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Abstract

Networks are often used to understand a whole system by modeling the interactions among its pieces. Examples include
biomolecules in a cell interacting to provide some primary function, or species in an environment forming a stable
community. However, these interactions are often unknown; instead, the pieces’ dynamic states are known, and network
structure must be inferred. Because observed function may be explained by many different networks (e.g., &1030 for the
yeast cell cycle process [1]), considering dynamics beyond this primary function means picking a single network or suitable
sample: measuring over all networks exhibiting the primary function is computationally infeasible. We circumvent that
obstacle by calculating the network class ensemble. We represent the ensemble by a stochastic matrix T, which is a
transition-by-transition superposition of the system dynamics for each member of the class. We present concrete results for
T derived from Boolean time series dynamics on networks obeying the Strong Inhibition rule, by applying T to several
traditional questions about network dynamics. We show that the distribution of the number of point attractors can be
accurately estimated with T. We show how to generate Derrida plots based on T. We show that T-based Shannon entropy
outperforms other methods at selecting experiments to further narrow the network structure. We also outline an
experimental test of predictions based on T. We motivate all of these results in terms of a popular molecular biology
Boolean network model for the yeast cell cycle, but the methods and analyses we introduce are general. We conclude with
open questions for T, for example, application to other models, computational considerations when scaling up to larger
systems, and other potential analyses.
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Introduction

Researchers across several disciplines have increasingly focused

on network-based descriptions of complex behavior, with notable

success in systems biology phenomena. That focus is essential to

connecting knowledge across various scales – from cell chemistry

to individual organisms, individuals to populations, and popula-

tions to ecosystems – and is driven by increasing availability of

high-fidelity data, computational processing power to digest and

test hypotheses against those data, and high-profile applications

from designer pharmaceuticals to environmental policy [2–6]. We

motivate this work and our discussion generally at the cell

chemistry scale – and specifically with the yeast cell cycle process –

but the methods and analyses apply at any scale, not just the

microscopic.

In molecular biology, Kauffman provided one of the earliest

applications of network-based thinking several decades ago [7],

addressing the emergence of order in biological systems. Framing

observations of organisms and their mechanics in evolutionary

terms is a persistent paradigm in systems biology and an area of

enduring interest (see the thousands of citations of Kauffman’s

omnibus work The Origins of Order). The last decade in particular

has seen an explosion in network-oriented research in this area.

Kauffman’s initial explanation was structural - add enough

components and interactions, and results approximating simple

biological reactions reliably emerge. Researchers framed much of

the subsequent work in this light, delving into particular recurring

structures (‘‘motifs’’ addressed in e.g. [8] to more recent

publications like [9]), the details of how the components are

added [10], the dependence of other life-like features on network

properties (e.g., error and attack tolerance [11]), and so on. This

body of work explains function – what the system is observed to do –

from the network and its properties; we call this the network

perspective.

Work in the network perspective does not usually focus on the

exact details of the dynamics associated with a particular network.

Consider the work on Boolean activation-inhibition network

models, of the type initially introduced for the fruit fly (D.

melangastor) [12]. Most work on the popular research model the cell

cycle of the yeast (S. cerevisiae – proposed in [13], and later shown

to be suitably modeled by the Strong Inhibition rule [14]) has

focused on stability and analogous measures (robustness, reliabil-

ity, etc.). This work, and work on other model systems, typically

starts with showing a network replicates some primary function.

Other dynamic properties are then considered a consequence of

that network.

What if, instead of assuming the network, one assumes that

primary function? In molecular biology, this roughly means
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starting from a gene expression time series (microarray time course

data) and asking the question: what can we say about the possible

interactions that would exhibit these dynamics? That is the

question we have been asking in our recent work, and we use it to

frame a complementary functional perspective. As we have shown, it is

possible to reproduce primary structural results [15]. However,

when only specifying the primary function, many of the network

interactions are partially constrained or unconstrained. The class

of networks that support a particular primary function (also known

as the neutral network [16]) can be quite large, so large as to be

computational intractable when considering measures that require

a calculation for each network in the class. To address this

problem, we developed the measure T which captures, in a

computationally feasible way via a single stochastic matrix, the

superposition of the dynamics of each network in the class. Our

results cover applying T to several questions, some of which are

analogous to questions asked in the network perspective and some

of which are new.

First, we use T to estimate the distribution of point attractors,

which has been a traditional focus of network perturbation studies.

Point attractors can be used as a surrogate for overall function in

an evolutionary context [17], and return to a particular attractor

after some state perturbation is a common measure of network

robustness (e.g. [18]), consistent with the loose definition of network

robustness to mean minimal change in some feature under

perturbations [19,20]. The distribution and biological relevance of

attractors under different models remains an area of active interest

[21–23].

Second, we show how to approximate the Derrida plot, a

popular measure of ordered versus chaotic behavior. We also

apply this to the putative yeast cycle network to compare it with

the T derived from the primary yeast cell cycle process. Several

recent papers by Kauffman et al. (starting with [24] and [25]) have

applied Derrida plots to the question of canalyzing update rules

and other network features. We show that T-based plots can

capture a function independent of an underlying network, though

we note open questions about system-to-system comparisons using

this measure.

Then, we quantify which experiments will likely best identify a

unique network structure that supports some observed phenom-

ena. In molecular biology, even with the downward trends in

experimental cost and data analysis, the demand for data over a

plethora of systems remains voracious enough that optimizing the

choice of tests seems imminently practical, and at other scales – for

example, ecological – extensive testing remains implausible. Other

groups have used a similar Shannon entropy based approach [26],

and continue to provide tools on that basis [27]. That work

assumes some network constraints (minimal interactions) and

targets knockout experiments; we do not assume that network

constraint, and focus on initial condition experiments (though

knockout experiments can also be selected).

Finally, we propose how T might be used for aggregate

populations by making phenotypic diversity predictions, and

calculating relative risk and odds ratios for particular dynamic

transitions. We are not familiar with experimental work compar-

ing the variability of natural systems and model networks for

particular functions, biological or otherwise, but there is ongoing

discussion about the balance of phenotypic and genotypic

variation on evolutionary time scales (e.g. [28]). We outline a

way to apply T to these questions.

We close by reviewing open questions for T, notably

generalization, theoretical constraints and applications, and

computational considerations.

Analysis and Results

T is a stochastic matrix, created by superpositioning the

deterministic dynamics of the networks supporting a set of input

transitions. We interpret T in three basic ways: (1) as a traditional

Markov transition matrix, where the represented physical system

has stochastic interactions, (2) as an uncertainty matrix, for the

case where the system is deterministic but not (yet) uniquely

determined, and (3) as a statistical aggregation, where the

‘‘system’’ is a population of deterministic individual systems with

some shared and some varying behavior.

For (1), we are not aware of a physical system that switches

between networks stochastically, but that idea shares some

parallels to models of protein folding, specifically stochasticity in

intermediate conformations leading to well-defined outcomes [29].

Nonetheless, we show its effectiveness as a model by demonstrating

that T reliably approximates the distribution of point attractors

(covered in Attractors). In a similar vein, we show how to apply

traditional Derrida plots to T and propose that this may provide a

way to characterize functions (covered in Derrida Plots), though

our investigation into this measure is just beginning.

For (2), we calculated the Shannon entropy from T for different

initial condition experiments. For those simulated experiments, we

found the T-based method superior to the alternatives (covered in

Experiment Selection). We also considered a scalarization of T
– the average and variability of Shannon entropies over each row

– as a measure for comparing the uncertainty between different

input dynamics; we did not find a compelling correlation between

those measures and the number of experiments needed to specify

the underlying network uniquely.

For (3), we outline how T could make predictions about

population-level response to experimentally induced environmen-

tal changes (covered in Diversity Prediction). We also show

how a T that accurately represents that population diversity could

be used for relative risk and odds ratio calculations (covered in

Relative Risk & Odds Ratio).

Review of Boolean Networks & Formal Definition of T
Boolean Network Model and the Strong Inhibition

Rule. The Boolean Network Model is

N N a system of parts fi,j,k, . . .g,
N N at time t, part i has Boolean state active (it~1) or inactive

(it~0), and

N N an update rule gives itz1 from system state at time t and

interactions from other parts to i: eji:

For our case, we use two types of interactions: activating (gji) or

inhibiting (rji) from part j to i. We also treated these interactions as

Boolean variables: e.g., gji~1 means j activates i, rij~0 means i

does not inhibit j.

We use a single rule to update all parts, typically referred to as

Strong Inhibition:

itz1~ P
fj...g

rji
:jt
X
fj...g

gji
:jt~P rjjt

X
gjjt ð1Þ

expressed in Boolean algebraic operations: negation, x, and

extensions of AND (‘:’ to ‘P’) and OR (‘z’ to ‘
X

’) to set

functions on a whole system state fj . . .g. We show the rule with

typical notation simplifications in the far righthand side.

The Strong qualifier emphasizes the effect of any active inhibiting

interaction:

Network Class Superposition Analyses

PLOS ONE | www.plosone.org 2 April 2013 | Volume 8 | Issue 4 | e59046



Arjjt~1?P rjjt~0?itz1~0

i.e., any active inhibitor results in an inactive state, regardless of

other signals. This formulation differs from previous published

works, but that difference is not relevant to results; we explain why

and our reasons for using this alternative definition in the

Supplemental Analysis: Strong Inhibition.

A final note on the update rule and interactions: many boolean

network models do not use a system-wide update rule paired with

interactions, instead encoding individual rules for each part

without reference to interactions. Of course, an overall rule plus

varying interactions encodes ‘‘different’’ rules for each part; in

some sense, the system-wide rule is a reductionist explanation of

the individual rules. A single system-wide rule may prove too

optimistic a reduction for many interesting systems; fortunately, T
accommodates rules other than Strong Inhibition, as well as mixes

of rules.

Boolean Dynamics. The Strong Inhibition rule is determin-

istic for fi . . . jgt?fi . . . jgtz1. We call these single time-step state

changes transitions, and the set of all transitions a system exhibits its

dynamics. These transitions are uniquely identified by their before-

and-after sets of active states, e.g. the system state fi,jg active goes

to the state fj,kg active. Hereafter, we abbreviate these sets with

labels m,n,o, with transitions then written as m?n or just mn.

As typical inputs, we have partial dynamics - not single

transitions or complete behavior, but some subset of the total

behavior. In particular, we analyzed time series terminating in an

attracted state, i.e.:

fmn,no,op,pq,qqg:mnopq

We denote collections like mnopq as a partial dynamic D. These

time-series type dynamics cover many practical functions of

interest: a starting condition triggering a cascade of known

transformations ultimately returning to a stable state. We could

also analyze a collection of the steady states, another highly

practical application, or even a random assortment of transitions,

but we do not have suitable source data for those cases.

For a Boolean system with N parts, there are 2N total transitions

(one outgoing for each system state), and we are analyzing D’s with

N transitions. This is
N

2N
of the dynamics, or for the various

system sizes we analyzed: about a half percent for the prototypical

yeast system (N~11), &16% for the smallest systems (N~5), and

less than a tenth of a percent for the largest systems (N~15).

The Measure T. We define the inverse of a dynamic, D{1,

to be the set of all networks that exhibit D given the update rule(s).

For the Strong Inhibition update rule, we used the algorithm in [1]

to calculate the inverse (with simplifications from eq. (1)).

However, the definitions below generalize to inversion results for

other update rules, state and interaction types, etc.

T is defined as the application of the set counting function

n( . . . ) to D{1:

Tmn~
n((D|mn){1)

n(D{1)
ð2Þ

or, Tmn is the ratio of the network class size for the observed dynamics with an

additional constraining transition to the class size with no perturbation. Put

another way, Tmn is the probability that, given a network chosen at

random from the class D{1, that network will also exhibit the

transition mn. This equation is conceptually simple enough, but

eq. (2) poses computational challenges as written; we discuss these

in the Supplemental Analysis: Computing T.

For our results, we use an exact set counting function n despite

the computational challenges. However, we imagine that T could

be computed with sufficient accuracy, for certain applications, via

an approximate n function and thus open larger systems up to

analysis via this technique.

Finally, we must note: while Tmn is the probability a particular

network exhibits mn, TmnTop is not the probability that network

exhibits mn and op, because rows in T are not independent.

Source Data: As mentioned in Boolean Dynamics, we are

working from a source data set of dynamic time series (terminating

in an attracted state) for all of our results. These data cover

network sizes 5, 7, 9, 11, and 15; for size 11 and smaller, we have

500k partial dynamics of each network size, and for size 15 we

have 100 k. For each size category, the time series have the same

number of transitions as the network size – i.e., they have time

steps t0 . . . tN . This data set comprises randomly generated

dynamics targeting approximately 30% active states over the

collected steps, filtered by those that have a solvable network

under Strong Inhibition.

Attractors
In Boolean dynamics, a point attractor is a system state which is

static. T’s rows correspond to states at time t and its columns to

states at tz1, the diagonal entries Tmm correspond to point

attractor dynamics. Treating these Tmm as Bernoulli trial

probabilities (more on how to do so in Supplemental Analysis:
Attractors), we can (1) calculate the distribution of point attractor

counts (i.e., the distribution of successful trials) and compare it to

(2) the same distribution based on sampling the networks that

support the dynamic generating T (more on sampling in

Supplemental Analysis: Sampling).

Results

For each of the dynamics in our Source Data, we used D to

compute T and provide a sample 10 k of the supporting networks.

Individual network classes each yield different sample distributions

of point attractors, but the resulting predictive performance of T
for those distributions is essentially identical. Figure 1 shows the

computed versus sampled outcomes for the size 11 systems (the

yeast cell cycle network system size), and is visually indistinguish-

able from figures generated for the other sizes. The resulting

correlation coefficients across system sizes differ by less than 1%
(r[(0:992,0:997)), as do the resulting linear correlation parameters.

There are some caveats – as should be obvious from the figure

(and to be expected, per Supplemental Analysis: Calculating
T discussion), the observed frequency departs from the calculated

probability and the spread becomes relatively large for low

probability events, even prior to entering the sampling size related

noise region. That defect does not appear to be particularly

relevant in practical scenarios. We found that almost all systems (1)

have a few ‘‘high’’ (w1%) likelihood attractor counts followed by a

variable tail, (2) this ‘‘high’’ region is most dense over all systems

(the rug plots integrated into Figure 1 show this), and (3) the

correlation in this region is higher and with linear slope m&1 – i.e.

perfect prediction. When we combined the distribution size

categories for pkv1% into pk§X prediction, the departure from

near-perfect prediction essentially vanishes. This might be a useful

rule-of-thumb when applying T, but we do not have an analytical

Network Class Superposition Analyses
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argument for it, so extending that conclusion beyond the sizes we

considered requires additional consideration. Finally, for the

smallest systems (N~5), some of the systems had particularly

entangled attractors – cases where pairs of attractors always

occurred together or precluded each other; these cases could be

practically addressed by computing the conditional probabilities

for the excess attractors, given the low number of candidates for

this size system. We may address this particular case as part of our

more general take on higher-perturbation T’s.

For stochastic systems, these distributions of attractor sizes

would be analytically exact. Thus, the T-based distribution could

be compared to experimental data from such systems to identify

whether the analytic model is sufficiently constrained, includes the

correct components, etc. However, we are not currently familiar

with specific phenomena where such a comparison would be

useful.

We conclude overall that T is suitable for estimating the point

attractor count distribution for the network classes in our Source
Data governed by Strong Inhibition. We suspect that more

general network class criteria would also be suitably represented,

especially when the application can tolerate lower resolution for

distribution values at higher attractor counts. For detailed

statistical applications, some additional work - e.g. confidence

intervals on the distribution - would be required.

Derrida Plots of T
T can be used to measure functional stability, by making a

graph akin to a Derrida Plot (recently applied in several Kauffman

et al. publications on canalyzing interaction rules, and originally

outlined in [30]). We demonstrate this by superimposing Derrida

plots for the putative yeast cell cycle network and for T from the

yeast cell cycle process. A Derrida Plot graphs Hamming distance

between a sample of initial system states m1,m2 versus that of their

subsequent states n1,n2, or (x,y)~(H(m1,m2),H(n1,n2)). Also of

interest is the Derrida coefficient, Dc, which is the slope of the

plotted curve at the origin, and how it compares to x~y.

Computation using T. Since a Derrida Plot conventionally

measures deterministic Hamming distance, we need to develop a

stochastic alternative. We propose that the classic expected value

calculation of Hamming distance is a suitable stochastic substitute:

(x,y)~(H(m1,m2),
X
n1

pm1n1

X
n2

pm2n2
H(n1,n2))

We define the matrix Hij~H(i,j), and after some manipulation

based on matrix algebra obtain the much more calculable

(x,y)~(Hm1m2
,(T(TH)T )m1m2

) ð3Þ

over which it is straightforward to consider all points for a given

system. When comparing to a particular network, eq. (3) works

with a T with the appropriate 1 and 0 values corresponding to the

deterministic transitions.

Results. For T, the outcome state is stochastic, so we

calculated the expected value of H(n1,n2) based on Tm1
,Tm2

.

Figure 2 shows the combined plots, using box-and-whisker instead

Figure 1. Point Attractor Distribution Correlations. This plot compares the distribution of point attractor number as calculated based on T
versus sampled. Each point, with base-10 logarithmic scales, is x, the calculated probability (p) of some number (k) of point attractors based on T
from a particular dynamic D, and y, the sampled frequency (f ) of that number of point attractors in networks that support D; or, succinctly:
(10x,10y)~(pk(T(D)),fk(D)). The plot shows that the T-based distribution is tightly correlated with the sample down to about the 1% level, and then
skews low. The plot is annotated with other information: both axes include rug plots to indicate point density, red horizontal lines indicating the 1 to
25 counts out the sample size (the region with visible notable ‘‘lines’’ of sample data), a blue 1-to-1 line for exact correlation, and dashed grey lines
indicating the 20%, median, and 80% slices in the pk spread.
doi:10.1371/journal.pone.0059046.g001
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of the simple mean more typical of recent publications, and

indicates several results. One, the putative yeast cell cycle network

is ordered based on its Dcv450. Two, for roughly a third to two

thirds of the range, the T-based results approximately represent

the unique network results. For the middle third of the range, the

boxes and midpoint-indicators (median and mean) are all

overlapping, and for the latter third similar but less strong

statements could be made. Finally, however: the H(m1,m2)[½0,3�
range poses some interesting questions for the T-based curve.

Notably, at H(m1,m2)~0 - where the initial conditions are

identical -T indicates a divergence of outcomes, which is

impossible for a unique, deterministic network, but expected for

a stochastic system. That presents an issue for the traditional Dc

calculation, which is through the origin; it may, however, prove

reasonable to simply offset and use the same slope criteria.

Obviously, this is a single point comparison. This result does not

invalidate the idea of a function-based Derrida plot, but there is

work to be done before considering it useful. We discuss that work

in our concluding remarks, as well as proposing some preliminary

interpretation of this single point result.

Experiment Selection
When T is generated from some partially observed dynamic,

there remain many undetermined transitions and corresponding

unknown interactions. Resolving those unknowns requires addi-

tional information, which must be garnered from either past or

new experiments. However, there are typically many possible

experiments to conduct and past results to search, and focusing on

which would be most informative is a highly practical application

of T. If we view the dynamics as partial information about a

uniquely determined system, then using T to calculate Shannon

entropy for experimental selection is a natural approach.

Shannon Entropy Calculation. Each row Tm contains the

transition probabilities for a particular initial condition, so the

Shannon entropy for each row is

sm~{
X

n

Tmn log Tmn ð4Þ

where the particular logarithm base is only a scaling factor. This

entropy indicates which initial condition we expect to yield the

most information about the dynamics in an experiment observing

t?tz1 dynamics. As with the point attractor calculation, there

are some caveats given that T is a superposition. The rows are not

independent, hence sm is only exact when ordering two initial

conditions relatively, and since T changes with each additional bit

of information, the sm must be recalculated after an experiment.

However, our results indicate that such dependence may be

irrelevant by comparing to a ‘‘naı̈ve’’ entropy. This naive entropy

is the uncertainty expected based on the Strong Inhibition rule and

equiprobable interactions among parts (calculating this value is

discussed in the Supplemental Analysis: Naive Shannon
Entropy). This results in comparing how well we select

experiments based on knowing something about the system

dynamics versus only knowing the rules for interaction.

We also tested scalar measures that can be derived from T:

�ss~
sm

n(fmg) ð5Þ

which is the row-average Shannon entropy for the transitions; the

variability and other higher order moments can also be derived as

normal. We compared these values and a sample of the number of

initial condition experiments to resolve a network across our

source data and found no predictive power. This is retrospectively

somewhat expected: this scalarization does not capture the (non-

)independence of rows, which is in turn the principle indicator of

whether resolving a particular row will also tend to the eliminate

the uncertainty in other related rows. We posit that an alternative

averaging procedure, one that weights by accounting for

Hamming distances between the row initial conditions and

perhaps some of the insights discussed in Supplemental
Analysis: Naive Shannon Entropy section, might be more

predictive.

Results. To compare experimental selection based on

Shannon entropy, we simulated initial condition experiments on

a network selected randomly from a class by calculating the

transition from that initial state based on that particular network.

We performed these simulations for 10 k network samples from

each of the dynamics in our Source Data.

We selected initial conditions based on three orders: (1)

Shannon entropy from T, (2) Shannon entropy assuming only

the Strong Inhibition rule and equiprobable interactions, and (3) at

random. Each of these methods includes some form of updating

after each experiment. For (1), we recalculated T and identified the

Figure 2. Derrida Plot Comparing Yeast Cell Network and Cell
Cycle Process T. This plot compares the putative yeast cell cycle
network (grey) and T supporting the yeast cell cycle process (black). We
have extended the plot to show median (solid points) plus box-and-
whiskers in addition to means (open points). For this size system, we
were able to evaluate a complete population instead of sampling. The
putative cell cycle network is stable according to the Derrida coefficient:
i.e., the mean values form a trajectory below the 450 line. The T-based
results require more interpretation and context. Notably, states with
Hm1m2

~0 - i.e., identical states - have Hn1n2
~0 - i.e., the same outcome -

on a set network with deterministic rules. If we use T as a surrogate for
such a network, then the resulting spread in Hn1n2

for Hm1m2
~0 -

essentially half the available range - should give pause when comparing
the outcomes of nearby initial conditions. However, T seems plausibly
useful for estimating divergence for disparate initial conditions. On the
other hand, if we believe our system is well represented by the
superposition of networks, then that low Hm1m2

spread in Hn1n2
may

provide insight into how (un)constrained the system noise is by the
structured component.
doi:10.1371/journal.pone.0059046.g002

Network Class Superposition Analyses
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new most informative experiment; for (2) and (3), we excluded

newly determined transitions (those not explicitly specified, but

otherwise determined) from the possible experiment choices.

Though we do not provide explicit results here, the distinction

between (1) and (2) is qualitatively unchanged without the order

updates, with both mainly just requiring more steps. The random

method performs even more abysmally if determined transitions

are not removed (often requiring nearly all states to be tested).

Finally, for each ordering method, we resolve tied ranks by

randomly selecting amongst the tied options.

Figure 3 shows this comparison for all of our N~11 systems.

We do not explicitly compare to selection at random here, because

that method is so uncompetitive (typically requiring an order of

magnitude more steps) that the plot perspective becomes

uninformative. Using T-based entropy shows a substantive

advantage over the naive entropy, with almost all of the sampled

networks requiring fewer experiments and the typical networks

requiring &10 fewer experiments. Similar results appear for the

other system sizes, with less advantage in smaller systems and more

advantage in larger systems. We did not attempt to identify a

scaling equation for this shift.

Receiver Operating Characteristic. As a complementary

application to recommending which tests to perform, we also

considered treating T as the test itself by calculating the Receiver

Operating Characteristic (ROC). ROC is a standard assessment of

a test (early theoretical discussion in [31]), measuring the test’s true

positive rate (TPR) against its false positive rate (FPR) across

acceptance thresholds. It is not obvious how to determine ROC for T directly. Each m

initial state can only go to one n final state, but as the acceptance

threshold varies, one arrives at the contradiction of having

multiple results for a single m. One plausible avenue might be to

do sampling on Tmn transformed across different ‘‘temperatures’’

(similar to a simulated annealing approach) and then using the

mean curve (and perhaps the distribution about that mean as a

further weighting refinement to the ROC calculation) to assess a

particular T. However, we think that sort of assessment warrants

its own in-depth treatment.

So we instead opted to tackle a more straightforward question

about the ROC for identifying interactions. Instead of using T, we

created analogous matrices for the interactions

Rji~
(D|frjig){1

D{1
ð6Þ

Gji~
(D|fgjig){1

D{1
ð7Þ

Nji~
(D|frji,gjig){1

D{1
~1{Gji{Rji ð8Þ

and then assessed ROCs for each individual test; we did not

attempt any of the advanced correlated-test ROC comparisons,

again deferring that to a ROC-focused assessment of T and T-

related measures. We set our TPR and FPRs based on reference to

the putative yeast network, but excluded from those counts the

cases where an exact outcome was known, e.g. Rji~0 or 1.

Excluding those creates a more conventional ROC curve,

stretching from 0 TPR and FPR to 1 TPR and FPR, though

perhaps including those points would be more informative. Figs. 4–

6 show the curves and a typical summary statistic: discrimination, the

Figure 3. Experimental Selection. This plot is a histogram
comparing number of experiments to determine an underlying network
given partial initial information. The categories are the number of
simulated experiments using T-derived entropy (NT ) minus the
number using using naive entropy (NN ), so the black region
corresponds to the relative amount where T performs better, and the
leftmost columns correspond to the greatest advantage. This sample
mixes the results from considering 10 k supporting networks from each
of our 11-element random dynamics. Similar results were obtained for
other system sizes.
doi:10.1371/journal.pone.0059046.g003

Figure 4. Inhibition Identification. The ROC for identifying the
flexible and free inhibition interactions in the yeast cell network.
doi:10.1371/journal.pone.0059046.g004
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area between the curve and x~y. The discrimination values are

Rji~{0:04,Gji~0:37,Nji~0:09 vs a maximum of 0:5; these

would be higher (and all positive) if the curves included the exact

outcomes.

T as Population Aggregate
Diversity Prediction. T may also indicate if a particular

model is useful for representing population diversity. We borrow

the notion of phenotypes from biology, defined explicitly here as

meaning the categories of dynamic behavior that a network class

will exhibit in response to initial conditions not part of the

specification for that class. That is, every class network has an

identical function, or phenotype, for the defining dynamics, but

may exhibit diverse phenotypes to ‘‘off-nominal’’ or ‘‘noise’’ states.

To determine if a class-defining model does capture population

diversity, we can make predictions based on that model and

experimentally test them. In broad strokes, using a particular

model – i.e., number of parts, function D, and optionally some

fixed interactions – as input:

1. compute T,

2. conduct an experiment, translated to model states, that forces

part(s) to be (in)active, precludes a fixed interaction, etc.

3. measure the population proportions of different responses

4. compute the proportion based on T and the corresponding

model (initial and outcome) states.

As a concrete example, posit that the putative yeast cell cycle

process adequately models wild type yeast for the purposes of

predicting their diversity. This could be tested by gathering or

growing yeast under conditions that maintain diversity, then

exposing them to an environmental change that affects the cell

cycle and is included in the model. Continue to measure the

growth rate of the yeast under this condition, and calculate the

defect in that growth rate compared to typical conditions. From

that, calculate the proportion of yeast suffering some inhibitory (or

lethal) effect from that environment. Data obtained, identify which

rows in T correspond to the environmental change (Tm), and some

Boolean function BE which converts outcome states (the n in Tmn)

to normal growth (1) or abnormal growth (0). Then the

experimentally affected fraction could be compared to the

expected to be affected population fraction:

p(BE ,Tm)~
X

n

BE(n)Tmn ð9Þ

The researchers might discern order of magnitude effects (99%,

10%, 1%, etc rough effect sizes), or at greater resolution depending

on system, model, and experiment. If the effect orders agreed, they

would have evidence supporting that the model represented

sufficient constraints – instead of over or under constraining – to

capture the system phenotypic diversity relative to that specific

environment condition.

As to the question of a more general measure of phenotypic

diversity surrounding a function, we have not yet set on a specific

and useful calculation, but we suspect there may be a scalarization

of T �ss (as discussed in the Experiment Selection section) useful

to that end, despite our initial failures in identifying one.

Relative Risk & Odds Ratios. A complementary applica-

tion of T as a diversity model would to assessing relative risk or

odds ratios of dynamic outcomes given additional conditions.

Essentially, we take an event probability from T(e.g., state m goes

to any of fng outcomes: pmfng~
X

n
Tmn), and the same event

probability from T0, which includes the additional conditions in its

calculation (e.g., that some piece inhibits another, that some

particular dynamic transition is always expressed). We then have

the unconditioned and conditioned p’s, allowing simple calculation

of

RR~
p’mfng
pmfng

ð10Þ

Figure 5. Activation Identification. The ROC for identifying the
flexible and free activation interactions in the yeast cell network.
doi:10.1371/journal.pone.0059046.g005

Figure 6. Non-Inhibition Identification. The ROC for identifying
non-interactions between components in the yeast cell network.
doi:10.1371/journal.pone.0059046.g006
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OR~
p’mfng(1{pmfng)

pmfng(1{p’mfng)
ð11Þ

These obviously enable traditional ‘‘population’’ comparisons for

D and D|fmn . . .g, maintaining the caveat that rows in T are not

independent.

This framework also obviously allows comparison of D’s with

incompatible differences in some transition – e.g., mn[DA,mo[DB.

That is: given some, say, mutant yeast that exhibited marginally

different cell cycle behavior, we could assess its relative likelihood

of other dynamics that involved the cell-cycle components

compared to the non-mutant strain.

Discussion and Conclusions

We have shown that, for the Strongly Inhibited Boolean

Network model, it is

N N practical to compute the superposition stochastic matrix T for

small systems,

N N accurate to use T to calculate the point attractor distribution

of systems supporting a particular dynamic, and

N N useful to select experiments based on Shannon entropy from

T

We have also shown how to calculate a Derrida plot and

provide phenotype diversity predictions based on T. We consider

T as an early step towards developing a more robust functionally

oriented perspective to complement the largely structural current

paradigm. We look forward to more work in this vein, and are

excited about the prospective insights that will afford.

Our own investigations of open questions associated with T will

include: (1) validating these results for other input dynamics, such

as using attractor instead of time course data as input, and also

incorporating some interaction constraints; (2) calculating T for

other state and rule types, for example, generating T using

different update rules across parts, or for ternary states instead of

Boolean; (3) expanding the applications, for example considering

basin size distributions and knockout experiments; (4) improving

the computability of T to addressing larger systems, by incorpo-

rating better exact and approximating algorithms from recent

advances in the satisfaction counting problem (#SAT) [32–35]; (5)

accounting for Tm dependencies, possibly by identifying correcting

two-state perturbation matrices, or by correcting the Shannon

entropy from T along the results for naive entropy.

We also proposed open questions specifically for the Derrida

plots and phenotype diversity. Relative to the Derrida plot, there is

an obvious general question about what exactly is being measured.

Practically, we think comparing the plots across various functional

inputs would provide a useful starting point. As part of that survey,

we think that the small Hamming distance region deserves special

attention; recall that, for the yeast cell cycle, this region presented

a result that is impossible for a deterministic system. We posit that

there may be a quantitative meaning to this result in light of the

three interpretations we offered for T: (1) that the divergence is

real, because the system is stochastic; (2) that the divergence is an

artifact, and indicator, of our uncertainty about the outcome; or (3)

that the divergence is between different individuals in a

population, not within a particular system. What different values

for this divergence might ultimately mean, we do not know, but in

light of those interpretations, we think it will be plausible to

usefully compare across different input dynamics.

Relative to phenotypic diversity, interpretation of T as a

measure of supported functional diversity is plausible but needs

work. One practical approach may be to compare T’s for different

functions in combination with comparing network samples in an

evolutionary survival simulation. A summary entropy (i.e., the sum

of the individual row entropies) may also provide some insight

about the accessible diversity.

Analysis Supplement

Strong Inhibition
Other publications invoking the Strong Inhibition rule present

different formulations; eq. (1) is equivalent to those after adding

interaction constraints dependent on the particular formulation.

For example, most formulations do not allow self-inhibition:

adding the rii~0 constraint recovers those models. Some

formulations do not include decay: adding gii~1 recovers those

models.

Though these specific cases require an extra constraint, overall

eq. (1) simplifies representation, reducing our algorithm’s lines-of-

code complexity without degrading performance and generalizing

it to cover more phenomena within the same framework. This

generalization comes from including self-directed interactions: if

the part is already active, it can send a signal to stay active or

deactivate. Allowing these self-interactions and having itz1~0
absent any signals, eliminates the need for special interactions to

capture ‘‘self-degradation’’ or ‘‘decay’’, used in several models

including the putative yeast cell cycle, since these are naturally

included in the expanded range. An especially pertinent point

about the formal equivalence of eq. (1) to other published

formulations, is that the conclusions developed about the inverse

problem in [1] still apply because (1) there is an exact translation

from (non-)decay interactions to self-activation interactions and (2)

allowing self-inhibition does not fundamentally change any of

claims in the steps of that proof.

The analysis sections are independent of this formulation

(though the Shannon entropy calculation would require some

trivial modifications), but we include it to limit any future

confusion comparing our code base to this publication, and

because we feel it is enough of an improvement to warrant general

community adoption. Finally, this formulation is particularly

conducive to representing variables–system states fi . . . jg and

interactions fri,gig–by the 1-0 bits in an integer, which is the

native underlying representation in most languages; we take

advantage of this to use the typically faster bitwise integer

operations in our inversion algorithm.

Computing T
First, the number of transitions to be considered as perturba-

tions grows rapidly with the system size N : in a Boolean state

system, there are roughly (2N )2 transitions, less the null state and

small, constant number specified in D. Second, counting the

network classes resulting from the inversion procedure can be

computationally expensive, so repeating that entire procedure for

each perturbation becomes impractical.

However, we made the naive calculation of eq. (2) more

practical with analytically equivalent modifications:

N Transitions can be calculated independently for each element,

then combined into overall transitions. That is, for an initial

system state (m), each part’s state (i) can be calculated

independently, so we can consider the dynamics of a single

part Di and perturbations to just that part’s state. We define
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m?i and m?i as m causes i to be active or inactive,

respectively, after a transition, and then:

pi(m)~
n((Di|fm?ig){1)

n(Di
{1)

, pi(m)~
n((Di|fm?ig){1)

n(Di
{1)

ð12Þ

Each Tmn can then be calculated by multiplying the appropriate

pi(m),pi(m) depending on which parts are active in n.

N The definitions in eq. (12) are complementary, as we implied

by their notation: pi~1{pi. That is, an initial system state

causes an individual part to transition to either itz1~0 or

itz1~1, exclusively. Our code always calculates the latter, but

there may be useful heuristics for identifying which is quicker

to calculate.

N Finally, the additional transition constraints can be considered

against the known results of Di
{1. Modifying the Strong

Inhibition inversion algorithm to add extra constraint clauses

to an existing result is straightforward.

Taken together, these modifications substantially reduce the

computation time. Anecdotally, on a two-core, 2.4 GHz system

the yeast-sized systems (N~11) referenced in the introduction take

order 1 day for the naive version of the calculation versus order 1

second with the above modifications. The independence of parts

and the ability to easily introduce a new clause both contribute

substantially, which indicates both are important practical

considerations when calculating (Di|fm?ig){1 and thus T for

other update rules.

Attractor Bernoulli Trials. T’s diagonal represents the

proportion of the class for which any particular state is a point

attractor. We can use the diagonal elements as probabilities in a

series of Bernoulli trials. We ignore known attractors (the null

state, any specified in D, and any determined while calculating T)

and the non-attractors (0 valued entires, also determined while

calculating T) since these will be consistent across the class, and

focus on the distribution of ‘‘excess’’ point attractors– i.e., those

that may or may not be present.

We calculated these distributions by repeatedly multiplying the

previous distribution of attractor counts by pk - i.e., probability that

k is not an attractor - and then adding that to the same distribution

shifted over 1 and multiplied by pk - i.e. probability that k is an

attractor. That is,

f (1)(0)~p1, f (1)(1)~p1, f (1)(lw1)~0

f (2)(0)~p2f (1)(0), f (2)(1)~p2f (1)(1)zp2 � f (1)(0),

f (2)(2)~p2 � f (1)(1), f (2)(lw2)~0

f (l)~pk � f (k{1)(l)zpk � f (k{1)(l{1)

For cases where several of the pk are equal (which typically

happens when some set of the elements have the same behavior in

the input dynamic), we could use binomial distribution results for

faster and more accurate computation of those portions, then

combine those in the same fashion described for the distinct

Bernoulli trials (or via approximations as described in, e.g., [36]).

For the system sizes we considered, the frequency of this scenario

did not seem to warrant the extra code, so we have not taken

advantage of this possibility. It may be necessary for larger systems

given the exponential expansion in possible point attractors.

Sampling Networks
We obtained n(D{1) values large enough that enumerating all

of the supporting networks, even for simple measures like point

attractors and small system sizes, proved impractical. For the

comparison of T-based results and statistical equivalents from the

associated network class, it is necessary to sample that class since its

size can exceed 1020. We generate the samples uniformly by using

the free interactions and the enumerated interaction sets.

The free interactions are chosen uniformly from the available

options: pji~
1

2
for activation (or inhibition) from j to i when

inhibition (or activation) is forbidden (that is, rj[Ri and gj[G� or

vice versa), or, if neither type is precluded, pji(g)~pji(r)~
1

3
. For

the enumerated component, we fix a list of the sets of satisfying

interactions, and then randomly select (with replacement) items

from the list. The fixed components - both required and forbidden

- are consistent in all of the generated networks. This sampling

procedure is consistent with previous published methods for

uniform sampling [37].

We then calculate all of the pertinent dynamic transitions for

each sample; e.g., if the question is point attractors, then we

examine only the possible point attractor states by excluding

Tmm~0 entries.

Naive Shannon Entropy
In the Boolean network model using the Strong Inhibition rule,

an initial state only has effects through its active parts. In the naive

case, we have no knowledge about the interactions among these

parts, so they are indistinguishable. A target part’s probability of

being active at tz1 is then the probability of (1) at least one

activating interaction from an active part at t and (2) there being

no inhibiting interactions from the active parts at t; or, where n is

the number of active elements in the precursor state:

p1(n)~ 1{P
k

p(gk Drk)

� �
P
k

1{p(rk)ð Þ

so given the equiprobability:

p1(n)~ 1{P
k

1

2

� �
P
k

1{
1

3

� �
~

2n{1

3n

1{p1(n)~p1(n)~p0(n)~
3n{2nz1

3n

Of course, the entropy for a single element is

si(n)~{p1(n) log p1(n){p0(n) log p0(n)

and since all of the elements are independent in their

unconstrained behavior, the system entropy is simply scaled by

the size of the whole system N. Since p1(0)~1 and

p1(1)~p1(2)~
1

3
, and p otherwise decreases with n, uncertainty

decreases with larger n. Thus, the best experiments, based only on
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the rules of Strong Inhibition, are n~1 and n~2. Though we did

not use D input with fixed interactions, that information could be

incorporated into this calculation by replacing the known terms in

product with either 1 or 0.

Acknowledgments

We are grateful to Burton Singer and Juliet Pulliam for feedback on the

draft of this work.

Author Contributions

Provided initial direction and on-going feedback on analyses: CZ RS.

Analyzed the data: CP. Contributed reagents/materials/analysis tools: CP.

Wrote the paper: CP.

References

1. Wang G, Rong Y, Chen H, Pearson C, Du C, et al. (2012) Process-driven

inference of biological network structure: feasibility, minimality, and multiplicity.
PLoS ONE.

2. Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems
biology. Annual review of genomics and human genetics 2: 343–372.

3. Kitano H (2002) Systems biology: a brief overview. Science 295: 1662–1664.

4. Proulx S, Promislow D, Phillips P (2005) Network thinking in ecology and
evolution. TRENDS in Ecology and Evolution 20.

5. May R (2006) Network structure and the biology of populations. Trends in
Ecology & Evolution 21: 394–399.

6. Chuang H, Hofree M, Ideker T (2010) A decade of systems biology. Annual

review of cell and developmental biology 26: 721–744.
7. Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed

genetic nets. Journal of Theoretical Biology 22: 437–467.
8. Glass L, Kauffman S (1973) The logical analysis of continuous, non-linear

biochemical control networks. Journal of Theoretical Biology 39: 103–129.
9. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, et al. (2002) Network

motifs: simple building blocks of complex networks. Science’s STKE 298: 824.

10. Barabási A, Albert R (1999) Emergence of scaling in random networks. science
286: 509–512.

11. Albert R, Jeong H, Barabási A (2000) Error and attack tolerance of complex
networks. Nature 406: 378–382.

12. Albert R, Othmer H (2003) The topology of the regulatory interactions predicts

the expression pattern of the segment polarity genes in drosophila melanogaster.
Journal of Theoretical Biology 223: 1–18.

13. Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle network is
robustly designed. Proceedings of the National Academy of Sciences of the

United States of America 101: 4781–4786.
14. Wu Y, Zhang X, Yu J, Ouyang Q (2009) Identification of a topological

characteristic responsible for the biological robustness of regulatory networks.

PLoS Comput Biol 5.
15. Wang G, Du C, Chen H, Simha R, Rong Y, et al. (2010) Process-based network

decomposition reveals backbone motif structure. Proceedings of the National
Academy of Sciences 107: 10478–10483.

16. Huynen M, Stadler P, Fontana W (1996) Smoothness within ruggedness: The

role of neutrality in adaptation. Proceedings of the National Academy of
Sciences 93: 397.

17. Bornholdt S, Sneppen K (1998) Neutral mutations and punctuated equilibrium
in evolving genetic networks. Physical Review Letters 81: 236–239.

18. Chaves M, Albert R, Sontag E (2005) Robustness and fragility of boolean models
for genetic regulatory networks. Journal of theoretical biology 235: 431–449.

19. Alon U, Surette M, Barkai N, Leibler S (1999) Robustness in bacterial

chemotaxis. Nature 397: 168–171.
20. Callaway DS, Newman MEJ, Strogatz SH, Watts DJ (2000) Network robustness

and fragility: Percolation on random graphs. Phys Rev Lett 85: 5468–5471.

21. Samuelsson B, Troein C (2003) Superpolynomial growth in the number of

attractors in kau_man networks. Physical Review Letters 90: 98701.

22. Klemm K, Bornholdt S (2005) Stable and unstable attractors in boolean

networks. Physical Review E 72: 055101.

23. Bornholdt S (2008) Boolean network models of cellular regulation: prospects and

limitations. Journal of the Royal Society Interface 5: S85–S94.

24. Kauffman S, Peterson C, Samuelsson B, Troein C (2003) Random boolean

network models and the yeast transcriptional network. Proceedings of the

National Academy of Sciences 100: 14796–14799.

25. Kauffman S, Peterson C, Samuelsson B, Troein C (2004) Genetic networks with

canalyzing Boolean rules are always stable. Proceedings of the National

Academy of Sciences 101: 17102.

26. Ideker TE, Thorsson V, Karp RM (2000) Discovery of regulatory interactions

through perturbation: inference and experimental design. Pacific Symposium on

Biocomputing Pacific Symposium on Biocomputing : 305–316.

27. Shannon P, Markiel A, Ozier O, Baliga N, Wang J, et al. (2003) Cytoscape: a

software environment for integrated models of biomolecular interaction

networks. Genome research 13: 2498–2504.

28. Wagner A (2008) Robustness and evolvability: a paradox resolved. Proceedings

of the Royal Society B: Biological Sciences 275: 91.

29. Dill K, Ozkan S, Shell M, Weikl T (2008) The protein folding problem. Annual

review of biophysics 37: 289.

30. Derrida B, Stauffer D (1986) Phase transitions in two-dimensional kauffman

cellular automata. EPL (Europhysics Letters) 2: 739.

31. Metz C, Goodenough D, Rossman K (1973) Evaluation of receiver operator

characteristic curve data in terms of information theory, with applications in

radiography. Radiology 109: 297–304.

32. Bayardo RJ Jr, Pehoushek JD (2000) Counting models using connected

components. In: In AAAI. 157–162.

33. Darwiche A (2004) New advances in compiling cnf to decomposable negation

normal form. In: Proc. of ECAI. Citeseer, 328–332.

34. Wei W, Selman B (2005) A new approach to model counting. In: Bacchus F,

Walsh T, editors, Theory and Applications of Satisfiability Testing, Springer

Berlin/Heidelberg, volume 3569 of Lecture Notes in Computer Science. 96–97.

URL http://dx.doi.org/10.1007/11499107_24.

35. Kroc L, Sabharwal A, Selman B (2008) Leveraging belief propagation, backtrack

search, and statistics for model counting. Integration of AI and OR Techniques

in Constraint Programming for Combinatorial Optimization Problems : 127–

141.

36. Butler K, Stephens M (1993) The distribution of a sum of binomial random

variables. Technical Report 467, Department of Statistics, Stanford University.

37. Lau K, Ganguli S, Tang C (2007) Function constrains network architecture and

dynamics: A case study on the yeast cell cycle boolean network. Physical

Review E 75: 051907.

Network Class Superposition Analyses

PLOS ONE | www.plosone.org 10 April 2013 | Volume 8 | Issue 4 | e59046


