ECL, Super signal kit (Pierce Biotechnology, IL, USA) was

used.

Supporting Information

Table S1 A list of genes with reduced or increased expression in

IKAP-DR versus control cells in non differentiation growth

conditions (NDF). Gene expression data were sorted using cutoff

of p,0.05 under FDR (false discovery rate) adjustment criteria of

p,0.0002. Exceptions are NTC and SEMA3a which are

significant but failed the FDR cut off (p = 0.001769 and 0.00044,

respectively).

(XLS)

Table S2 Genes that their expression was changed in IKAP-DR

versus control cells under NDF growth conditions which are

common to a few of the enriched biological processes. Genes

common to 4 or more biological processes are colored.

(XLS)

Table S3 A, a list of the histone genes (clustered at chromosome

6) that were reduced only in control cells under differentiation.

Also indicated is the fold difference in expression of each gene in

differentiation compared to undifferentiation growth conditions.

B, a list of calcium-ion binding genes induced only in control cells.

Also indicated at the bottom of the figure is a group of genes

clustered in chr5q31, that include 8 protocadherins and the solute

carrier gene SLC25 along with their fold difference of expression

in DF versus NDF growth conditions. C, a list of cytoskeleton-

binding proteins induced only in IKAP-DR cells, this group

includes 18 genes which are actin binders.

(XLS)

Table S4 A list of genes with reduced or increased expression in

IKAP-DR versus control cells in differentiation growth conditions

(DF). Gene expression data were sorted using cutoffs of p,0.05

under FDR (false discovery rate) adjustment criteria of p,0.0005.

(XLS)

Table S5 A, Synapse and synaptic-transmission genes enriched

in IKAP-DR cells compared to control in differentiation growth

conditions (DF). B, Neuron projection genes enriched in IKAP-

DR cells in DF. C, Nervous system development genes enriched in

IKAP-DR in DF.

(XLS)
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