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Abstract

Many computational methods have been widely used to identify transcription regulatory interactions based on gene
expression profiles. The selection of dependency measure is very important for successful regulatory network inference. In
this paper, we develop a new method–DBoMM (Difference in BIC of Mixture Models)–for estimating dependency of gene by
fitting the gene expression profiles into mixture Gaussian models. We show that DBoMM out-performs 4 other existing
methods, including Kendall’s tau correlation (TAU), Pearson Correlation (COR), Euclidean distance (EUC) and Mutual
information (MI) using Escherichia coli, Saccharomyces cerevisiae, Drosophila melanogaster, Arabidopsis thaliana data and
synthetic data. DBoMM can also identify condition-dependent regulatory interactions and is robust to noisy data. Of the 741
Escherichia coli regulatory interactions inferred by DBoMM at a 60% true positive rate, 65 are previously known interactions
and 676 are novel predictions. To validate the new prediction, the promoter sequences of target genes regulated by the
same transcription factors were analyzed and significant motifs were identified.
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Introduction

DNA microarray technology has become a vital tool for global

transcriptome analysis and complex gene regulatory network

(GRN). An ample amount of computational methods, such as co-

expression network [1–4], Boolean network [5,6], differential

equation [7,8], information theory [9,10], relevance network [11]

and Bayesian network (BN) [12–14], have been widely adopted to

infer the GRN using microarray data.

A fundamental step in gene regulatory network inference is to

identify pair-wise dependency, or more specifically, to determine

whether a gene directly controls the expression of another [15].

The selection of dependency measure is probably more important

than the selection of optimization algorithm [4,16] for successful

identification of gene interactions and therefore the whole

regulatory networks. When measuring gene dependency, the

expression profiles are treated as vectors in certain space and the

pair wise distances are computed [16]. This strategy is used by

Pearson correlation (COR), Euclidean distance (EUC), Manhattan

metric (MAN), Cosine correlation (EISEN), Spearman correlation

(SPEAR), Kendall’s t correlation (TAU) [17], etc. Alternatively,

the natural pairing of observations is ignored, and the gene

expression profiles are assumed to be sampled from different

probability distributions. The dependency between two genes is

therefore represented by the difference between two distributions.

Such strategy is adopted in Kullback-Leibler information (KLI)

[18,19] and Mutual information (MI) [20].

COR, EUC and TAU have been widely used as dependency

measure by quantifying the similarity or distance of gene

expression profiles [21–30]. However, these three methods bear

obvious limitations. For example, COR is based on the

assumption that gene expression profiles are linearly related and

it is unable to differ interactions from indirect interactions. The

partial correlation, as a modified version of COR by conditioning

on all other genes, can measure direct regulatory interactions [31],

but it is also limited to linear relationship. Moreover, both COR

and EUC are sensitive to noise and outliers [32] and require

complete gene expression profiles as input. This has hindered their

wide application because microarray data often contain missing

gene expression values.

In contrast, mutual information (MI), a well known method in

information theory [20], measures the dependency of distribu-

tions. In theory, MI can detect any dependence between

distributions [33,34], and it has been widely used to analyze gene

expression data [4,10,26,34,35]. MI is also robust to noise, outliers

and missing data. However, the calculation of MI requires the

discretization of continuous gene expression values and most

discretization methods used rather arbitrary histogram based

procedure [10,34,36].

In this paper, we describe a method of gene dependency

measurement based on the model probability difference between

joint modeling and independent modeling of the given data.

Specifically, the difference in Bayesian Information Criterion

(BIC) between the joint and the marginal distribution models of

two genes is used to measure the gene dependency. We assume

that joint and the marginal distributions follow a bivariate and

two univariate mixture Gaussian distributions respectively.

Because this method is based on distributions estimation, it is
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relatively insensitive to noise, outliers and missing data. In

addition, it does not restrict that interacting genes are linearly

related. The clustering ability of the mixture model can reflect

the condition-dependent relationships between genes [37,38].

The statistical parameters inferred from gene expression profile

can also be used to predict the dynamics of functionally related

genes. The efficacy of the proposed model was validated using

Escherichia coli (E.coli), Saccharomyces cerevisiae (Yeast), Drosophila

melanogaster (Drosophila), Arabidopsis thaliana (Arabidopsis) and

synthetic datasets.

Results

A Comparison with EUC, MI, and COR, TAU
The regulatory networks from RegulonDB [39] and YEAS-

TRACT [40–42] are used as reference networks. The

interactions between all the transcription factors (TFs) and all

the target genes in the reference networks are defined as the

background interactions (excluding those real interactions). To

determine whether the 5 methods (DBoMM, MI, TAU, COR

and EUC) can discriminate the real and the background

interactions, the two-sample t-test is used to test whether the

scores from real interactions have a mean value bigger

(DBoMM, MI and COR) or smaller (EUC and TAU) than

that of background interactions.

Table 1 provides the mean scores, standard deviations and the

p-values of the t-test. For E.coli and synthetic datasets, DBoMM,

MI and TAU can distinguish the real interactions from the

background but COR cannot (Table 1). EUC works only on

synthetic data. For Yeast dataset, though the p-values from COR

and TAU are smaller than 0.05, the means of scores from real and

background interactions are very close. Overall, none of the

methods can distinguish the real interactions from the background

based on Yeast dataset. Previous research [15] also suggested that

due to more complex regulatory networks in eukaryotes, other

information should be integrated for more accurate prediction of

regulatory interactions.

We then quantitatively compared the performance of the 5

methods using Precision-Recall curve (PR-curve) and the results

are shown in Figure 1. The performance of DBoMM is

comparable to that of MI when E.coli data was used, and both

methods are much more effective compared to EUC, COR and

TAU. DBoMM out-performs the other 4 methods when Yeast and

Arabidopsis data are used. DBoMM and COR perform similarly

using Drosophila dataset, and both are better than MI, EUC and

TAU. DBoMM performs the best when synthetic dataset is used

(Figure S1). In general, DBoMM gives the best performance

among these 5 methods.

Significant Motif is Identified in the Promoters of
Predicted Genes

DBoMM is adopted to infer an E.coli regulatory network

(Figure S2) consisting of 468 genes and 741 regulatory

interactions at 60% precision (Figure 1a). Among the 741

interactions, 65 can be validated by RegulonDB. Using MI, a

regulatory network with 407 genes and 618 regulatory

interactions was inferred. Of the 618 regulatory interactions,

66 can be validated by RegulonDB. Among all the predicted

interactions, 424 were inferred by both DBoMM and MI,

accounting 57% and 68% of the total interactions respectively.

We only extracted the interactions between the 328 known or

predicted transcription factors (TFs) and the 4,345 genes to

enable clear biological interpretation, assignment of direction

(from transcription factors to non–transcription factor genes),

and validation of the predictions.

Sequence analysis was conducted to detect the possible TF

binding motifs in the promoter regions of the predicted target

genes. TFs predicted to regulate 5 or more operons with at least

60% confidence were selected (28 in total). Of these 28 TFs, the

binding motifs are known for FliA, LexA, Fnr, DnaA, Nac and PurR

(http://prodoric.tu-bs.de/) [43]. MEME multiple alignment

program [44] was used to analyze the upstream sequence (21 to

2150 bp) of the predicted target genes and 4 known motifs were

detected (FliA, LexA, DnaA and Nac binding motif).

FliA is a minor sigma factor activating the transcription

initiation of a number of genes involved in motility. Notably,

most of the target genes are required for flagella synthesis. From

DBoMM prediction, FliA regulates 52 genes that can be organized

into 19 operons. And 40 out of the 52 genes can be validated by

RegulonDB. Interestingly, all the operon promoters of the 19

genes contain a significant motif almost identical to the known

canonical FliA motif (Figure 2a).

LexA represses the transcription of several genes involved in

cellular response to DNA damage or inhibition of DNA replication

[45,46] as well as its own synthesis [47]. From the predicted

regulatory network, LexA regulates 10 genes that can be organized

into 9 operons. The identical LexA regulatory motif can be found

in 8 out of the 9 operon promoters (Figure 2b), and 4 of the them

can be validated by RegulonDB. The motif information for other

2 TFs can be found in Figure S3.

DBoMM is Robust Against Noise
A good estimator should be robust against noise. To test the

robustness of DBoMM, we used SynTReN [48], an artificial

synthetic dataset generator, to generate simulated gene expres-

sion profiles with various noise levels. We then plotted the PR-

Table 1. The distributions of different similarity scores.

E.coli Yeast Synthetic

Real Background P.value Real Background P.value Real Background P.value

mean sd mean sd mean sd mean sd mean sd mean sd

DBoMM 138.80 148.88 91.95 89.74 2.12e-79 23.74 9.26 23.50 8.47 1 363.26 427.58 16.52 207.88 3.73e-261

MI 0.26 0.14 0.20 0.09 4.69e-114 0.39 0.10 0.40 0.09 1 0.42 0.39 0.11 0.19 2.16e-265

COR 0.69 0.22 0.76 0.17 1 0.17 0.13 0.17 0.12 0.0002 0.44 0.28 0.81 0.25 1

EUC 42.40 24.12 38.18 24.38 1 4.81 1.52 4.56 1.37 1 6.45 3.32 8.02 2.67 1.87e-105

TAU 0.78 0.16 0.82 0.13 1.86e-44 0.88 0.09 0.89 0.09 0.01 0.57 0.26 0.87 0.18 0

doi:10.1371/journal.pone.0040918.t001
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curves using simulated datasets (Figure 3). Similar performance

was achieved when 20%,40% and 60% of noise level was

introduced. The precision decreased greatly at 80% of noise

level. We also tested the same dataset with MI, COR, EUC

and TAU, and the result showed that only MI perform similar

to DBoMM, whereas the other 3 methods are not robust

(Figure S4). This is because DBoMM and MI are based on the

probability distribution, which is more robust to noise.

DBoMM is Able to Identify Condition-dependent
Regulatory Interaction

The regulatory interactions between TFs and their target

genes vary under different experimental conditions [49].

DBoMM not only estimates the dependency of two genes, it

can also identify the experimental conditions under which the

predicted dependency occurs. In the reference regulatory

network, it is known that lexA regulates the transcription of

recA in SOS response [45,46]. From Figure 4, DBoMM classifies

the experiments into 6 clusters based on gene expression profile.

For the first cluster, the expression level of lexA and recA are

Figure 1. A comparison of different methods using PR-curve. (a). E.coli dataset and the reference network from RegulonDB; (b). Yeast datset
and the reference network from YEASTRACT; (c). Drosophila dataset and the reference network from DroID; (d). Arabidopsis datset and the reference
network from AGRIS. X axis: recall; Y axis: precision. In general, DBoMM out-performs other 4 methods using various datasets.
doi:10.1371/journal.pone.0040918.g001
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both low (8.7 and 8.5 respectively). When examining the

samples in this cluster, we found 2 type of experiments: one is

recA knock-out, and the other is addition of glucose and MgSO4

in the medium at the late log phase. We reasoned that when

glucose is added into the media at the late log phase, the DNA

replication and bacteria growth resume and the expression level

of lexA and recA are low. We also found that cluster 4 and 5

(high expression of lexA and recA) mostly contain gene over-

expression experiments, indicating that over-expression of these

genes may activate lexA, which then up-regulate the recA

expression. Compared to cluster 4 and 5, recA gene in cluster

6 is highly expressed whereas the expression of lexA are similar.

Further examination revealed that cluster 6 includes two

experiments: recA over-expression and norfloxacin treatment.

This observation suggests that norfloxacin may activate the

expression of recA but not lexA. Indeed, through literature

search, we found that norfloxacin can inhibits DNA synthesis

and cause an accumulation of single-stranded DNA fragments

capable of activating the RecA protein [50–52].

These results demonstrate that DBoMM can provide important

hints about the possible links among experimental conditions by

clustering the similar experiments together. This feature can be

very useful because it can guide experimental design for biologist

to test the function of unknown genes.

Discussion

In this paper, we describe a model-based method for gene

dependency measurement based on gene expression profiles. As

proposed by Segal [49], gene interactions may show similar or

same pattern under different conditions. Based on this notion, we

fit the gene expression profiles into a mixture Gaussian model. The

experimental conditions are assigned into different components

based on the similarity of regulatory interaction patterns. The

difference between the joint and marginal distributions of gene

expression profiles can then be used to describe the distance of two

genes. We used the difference in BIC between the joint and the

marginal distributions to estimate the overall dependency of genes.

If the model is a simple component Gaussian distribution, which is

equivalent to say the model is a regression model,

xDyN(azby, s2), then our model is indeed purely based on the

correlation. Our method extended the approaches using correla-

tion because the advantage of the mixture model over correlation

is: one simple correlation may not be able to describe the complex

transcription process, and yet DBoMM can catch the different

expression patterns under various experimental conditions. And

the gene expression patterns reflect the conditional dependent

regulatory interactions. Another advantage of the mixture model

lies in its flexibility in choosing the component distributions. For

example, we can use an additional Poisson distribution to handle

the outliers in the dataset.

Figure 2. Motifs detected for TF FliA and LexA. (a). The FliA regulatory motif detected in the promoters of the 19 inferred target
operons(upper) compared to the motif identified in PRODORIC. (b). The LexA regulatory motif detected in the promoters of 8 inferred target
operons(upper) compared to the motif identified in PRODORIC(lower).
doi:10.1371/journal.pone.0040918.g002
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We have successfully validated the efficiency of DBoMM using

E.coli, Yeast, Drosophila, Arabidopsis and synthetic datasets, and the

results demonstrated that in general DBoMM performs the best

compared to MI, COR, TAU and EUC. Specifically, DBoMM

out-performed the other 4 methods using Yeast, Arabidopsis and

synthetic dataset, and yet its performance is comparable to MI and

COR respectively using the E.coli and Drosophila datasets. DBoMM

does not require the linear relationships between genes and can

catch both the local and the global correlations. Compared to the

method calculating MI from expression profiles, DBoMM uses

mixture model to estimate the probability, and can infer the

experimental conditions under which the predicted regulatory

interaction occurs.

In the mclust software, the mixture Gaussian model allows 10

covariance structures for multivariate cases and 2 in univariate

cases [53,54]. These covariance structures define the volume,

shape and orientation of the distributions. Because of the

complexity of the transcription process and experimental condi-

tions, we chose the more general ‘‘VVV’’ model, (which allows

volume, shape and orientation of distributions to be variable), to fit

the gene expression profiles. For future work, we will further

explore how the shape of the distribution may affect the model

performance. In fact, DBoMM and MI adopt the similar strategy

in the sense that they calculate the difference of variables based on

the distribution difference. MI measures the mutual dependence of

two random variables by using the difference between joint and

marginal entropies. While DBoMM calculates the difference

between joint and marginal mixture model distributions and takes

into consideration of the model dimension. Detailed investigation

of the theoretical as well as empirical relationships between

DBoMM and MI can be an interesting future research topic.

We would also like to emphasize that DBoMM is only

introduced as a new dependency measure instead of a complete

network inference method. It means that DBoMM can be

combined with many machine learning or existing network

reconstructing methods to infer networks. For example, the

dependency matrix composed of pairwise DBoMM values can

also be used for gene clustering by employing a hierarchical

clustering algorithm.

Materials and Methods

Data Sets
In this work, 4 compendiums of gene expression data including

E.coli, Yeast, Drosophila, and Arabidopsis are used. Because the real

regulatory interactions are far from completion, we use the

synthetic dataset for method evaluation.

The E.coli gene expression data consist of 445 Affymetrix

Antisense2 measuring the expression profiles (http://m3d.bu.edu/)

of 4345 genes [55]. The microarrays were collected under different

experimental conditions, such as PH changes, growth phases,

antibiotics, heat shock, different media, varying oxygen concen-

Figure 3. DBoMM is robust to noise. Different levels of noise are introduced to the datasets. The numbers in the legend correspond to the noise
levels, e.g. ‘‘noisy2’’ means 20% of noise introduced. DBoMM remains stable with up to 60% of noise. X axis: recall; y axis: precision.
doi:10.1371/journal.pone.0040918.g003
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trations and numerous genetic perturbations. RMA was used to

normalize the data [56].

The regulation data is extracted from RegulonDB version 7

[39]. Of all the interactions, we removed these genes that do not

match the probe sets and self-regulation interactions, leaving a

reference network with 1531 non-redundant genes and 3774

experimentally confirmed regulatory interactions.

For Yeast, data package ‘‘yeastCC’’ [57] that includes a

compendium of 77 cell cycle microarray expression profiles for

6178 genes [58] was used. We use ‘‘impute’’ package [59] to

impute the missing expression data.

The Yeast gene interactions are extracted from YEASTRACT

database [40–42], a curated repository with more than 48333

regulatory associations between transcription factors (TF) and

target genes, based on more than 1200 bibliographic references.

We removed the genes that do not match the probe sets and self-

regulation interactions, leaving a reference network with 5898

non-redundant genes and 46000 regulatory interactions.

We also extract a compendium of 102 microarray expression

profiles for early Drosophila development using 18952 probes

[60,61].

The Drosophila gene interactions are derived from DroID

database [62,63]. We removed the genes that do not match the

probe sets and self-regulation interactions, leaving a reference

network of 11509 non-redundant genes and 136522 regulatory

interactions.

For Arabidopsis, 202 Affymetrix microarray measuring 22810

probes under 8 abiotic stress conditions, i.e. cold, osmotic, salt,

drought, genotoxic, UV-B, wounding and heat [64,65] treated are

used.

The Arabidopsis gene interaction data are extracted from AGRIS

database [66,67]. We removed the genes that do not match the

probe sets and self-regulation interactions, leaving a reference

network of 6801 non-redundant genes and 9199 regulatory

interactions.

We use SynTReN [48] to generate a simulated data set with

various numbers of conditions and form a synthetic transcription

regulatory network containing 1000 genes (Figure S4).

SynTReN is used to generate 5 simulated data sets with 100

experimental conditions and 500 genes for robustness estimation.

Different level (0%, 20%,40%,60% and 80%) of biological and

experimental noise is introduced to the simulated data.

Dependency Measures
The Euclidean distance, Pearson correlation, Mutual informa-

tion (MI),and Kendall’s tau correlation are commonly used

Figure 4. DBoMM can identify the conditional dependent regulatory interactions between two genes. The experimental conditions are
classified into 6 different clusters based on the expression profiles of two genes (lexA and recA). Cn represents the index of the cluster.
doi:10.1371/journal.pone.0040918.g004
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measures in gene expression analysis. These methods quantify a

pairwise distance or similarity between expression profiles over n

conditions that are represented by the two vectors

x~(x1, . . . , xn), and y~(y1, . . . , yn).
Euclidean Distance, Pearson Correlation and Kendall’s

tau correlation. The Euclidean distance between two expres-

sion profiles is given by

E(x, y)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i~1

(xi{yi)
2

s

The Pearson correlation coefficient between two expression

patterns is defined as

R(x, y)~

Pn
i~1 (xi{�xx)(yi{�yy)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i~1 (xi{�xx)
Pn

i~1 (yi{�yy)
p

where �xx, �yy denote the average patterns level.

The Kendall’s tau correlation between two expression patterns

is:

Dtau(x, y)~

j(i, j) : ivj, (x(i)vx(j) ^ y(i)wy(j)) _ (x(i)wx(j) ^ y(i)vy(j))j
n(n{1)=2

We used commands euc(), cor:dis() and tau:dist() in package

bioDist [68] under R platform [69,70] to calculate the Euclidean

distance, Pearson correlation coefficient and Kendall’s tau

correlation.

Mutual information. Given two random variables X , Y

with respective ranges xi [ Ax, yj [ Aj and probability mass

functions P(X~xi):pi, P(Y~yj):pj , the Mutual information

between two expression patterns, represented by random variables

X and Y , is given by

I(X ; Y )~
X

i

X
j

pij log
pij

pipj

The gene expression profiles are divided into different bins and

then the mutual information is computed. The data is treated as if

they are discrete. We used mutualInfo() in package bioDist [68]

and the default number of bins (10) to calculate the mutual

information of two genes.

Bayesian Information Criterion (BIC)
In statistics, the Bayesian information criterion (BIC) [71] is a

criterion for model selection among a class of parametric models

with different numbers of parameters. The formula for the BIC is

described as:

BIC~{2 � ln(L̂L)zk � ln(n)

where n~the number of data points, the number of observations,

or equivalently, the sample size;

k~the number of free parameters to be estimated;

L̂L~the maximized value of the likelihood function for the

estimated model.

Difference in BIC of Mixture Model (DBoMM)
The likelihood ratio between the joint distribution model and

the independent marginal distribution models is often used to test

the independency between two genes. Here, we use mixture

Gaussian distributions to model gene expression profiles, because

the mixture distribution can capture conditional dependent

interactions between genes [37,38].

To fit the expression profile of genes into the mixture model

with the best number of components, we use Expectation-

Maximization algorithms (EM) [72] to optimize the likelihood.

We then use Bayesian Information Criterion (BIC) [71] to quantify

the fitness of the model to the data and choose the number of

mixture components. More details of the inference process can be

found in Figure S5. Then the log-likelihood ratio

ln½L(x, y)�{ln½L(x)�{ln½L(y)�

where L is the likelihood function given the model, can be

calculated to test the independence of the two gene profiles x and

y.

In model selection literature [71], it is well known that the

dimension of the model shall be penalized when searching for the

best model. Therefore it is more preferable to compare the model

probability instead of the likelihood in order to measure the gene

dependency. This motivated the modification of the log-likelihood

ratio to the difference of BIC between joint and marginal

distribution models, which is defined as:

DBoMM(X ,Y )~BIC(Mxy){BIC(Mx){BIC(My)

where Mxy is the joint distribution model with minimal BIC of

genes x and y, Mx and My are marginal distribution models with

minimal BIC of gene x and gene y respectively. It turns out that

DBoMM performs better than that of likelihood in most cases

(Figure S6) when used for detecting the dependency of two genes’

expression profiles.

R [69,70] package mclust [53,54] was used to fit the gene

expression profiles into a mixture Gaussian distribution. And

mclust choose the number of components in a mixture model by

the value that optimizes the BIC. In fact, mclust allows 10 different

covariance structures for multivariate and 2 for univariate [54].

Because the transcription process is very complex and we know

little prior knowledge about the joint expression profiles of genes

under different conditions, we used the ‘‘VVV’’ model to describe

the joint distribution of genes, which means the volume, shape and

orientation of the covariance are variable.

DBoMM can Distinguish Real Gene Interactions from the
Background

In order to examine the ability of DBoMM in distinguishing

real gene interactions from the background, we first generate a

synthetic gene expression dataset including 2 interacting gene x1

and y1 (Figure 5a,b) and 2 non-interacting gene x2 and y2

(Figure 5c,d). As shown in Figure1, the DBoMM model catches

the local characters (different distributions) of the expression

profiles and elucidates the conditional dependence of genes x1

and y1. Although the expression profiles of genes x2 and y2

also fit into 3 different distributions, the probability values of the

expression profiles in joint distribution are low (because of the

overlapping of the distributions and more scattered points in

one distribution), indicating the weak or non dependence (global

or local) between the two genes. The contours of the joint

density implied by DBoMM are clearly different in the

Model-Based Method of Gene Dependency Measurement
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interaction case, while quite similar in the non-interaction case.

This clearly demonstrated the discriminative ability of DBoMM.

Measure the Performance of Different Methods
To compare the performance of different dependency

measures, we computed the precision and recall of inferred

networks by comparing the inferred networks to the reference

network. Specifically, we produced one inferred networks for

one giving pruning thresholds. Only interactions with scores

above the pruning threshold were reported as links in the

inferred network. Precision is the fraction of predicted

interactions that are correct, i.e., TP/(TP + FP), and recall is

the fraction of all known interactions that are discovered by the

algorithm, i.e., TP/(TP + FN), where TP is the number of true

positives, FP is the number of false positives, and FN is the

number of false negatives. Precision and recall are computed

over a range of pruning thresholds to produce the PR-curve.

We constrained the resulting network maps to include only the

genes available in the control set.

In practice, one threshold shall be selected for DBoMM in order

to report one inferred network. By referring to the connection

between BIC and posterior model probabilities, zero is one natural

Figure 5. DBoMM can catch the conditional dependent interactions and distinguish the real gene interactions from the
background. The expression profiles of two interacting genes (a) and non-interacting genes (c) are fitted into a bivariate mixture Gaussian
distribution (joint distribution with different colors). The expression profiles of two interacting genes (b) and non-interacting genes (d) are separately
fitted into two univariate mixture Gaussian distribution (marginal distribution). The blue and green lines represent the distribution of the two genes
respectively. The contours correspond to the joint densities implied by DBoMM.
doi:10.1371/journal.pone.0040918.g005
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choice as the threshold of DBoMM. However, if there is training

data available, the threshold of DBoMM can be set easily based on

required precision or recall.

Supporting Information

Figure S1 A comparison of different methods using PR-
curve based on the synthetic dataset. X axis: recall; Y axis:

precision. DBoMM out-performs other 4 methods using synthetic

dataset.

(PNG)

Figure S2 The recovered regulation network with 60%
precision using E.coli dataset. Pink and blue circles

correspond to the transcription factors and target genes respec-

tively. The size of the circle corresponds to the out-degree of gene

in this network. Green arrows represent the interactions including

in RegulonDB.

(ZIP)

Figure S3 Motifs detected for transcription factor dnaA
and nac. (a).The dnaA regulatory motif detected in the promoters

of the 6 inferred target operons(upper) compared to the motif

identified in PRODORIC(lower). (b). The nac regulatory motif

detected in the promoters of 11 inferred target operons(upper)

compared to the motif identified in PRODORIC(lower).

(PDF)

Figure S4 Performances of 4 methods under various
noise datasets. (a). Mutual information(MI); (b). Pearson

correlation(COR); (c). Euclidean distance(EUC); (d). Kendall’s t
correlation(TAU).

(PNG)

Figure S5 The mixture model and algorithm of EM. The

multivariate Gaussian mixture model and the parameters

estimation by using Expected Maximization algorithm.

(PDF)

Figure S6 Performances of 6 methods(including the
difference of likelihood) under various datasets. (a). E.coli

dataset; (b). Yeast dataset; (c). Arabidopsis dataset; (d). Drosophila

dataset; In most cases, the difference of BIC between joint and

marginal distribution models performs better than that of

likelihood.

(PNG)
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