
Development and Preliminary Evaluation of a
Multivariate Index Assay for Ovarian Cancer
Suraj D. Amonkar., Greg P. Bertenshaw., Tzong-Hao Chen, Katharine J. Bergstrom, Jinghua Zhao,

Partha Seshaiah, Ping Yip, Brian C. Mansfield*

Correlogic Systems, Inc., Rockville, Maryland, United States of America

Abstract

Background: Most women with a clinical presentation consistent with ovarian cancer have benign conditions. Therefore
methods to distinguish women with ovarian cancer from those with benign conditions would be beneficial. We describe the
development and preliminary evaluation of a serum-based multivariate assay for ovarian cancer. This hypothesis-driven
study examined whether an informative pattern could be detected in stage I disease that persists through later stages.

Methodology/Principal Findings: Sera, collected under uniform protocols from multiple institutions, representing 176
cases and 187 controls from women presenting for surgery were examined using high-throughput, multiplexed
immunoassays. All stages and common subtypes of epithelial ovarian cancer, and the most common benign ovarian
conditions were represented. A panel of 104 antigens, 44 autoimmune and 56 infectious disease markers were assayed and
informative combinations identified. Using a training set of 91 stage I data sets, representing 61 individual samples, and an
equivalent number of controls, an 11-analyte profile, composed of CA-125, CA 19-9, EGF-R, C-reactive protein, myoglobin,
apolipoprotein A1, apolipoprotein CIII, MIP-1a, IL-6, IL-18 and tenascin C was identified and appears informative for all
stages and common subtypes of ovarian cancer. Using a testing set of 245 samples, approximately twice the size of the
model building set, the classifier had 91.3% sensitivity and 88.5% specificity. While these preliminary results are promising,
further refinement and extensive validation of the classifier in a clinical trial is necessary to determine if the test has clinical
value.

Conclusions/Significance: We describe a blood-based assay using 11 analytes that can distinguish women with ovarian
cancer from those with benign conditions. Preliminary evaluation of the classifier suggests it has the potential to offer
approximately 90% sensitivity and 90% specificity. While promising, the performance needs to be assessed in a blinded
clinical validation study.
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Introduction

Ovarian cancer is the deadliest gynecological cancer in the

United States [1]. In 2008, an estimated 21,650 new cases of

ovarian cancer will be detected. Early diagnosis is associated with a

92% 5-year survival rate, yet only 19% of ovarian cancers are

detected early [1,2]. The majority of cases detected are advanced

stage disease where 5-year survival rates for women with regional

malignancy and distant disease are 71% and 30% respectively. As

a result, more than 15,000 women die from ovarian cancer in the

US each year [1].

The early symptoms of ovarian cancer, which include pelvic and

abdominal pain, urinary urgency and frequency, abdominal

bloating, and difficulty eating are non-specific, and typical of many

non-cancerous and benign conditions [3]. Therefore, diagnosis does

not typically occur until the development of either a significant

amount of abdominal fluid, or a pelvic mass, detected by physical

examination or with radiologic evaluation [4]. A recent report has

suggested that a unique combination of symptoms, if fully

documented for each patient, may be more informative than

previously recognized, although the findings remain to be validated

[5]. Many reports indicate that the most commonly used imaging

techniques – transvaginal sonography (TVS), positron-emission

tomography (PET), magnetic resonance imaging (MRI), radio-

immunoscintigraphy and computed tomography (CT) lack sufficient

specificity to distinguish between benign and malignant ovarian

disease [6]. Some recent studies have suggested that ultrasound

alone, or in combination with other prognostic variables may be

significantly more informative in the hands of a specialized ovarian

ultrasound expert [7,8], however, many patients do not have access

to the skills of such specialists. Moreover, clear diagnosis usually

necessitates, at minimum, surgical intervention in the form of

laparotomy or laparoscopy. Therefore, an accurate, informative, yet

non-invasive, test would be of clinical value.
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There are no FDA-approved biomarkers for the diagnosis of

ovarian cancer, or for the triage of women suspected of having

ovarian cancer. Despite its widespread use, cancer antigen 125

(CA-125) is only FDA-approved for monitoring recurrence and

therapeutic response [9–11]. In studies of women with known or

suspected ovarian cancer, the reported sensitivities of CA-125 in

detecting stage I and II cancers range widely from 29–75% and

67–100%, respectively. However, CA-125 is elevated in a wide

variety of normal, benign and malignant conditions [12–14] and

86% of women presenting with abnormal CA-125 tests resolve in

3–6 months [15]. Many approaches have been taken to improve

the predictive value of CA-125 through serial measurements

[16,17] or in combination with additional markers [18–21].

However, a simple and clinically practical ovarian cancer-

screening tool remains elusive.

A recent study [22] described a panel of six markers – CA-125,

prolactin, leptin, macrophage inhibitory factor (MIF), osteopontin

and insulin-like growth factor II (IGF-II) that when combined had

very high sensitivity (95.3%) and specificity (99.4%). The test is

intended as a screen on high-risk women, however, the final

performance characteristics were not assessed on high-risk women

and included samples also used to build models which may have

resulted in over-estimation of the classifier’s performance.

Moreover, inclusion and exclusion criteria for participants were

not clearly defined, and the cancer and control samples were

collected under different clinical settings, which can lead to bias in

the sample set. Prolactin and IGF-II were each reported to be

individually more informative than CA-125, in this study, but this

is inconsistent with reports on other independent sample sets

[23,24]. In another study, Moore and colleagues utilized logistic

regression to find marker combinations capable of differentiating

between benign and malignant conditions in women with pelvic

masses [25]. By combining HE-4 and CA-125, 76.4% sensitivity

and 95% specificity was achieved. While promising, only 67 of the

233 samples were from individuals with ovarian cancer and only

15 of those from women with stage I and II cancers. In addition,

reported performance was based on cross-validation results which

lacked an independent holdout set of samples.

Ovarian cancer is a collection of diverse entities with more than

30 subtypes of malignancies, each with a distinctive histology,

pathology and clinical behavior [26]. The diversity and low

incidence of ovarian cancer hampers the search for biomarkers. In

a separate, post-hoc analysis, of a subset of the samples used in the

present study, we were unable to identify a single marker capable

by itself of accurately predicting the presence of ovarian cancer

[24]. In this present study, we describe the development and

preliminary evaluation of a multi-analyte profile that can classify

women suspected of having ovarian cancer, into those with and

without ovarian cancer.

Methods

Sample Cohort
All but 20 samples were from the tissue-banking repository of

the National Cancer Institute-funded Gynecologic Oncology

Group (GOG; Columbus, OH; Table 1; Table S2). Written

consent was obtained by the GOG for all participants and the

GOG Institutional Review Board (IRB) approved the use of the

samples in our study. These samples were collected from multiple

sites, under protocols approved by the GOG IRB. Eligible patients

were women scheduled for surgery with suspicion of having a

gynecological cancer or scheduled for prophylactic surgery

because of increased ovarian cancer risk (1st or 2nd degree

relative with the disease). All samples, including those categorized

as normals, post-surgery, were collected prior to any diagnostic or

therapeutic intervention. Serum aliquots forwarded to Correlogic

Systems, Inc.H (Rockville, MD) had been de-identified and

encoded with a unique GOG identifier. Each sample was

accompanied by a complete clinicopathology report, patient age

and race, and a de-identified code denoting the collection site.

Pathology was reviewed and confirmed by GOG pathologists to

ensure consistency. Samples were selected from the GOG

collection to balance patient age distribution, date of serum

collection, and representation of cases and controls across

collection sites. The remaining sera consisted of 20 samples from

individuals with benign conditions from a Correlogic prospective

collection, which uses a similar serum collection protocol. Written

consent was obtained from all participants. Correlogic’s ‘‘prospec-

tive’’ samples are being collected under IRB approval to support

the development of a clinical test for ovarian cancer. The study

population is women presenting with symptoms of ovarian cancer

and scheduled for surgery. As such, disease status is confirmed by

Table 1. Demographics of study subjects.1{

Stage# I Stage II Stage III Stage IV Stage X All OvCa Normal Benign{
Other
Cancer*

All Non
OvCa

Number of Subjects
(%)

61 (34.7) 31 (17.6) 67 (38.1) 12 (6.8) 5 (2.8) 176 (100) 32 (17.1) 140 (74.9) 15 (8.0) 187 (100)

Median Age (range) 53.0 (29–80) 56.0 (39–85) 57.0 (42–87) 66.5 (28–78) 71.0 (52–80) 56.0 (28–87) 45.5 (29–72) 52.0 (15–88) 54.0 (27–89) 50 (15–89)

Mean Age (SD) 55.8 (11.0) 57.6 (10.3) 59.5 (11.8) 62.8 (14.7) 68.5 (11.8) 58.3 (11.6) 47.9 (9.5) 54.3 (14.4) 55.8 (16.7) 53.4 (14.1)

Serous 12 18 31 10 3 74 (42.0) - - - -

Mucinous 6 3 6 1 0 16 (9.1) - - - -

Clear cell 17 0 9 0 1 27 (15.3) - - - -

Endometrioid 22 8 13 1 1 45 (25.6) - - - -

Mixed 4 2 8 0 0 14 (8.0) - - - -

1Two low malignant potential samples not tabulated.
{All samples were sourced from a single GOG study with the exception of 20 benign samples which were sourced from a Correlogic prospective collection as described
in ‘‘Methods – Sample Cohort’’. Only GOG samples are shown in this table.

*Other cancers consisted of 4 endometrial cancers, 7 cervical cancers, 3 colon cancers and 1 uterine cancer.
{The most common benign sample types were cystadenoma, endometrioma/endometriosis, cyst, Brenner tumor and adenofibroma.
#Staging based on FIGO, International Federation of Gynecology and Obstetrics. Stage X, staging not available. OvCa, ovarian cancer.
doi:10.1371/journal.pone.0004599.t001
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pathology following surgery. The 20 samples were withdrawn

from the prospective collection in a manner to avoid introducing

any bias into the remaining collection and as such were not

deliberately selected to represent any particular population. The

study was approved by the Western IRB (Olympia, WA) and by

the IRB of each participating site.

Serum Processing, Storage, Handling and Shipment
Blood samples (5–20 ml) were collected into red top glass

Vacutainer tubes (Becton-Dickinson, NJ), clotted for 30–180 min-

utes at 4uC, and then centrifuged at 3,500 g for 10 minutes at 4uC.

Serum was decanted into cryotubes, and stored promptly at

280uC. Aliquots from storage were shipped to Correlogic on dry

ice and stored immediately at 280uC. Frozen samples were

warmed gently by hand until almost thawed, completed on ice,

vortexed, aliquoted in 150 ul volumes and refrozen at 280uC.

Finally, samples were shipped on dry ice to Rules-Based Medicine,

Inc. (RBM; Austin, TX). An accompanying document provided a

coded sample identification number and a specific order of

analysis. The RBM analytical site was completely blinded to all

sample details including disease status.

Multiplex Immunoassays
The multiplexed immunoassays are described elsewhere [24].

Briefly, two rounds of multiplexed immunoassays were conducted

at RBM in their Luminex-based CLIA-certified laboratory.

Analytes were quantified by reference to 8-point calibration

curves and machine performance was verified using three quality

control (QC) samples for each analyte. QC samples were

distributed relatively evenly across the dynamic range of the assay

at low, medium and high levels and generally had coefficients of

variance below 15%. Calibration standards and QC samples were

in a complex plasma-based matrix to match the sample

background and were analyzed in duplicate. In round one, a

total of 204 analytes representing 104 antigens, 44 autoimmune

and 56 infectious disease molecules were measured in 147

epithelial ovarian cancer samples (40 stage I, 23 stage II, 67 stage

III, 12 stage IV, five unstaged) and 149 control samples (104

benign conditions, 29 normal healthy, 14 other cancers and two

low malignant potential) using proprietary multiplexed immuno-

assays (Table S1). A second round of analysis was performed 86

days after the first analytical round, on the 104 antigens, using a

second serum aliquot that had been subjected to an identical

freeze/thaw history as the samples used in round one. Due to

sample volume restrictions, 27 samples were not reanalyzed in

round two. Thus, in round two, 132 ovarian cancer samples (30

stage I, 21 stage II, 65 stage III, 11 stage IV and five unstaged) and

135 controls (94 benign conditions, 28 normal healthy, 13 other

cancers) were reanalyzed. In addition, a further 69 samples, not

included in round one, were analyzed (21 stage I, eight stage II, 36

benign, three normal healthy and one colon cancer). For both

rounds of analysis, the order of analysis was established to avoid

any sequential bias due to disease presence or absence, subtype or

stage of disease, patient age, or age of the serum sample.

Generally, samples alternated between cases and controls.

Data Handling
Since sera were analyzed at a previously optimized dilution, any

sample exceeding the maximum concentration of the calibration

curve was arbitrarily assigned the concentration of the highest

standard, whereas those assayed below the minimum concentra-

tion of the calibration curve were assigned the value 0.0. A single

assay (IL-1a) that showed no variation in expression across all

samples was considered invariant/uninformative and removed

from the extracted data set. The remaining data were then scaled

by the biweight scale; a robust and efficient scaling mechanism

that accounts for the variance within each of the individual assays

[27]. A single scale for each assay was determined in a population-

weighted manner. Any assay yielding a scale factor of zero was

removed from the data set. The resulting data were then exported

into individual files where each file represented the results of all

qualified assays for a single sample.

Modeling – ‘‘Out-of-Bag’’ Error Estimation and Bootstrap
Validation

To minimize sample set bias and to aid in the assessment of

intermediate models, we employed one-third ‘‘out-of-bag’’ (OOB)

error estimation and an external 100-fold bootstrap validation

with 10% holdout bootstraps. These bootstrap estimates allowed

us to assess the potential value of many models using only the

training data. In this way we were able to maintain the

independence of the hold-out testing set of samples. Only after a

specific classifier had been locked into a traceable document

management system (DMS) were the hold-out testing set of data

used to test performance of the selected model.

Modeling – Proof-of-Principle Classifier
Initially, modeling was performed with data generated in round

one (Figure 1) using a modification of Breiman’s Random Forest

code [28]. The method was improved by enabling batch

automation, adding an external layer of bootstrapping, providing

greater control over run parameters, and customizing output. The

resulting trees were saved and a proprietary routine was used to

score samples and output sample information, probability scores,

and classification result. Forty stage I ovarian cancer and 40

control samples were used for model building. The controls were

selected to ensure that the modeling set represented the same

proportions of normal, benign and other cancer conditions as the

whole control set, however, within each of those categories,

samples were selected randomly. Modeling was optimized by

varying both the tree counts (50, 100, 500 and 1000) in a forest,

and the number of biomarkers (5, 10, 15, 20, 25, 30, 35, 40, 45,

50) explored at each branching point, resulting in 40 models. From

these models, the 20 most informative analytes were identified

using the variable importance value. In the second step, a series of

models were built that were restricted to the most important

analyte (1-analyte model), the two most important analytes (2-

analyte model) and so on to a 20-analyte model, a total of 20

models. The OOB and external bootstrap errors, and their

standard deviations, were tabulated for each of these models.

From these results it was determined that a minimum of seven

analytes were required to achieve the most accurate classification.

A final, single, model was then built on these seven analytes and

deposited into the DMS as a ‘‘locked’’ model.

Modeling – Final Classifier
The final modeling incorporated all stage I cancer data from

rounds one and two, including the duplicates – a total of 91 stage I

data sets, representing 61 unique samples and an identical number

of controls, matched as before, and balanced in the same round

one to round two ratio (Figure 1). Only these data sets (i.e. the

training set) were used in model building and selection. The

pattern analysis was performed using a unique, patent-pending

algorithm, Knowledge Discovery Engine-VS (KDE-VSTM). KDE-

VS utilizes a group of voting structures similar to decision trees

with a unique method of building and defining the cut-off values

within each voting structure, using not only the measured value of
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Figure 1. Workflow for model building and testing.
doi:10.1371/journal.pone.0004599.g001
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an analyte but also the laboratory-based error estimate associated

with that measurement, derived from the historical QC measure-

ments for each analyte. The user can vary the fractional value of

the error estimate incorporated into a classifier during modeling.

The result is a robust classifier that can withstand significant

perturbation of experimentally determined point values of analyte

concentrations. During model building, each terminal node on the

voting structure is assigned to a given state – either ovarian cancer

or non-ovarian cancer. To score an unknown, our software

extracts the values for the analytes of interest to determine which

node the sample falls in.

Two different modeling runs, with fractional value of error

tolerances of 1.0 and 3.0, were performed using data for the 104

antigen assays. The 20 most robust analytes were determined for

each run and these were then assembled into an exhaustive set of

7-marker models. However, all models were required to contain

an invariant core of the three most robust and informative

analytes, namely CA-125, C-reactive protein and EGF-R, which

reduced the search space to 2380 combinations. For both levels of

error tolerance we identified the ten most sensitive and ten most

specific models – giving a total of 40 models. The frequency of use

of both individual analytes and various analyte combinations

across all 40 models, led to the identification of 11 analytes that

together appeared robust and informative. Finally, a single model

was built on these 11 analytes and locked in the DMS. Only after

locking the model were the remaining data, not used in training,

scored to test the model (Figure 1).

Data Analysis
Confidence intervals were calculated using the Newcombe

method [29].

Results

Preliminary Evaluation of the Proof-of-Principle Classifier
The first set of data, generated on 147 ovarian cancer and 149

non-ovarian cancer control samples was used to explore the

potential of using a high throughput multiplex immunoassay

platform as a discovery tool. We hypothesized that a classification

pattern for stage I ovarian cancer would persist through all later

stage diseases, so only stage I cancer samples were used for model

development. This approach also balanced the average age of case

and control patients, removing age-related bias during modeling

(Table 1). Through several rounds of enrichment for the most

informative biomarkers, driven by the assessment of bootstrap

errors for the model development sample set, a 7-analyte model

evolved, consisting of CA-125, EGF-R, C-reactive protein,

apolipoproteins CIII and A1, IL-18 and tenascin C. This stage I

specific profile was locked into the DMS. Only after the model was

locked into the DMS was the data for the testing samples (those

not used in modeling) accessed and scored by the model to give the

results described below (Figure 1).

Since all stage I data generated in the first round of assays had

been used in modeling, there were no independent data to test

stage I sensitivity. However, the 100-fold bootstrap estimate of

stage I sensitivity was 87% (Table 2). The bootstrap estimate for

specificity, based on the controls used in model development was

82.3%. The classifier was then evaluated using round one testing

samples, a set of independent samples not used in any aspect of

model development. The classifier had 95.3% sensitivity and

70.6% specificity. Performance for benign samples was lower

(67.1%) than other controls. There was no single subtype of cancer

that scored significantly different from the others and when broken

down by stage, the sensitivity varied little (94.0–100%), supporting

the hypothesis that a stage I pattern could persist through all stages

of disease. Following the second round of assays, all round two

data were scored on this locked model. The samples common to

round one showed a reproducible performance with 97.1%

sensitivity (95% CI, 91.0–99.2%) and 74.5% specificity (95% CI,

64.7–82.4%). The additional 69 samples, not previously analyzed,

provided a second testing set and yielded 85.7% sensitivity for

stage I, 100% sensitivity for stage II and 67.5% specificity.

Preliminary Evaluation of the Final Classifier
The proof-of-principle classifier confirmed our hypothesis that

using only stage I data for both model development and

assessment we could identify an informative pattern that may

exist and persists through later stages of cancer. Therefore, we

sought to develop the stage I model further using all stage I

samples available. The same modeling strategy was repeated with

two important modifications. First, a different, proprietary

algorithm was implemented, and second, all stage I samples

analyzed across both rounds one and two were used to increase the

size of the model development data set (Figure 1). The modeling

strategy went through several iterative steps to enrich for the most

informative biomarkers, based on an assessment only of stage I

training data before culminating in a near-exhaustive search of

biomarker combinations that generated 2380 models. Forty

models were selected based on their bootstrap sensitivity and

specificity on the stage I sample set. By comparing the biomarker

combinations in these top 40 models (Table 3), and considering

the balance they showed in bootstrap accuracy, sensitivity,

specificity, and standard deviations, a final set of 11 informative

biomarkers were identified. Certain analyte combinations were

common in many models, and there were clearly ‘‘substitution

patterns’’ where a different analyte or combination of analytes

could yield equivalent models. The 11 biomarkers – CA-125, C-

reactive protein, EGF-R, CA 19-9, apolipoproteins A1 and CIII,

myoglobin, MIP-1a, IL-6, IL-18 and tenascin C – were assembled

into a final model using the KDE-VS algorithm and locked into

the DMS as the final model (Figure 1).

As a preliminary test of the classifier’s performance, all data not

used in model development were scored, yielding 91.3% sensitivity

and 88.5% specificity (Table 4, Figure 1). Notably, stage II

sensitivity was 83.9% and performance on the benign samples

improved to 90.4%. Additional stage I samples were not available,

at that time, for testing of this performance. However, the

bootstrap estimate of sensitivity for the training set was 83.4% for

stage I disease and 84.2% (612.5%) specificity (Table 4). As a

separate exercise, all duplicate data from round two not used in

model development were scored. As anticipated from the previous

results, the performance was similar with 96.1% sensitivity (95%

CI, 89.7–98.7%) and 88.1% specificity (95% CI, 80.8–93.0%) with

benign samples scoring 87.0% (95% CI, 76.2–93.5%). To provide

a frame of reference, we compared the model performance to that

of a clinical decision based on CA-125 expression levels. Since the

cut-off value of 35 IU/ml is already established, the complete data

set was used to assess the predictive value of CA-125. With this

cut-off value, CA-125 gave 94.9% sensitivity and 58.6% specificity

(Table 5). For stage I samples alone, the sensitivity dropped to

88.5%.

We implemented two methods to estimate the importance of the

different analytes to the overall classifier. First, we assessed model

performance when all but one analyte was held constant in the

data files, with the value of the chosen analyte randomized. This

was repeated sequentially for each analyte. The relative value of

each analyte was then ranked by determining which analyte

caused classification performance to decline the most when
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randomized. We observed that biomarker importance tended to

group together. Specifically, CA-125 was the most important

biomarker, followed a group consisting of C-reactive protein, CA

19-9 and EGF-R, followed by MIP-1a, followed by myoglobin,

apolipoprotein CIII, apolipoprotein A1, IL-18 and IL-6 and finally

tenascin C. As a second method of estimating analyte importance,

we analyzed the branching points of the voting structures. Across

all branching points of the voting structures, CA-125 was involved

the most frequently (15.8%) followed by CA 19-9 (12.1%),

myoglobin (11.1%), C-reactive protein (10.8%) and EGF-R

(9.9%). CA-125 was utilized in 80% of the top-level branching

points, representing the first major sample partitioning, followed

by C-reactive protein (11.2%), EGF-R (5.0%) and CA19-9 (1.8%).

At the second tier, CA19-9 was used most frequently (20.3%)

followed by EGF-R (18.8%), CA-125 (11.4%), myoglobin (9.8%),

tenascin C (8.0%), IL-18 (7.2%), and apolipoprotein A1 (6.9%).

Table 2. Preliminary Performance Evaluation of the 7-Analyte Proof-of-Principle Classifier.

State Stage or subtype Testing – Round One Testing – Round Two

Correct/Total (%) 95% CI Correct/Total (%) 95% CI

Ovarian Cancer Stage I -/40 (87.0*) N/A 18/21 (85.7) 62.6–96.2

Stage II 22/23 (95.7) 76.0–99.8 8/8 (100) 59.8–100

Stage III 63/67 (94.0) 84.7–98.1 - -

Stage IV 12/12 (100) 69.9–100 - -

Stage X 5/5 (100) 46.3–100 - -

Combined 102/107# (95.3) 88.9–98.3 # 26/29 (89.7) -

Non-Ovarian Cancer Benign 49/73 (67.1) 55.0–77.4 24/36 (66.7) 48.9–80.9

Normal 19/24 (79.2) 57.3–92.1 3/3 (100) 31.0–100

Other Cancers 9/12 (75.0) 42.8–93.3 0/1 (0) 0–94.5

Combined 77/109 (70.6) 61.0–78.8 27/40 (67.5) 50.8–80.9

*The 40 round one stage I samples were used in model development, therefore results for stage I samples are estimates based on 100-fold bootstrap validation.
#stage I values are not included in these calculations, all other samples listed in the table were not used in developing the proof-of-principle model. Correct/Total, the

number of samples correctly classified / the total number of samples for each sample type; 95% CI, 95% confidence interval for the result; N/A, not applicable. Stage X,
staging not available.

doi:10.1371/journal.pone.0004599.t002

Table 3. Biomarkers in the Ten Most Specific and Sensitive 7-Marker Models Using a Noise Parameter of 1.0*.

Biomarkers Model Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

CA-125# x x x x x x x x x x x x x x x x x x x x

CRP# x x x x x x x x x x x x x x x x x x x x

EGF-R# x x x x x x x x x x x x x x x x x x x x

CA 19-9 x x x x x x x x x x x x x x x x x x x

SAP x x x

Apo A1 x x

IL-6 x x x x x x

Myoglobin x x x x x x x x x x x

MIP-1a x x x x x x x x x x x x

vWF x x x

Leptin x x

Apo CIII x x x

GH x x x x x x

IL-18 x x x x x x x x

MPO x x

VCAM-1 x x x

*A comparable list was generated for a noise parameter of 3.0; x, biomarker used in a given model.
#All models were required to contain an invariant core of the three most robust and informative analytes, namely CA-125, C-reactive protein and EGF-R. CA, cancer

antigen; CRP, C-reactive protein; EGF-R, soluble epidermal growth factor receptor; SAP, serum amyloid P; Apo, apolipoprotein; MIP-1a, macrophage inhibitory protein
1a; EN-RAGE, Protein S100-A12; CK-MB, creatine kinase-MB; vWF, von Willebrand Factor; GH, growth hormone; MPO, myeloperoxidase; VCAM-1, vascular cell adhesion
molecule 1.

doi:10.1371/journal.pone.0004599.t003
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The acute phase markers MIP-1a and IL-6 were seen only 6.2%

and 1.3% respectively at this level.

Discussion

In this study we identified a classification pattern for ovarian

cancer in the serum proteome of patients with stage I disease,

which remains evident through later stage disease. Sera from

patients with pathologist-confirmed conditions – either with or

without epithelial ovarian cancer – were profiled using a bead-

based multi-analyte profiling approach. The analytes covered a

broad range of biological structures and functions, including

cancer antigens, hormones, clotting factors, tissue modeling

factors, lipoprotein constituents, proteases and protease inhibitors,

markers of cardiovascular risk, growth factors, cytokine/chemo-

kines, soluble forms of cell-signaling receptors, and inflammatory

and acute phase reactants as well as markers for autoimmunity

and infection (Table S1). Two independent analyses of samples

were performed 86 days apart. There were several reagent lot and

batch changes during this period, providing a real world challenge

to the robustness of the underlying assays and the model.

Four major components were critical to the success of this

study. First, it was essential to identify a highly consistent, well-

documented and clinically representative sample set of con-

firmed cases and controls. For ovarian cancer, confirmation can

only come from pathologic examination of surgically excised

tissue. We selected serum samples from well-characterized

collections from women already scheduled for surgery. The

substantial majority of controls in this population had pathology-

confirmed benign conditions, which based on univariate analysis,

should pose a greater challenge for classification than sera from

non-symptomatic women (Figure 2; [24]). Second, we utilized a

panel of fully qualified, high throughput, immunoassays that

measure a wide diversity of molecules including autoimmune

and infectious disease markers, and a wide range of well

characterized serum proteins, including those previously impli-

cated in ovarian cancer. Third, we used a novel multivariate

modeling approach to identify a robust pattern of molecules

informative for ovarian cancer. The proprietary algorithm

Table 4. Preliminary Evaluation of the Final 11-analyte Classifier.

Ovarian Cancer Number of samples# Correct classification % Sensitivity 95% CI

Stage I 61 - 83.4% (612.4%)*

Stage II 31 26 83.9 65.5–93.9

Stage III 67 62 92.5 82.7–97.2

Stage IV 12 12 100.0 69.8–100

Unstaged 5 5 100.0 46.3–100

Combined" 115 105 91.3 84.2–95.5

Non-Ovarian Cancer Number of samples# Correct classification % Specificity 95% CI

Benign 73 66 90.4 80.7–95.7

Prospective Benign{ 20 17 85.0 61.1–96.0

Normal 24 21 87.5 66.5–96.7

Other Cancer 13 11 84.6 53.7–97.3

Combined 130 115 88.5 81.4–93.2

#The final model was used to score all round one data, excluding those used in model development, and all additional samples unique to round two, which were not
used in model development.

*the performance for the stage I samples is an estimate based on the 100-fold bootstrap results.
{these benign samples are from Correlogic’s prospective collection, collected under an IDE to support the development of a clinical test for ovarian cancer. The study
population is women scheduled for surgery presenting with symptoms of ovarian cancer. As such, disease status is pathology confirmed following surgery.

"stage I values are not included in these calculations. 95% CI, 95% confidence interval for the result.
doi:10.1371/journal.pone.0004599.t004

Table 5. Comparison of the Classification Performance of CA-125, the Proof-of-Principle and the Final Classifier.

Method Sensitivity 95% CI Specificity 95% CI

All Samples* CA-125.35 IU/ml 94.9% 90.5–97.6 58.6% 51.9–65.6

Stage I only# CA-125.35 IU/ml 88.5% 77.8–95.3 58.6% 51.9–65.6

Proof-of-principle 7-analyte classifier{ 94.1% 88.4–97.2 69.8% 61.7–76.9

Final 11-analyte classifier" 91.3% 84.2–95.5 88.5% 81.4–93.2

*Since the cut-off value of 35 IU/ml is already established, the complete data set, excluding duplicates was used to assess the predictive value of CA-125.
#sensitivity for all stage I samples only, excluding duplicates.
{sensitivity and specificity determined using the 136 ovarian cancer and 149 non-ovarian cancer samples, excluding duplicates, not used in development of the 7-
anlayte classifier.

"sensitivity and specificity determined using the 115 ovarian cancer and 130 non-ovarian cancer samples, excluding duplicates, not used in development of the 11-
anlayte classifier. 95% CI, 95% confidence interval for result.

doi:10.1371/journal.pone.0004599.t005
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Figure 2. Serum level distributions for the analytes used in the final 11-analyte classifier. For each analyte, the box-whisker plots show:
the lowest observation, lower quartile, median value, upper quartile, and highest observation. All analyses, including duplicates are shown. CA-125 –
one ovarian cancer, 11 benign and five normal samples below lowest calibration value; CA 19-9 – 14 ovarian cancer, 18 benign, nine normal and four
other cancer samples below lowest calibration value; C-reactive protein – 93 ovarian cancer, 21 benign, two normal and two other cancer samples
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(KDE-VS) improved classification performance compared to

Random Forest and other classification algorithms by building

robust decision boundaries into its voting structures, which

incorporates real-world experimental variability into the data

being modeled. Finally there was a clear separation between

samples used to develop and identify a single informative model,

and the samples used to evaluate that models performance.

Our study focused on the analysis of early stage disease with

.50% of the cancer sample set representing stages I and II disease

(Table 1). Consistent with the literature, the average patient age at

diagnosis correlated with the stage of disease at diagnosis (Table 1;

[22]). The subtype distribution was representative of the US

population, with a larger proportion of serous (42%) and

endometrioid (26%) carcinoma (Table 1). The control samples

were predominantly from individuals with common benign

ovarian conditions (75%), as well as other gynecological and

non-gynecological cancers (8%), and a small number of non-

diseased samples (17%), consistent with the need for a clinical test

for symptomatic women (Table 1).

Our rationale to focus on early stage disease was two-fold.

Firstly, early stage ovarian cancer is considered curable, but in

many cases symptoms are subtle and hard to detect. If there is an

informative pattern in stage I disease, it would be useful to identify

for later validation. Secondly, we sought to minimize the impact of

CA-125 on the development of any potential classification pattern.

It is widely accepted that CA-125 is more elevated in late stage

disease than early stage disease, and is the most strongly correlated

single biomarker for ovarian cancer at any stage [24], although it

lacks specificity. By examining stage I disease, where CA-125 may

be less dominant, we hypothesized that other informative

proteomic combinations might be discovered and that these

would persist through later disease stages. Our results support

these assumptions for the sample set studied. Indeed, in later work

(unpublished) in which we built classification models using later

disease stages for the model development set, we did identify

patterns strongly predictive of ovarian cancer. However, the

patterns were dominated by CA-125 and had poor performance

when evaluated on early stage disease samples.

All stage I samples were devoted to model development to

maximize the training sample set size. Therefore, a weakness of

this study is the lack of samples to test independently the

performance on stage I disease. Bootstrap estimates have proven

to be good indicators in our model building to date. In the proof-

of-principle classifier, bootstrap estimates predicted the 7-bio-

marker model would have an accuracy of 87% on stage I samples.

This was supported when independent round two, stage I samples

were scored by the model with an 85.7% accuracy. For the final

modeling run that generated the 11-analyte model, the bootstrap

estimate predicted a stage I sensitivity of 83.4%. While our

strategy involved several steps and training data were used

repetitively to refine the set of the most informative assays it is

critical to appreciate that only the model development set,

composed of the stage I data and an equal number of non-

ovarian cancer data, were used repetitively. The other data were

never used until a final model was locked into the DMS for final

testing. Therefore the performance characteristics we observed for

all non-stage I cancer and non-ovarian cancer samples not used in

model building are independent results.

To assess the impact of sample bias on our results, we examined

three potential sources of concern. Age is a risk factor for ovarian

cancer, and could therefore introduce bias caused by age or

menopausal differences between the cases and controls. We

addressed this in several ways. Firstly, we used a strategy in which

the average age of cases and controls were very similar in the

model development set. Secondly, in a separate modeling analysis

we reorganized the model development set into two groups

divided by age (#50 years versus $61 years), irrespective of

disease status. Interestingly, infectious disease markers were the

predominant predictors of age, perhaps reflecting different

vaccination or exposure histories. A similar type of analysis was

undertaken to address the different length of storage of individual

sera in the 280uC freezer. This did not give statistically significant

classification. Finally, we attempted to build classifiers for samples

that were completely randomized regardless of disease status and

again, no statistical significant multivariate classifiers could be

generated.

Only after this modeling had been completed, the performance

characteristics of individual markers were determined on the

sample set used in round one of this study [24]. Interestingly, the

combination of markers in the final model is not the combination

that would be selected from the best individual analytes. Indeed

most of the selected markers provide little classification value for

cancer status when considered alone as individual markers

(Figure 2; [24]) with only CA-125 and C-reactive protein having

appreciable classification potential. The markers in the 11-analyte

classifier reflect a variety of biological functions. However, two

cancer antigens, CA-125 and CA 19-9, along with EGF-R, a

truncated signaling receptor associated with cell growth and

differentiation, and the inflammatory marker C-reactive protein

are involved in the majority of initial decisions in the voting

structure and primarily drive the performance of the classifier. The

remaining markers are cytokines (IL-18, IL-6 and MIP-1a),

metabolic markers (apolipoproteins A1 and CIII), myoglobin (an

oxygen carrier) and tenascin C (an extracellular matrix protein).

While it is difficult to predict the particular biological roles of the

markers that contribute to the ovarian cancer pathology, they are

all implicated in multiple pathways associated with tumor growth

and metastasis. In this context it is interesting to note that the

combination of both CA-125 and CA 19-9 provide complimentary

information for non-mucinous (CA-125 elevated) and mucinous

(CA 19-9 elevated) cancers [30]. One other immediate observation

is the implication of three proteins (C-reactive protein, IL-6, MIP-

1a) commonly associated with an acute phase response. While it

has been proposed that up to 23% of ovarian cancers have a

chronic inflammatory component [31], it is notable that the

relative importance of IL-6 and MIP-1a to other analytes in the

11-analyte classifier is low, reflected both by the calculated

importance value, and the absence of IL-6 and MIP-1a in the 7-

analyte classifier. Since both IL-6 and MIP-1a are multifunctional

proteins, it is difficult to know if their biological roles are purely

inflammatory, or more complex.

The selection of myoglobin in the final 11-analyte classifier was

not intuitive. It is primarily considered a marker of muscle damage

and the underlying biological role that myoglobin plays in ovarian

cancer is unclear. Indeed, myoglobin levels do not appear to differ

significantly between the ovarian cancer and control samples [24]

above highest calibration value; IL-6 – 82 ovarian cancer, 161 benign, 28 normal and 14 other cancer samples below lowest calibration level; MIP-1a –
50 ovarian cancer, 53 benign, 10 normal and four other cancer samples below lowest calibration level; tenascin C – two ovarian cancer and one
benign sample above highest calibration level. OvCa, ovarian cancer; Ca, cancer; Apo, apolipoprotein; CA-125, cancer antigen 125; CA 19-9, cancer
antigen 19-9; EGF-R, epidermal growth factor receptor (soluble form); IL, interleukin; MIP-1a, macrophage inflammatory protein 1 alpha.
doi:10.1371/journal.pone.0004599.g002
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yet our analysis showed it has a relatively strong contribution to

the classifier. Analysis of the voting structures indicates that

myoglobin, as well as tenascin C, are often used as a terminal

decision point forming the final decisions on whether a sample is

classified as a case or control. This may reflect a role in

normalizing the relative expression levels for the other analytes.

In our method of model development it is not possible to fix a

pre-desired sensitivity or specificity for a classifier. Therefore, we

have not presented an ROC curve. In an ROC curve built upon a

single variable (such as CA-125), the cut-off values on the curve

reflect the analyte concentrations measured. In this instance,

changing cut-offs for a given sensitivity and specificity is very

practical. In a multivariate index, there is a large dimensional

reduction interpreting multiple analyte concentrations into a single

value which now represents an index value. In the case of a

regression equation of the form ax+by, the same index value can

be achieved by many different combinations of x and y. As the

number of parameters in the expression increase, so do the

combinations. A similar effect occurs in our voting structures

where many different combinations of voting structures can lead to

a similar overall vote. Moreover, the way the voting structures are

built depends upon a set of decision rules, which guide their

evolution. These rules are intimately tied into how a branch point

in the voting structure is defined, and therefore changing the ROC

cut-off after a model is built is not valid. Any cut-off that does not

reflect the rules used to create the models during model

development will not be robust. However, the shape and AUC

of the ROC are useful envisioning and comparing the overall

accuracy of different multivariate indexes. An ROC curve

generated on the final 11-analyte model, using only samples not

used in model development, to avoid over-fitting, yielded an area

underneath the curve (AUC) value of 0.953, significantly better

than CA-125 alone [24].

Women who are suspected of having ovarian cancer require a

thorough clinical assessment to determine their risk for ovarian

cancer. Many women present with benign pelvic masses that are

treated effectively by surgical recision, under the care of an

obstetrician–gynecologist or general surgeon. When a pelvic mass

proves to be a malignant neoplasm, formal staging and thorough

surgical resection is required to achieve an optimal likelihood of

cure [32]. Therefore it is clinically useful to have a test that will

lead women with a high likelihood of having ovarian cancer into

the care of a gynecologic oncologist [33] while taking care not to

over-refer benign conditions. Guidelines to help assess and triage

patients have been addressed by the American College of

Obstetricians and Gynecologists (ACOG) and the Society of

Gynecologic Oncologists (SGO), however strict adherence to these

guidelines is often incomplete. A blood-based test that could

improve this triage would be of benefit [32]. The 11-analyte

classification pattern described in this paper has characteristics

consistent with this use, but requires a statistically significant

clinical validation on a validated, custom multiplex, to verify its

performance.

There are a number of limitations to our study. Firstly, the

performance of the classifier can only be considered preliminary and

is likely over-optimistic because of the nature of the testing set. The

testing samples were sourced from the same collection, and analyzed

at the same time as those used in model building (training).

Therefore, the performance on a truly independent set (i.e. from

different sources and analyzed at a different time point) is likely to be

lower. Validation on a totally independent set must be conducted

and this forms the basis of our ongoing studies. Secondly, our study is

specifically focused on epithelial ovarian cancers. We intentionally

excluded non-epithelial ovarian cancer subjects because they are

rare, and it would be difficult to identify sufficient numbers for a

statistically sound study. Thirdly, we limited the number of low

malignant potential (LMP) tumors because there are differences of

opinion on how to classify LMP tumors. In order to establish a clear

hypothesis we focused on the classification of pathology proven

epithelial ovarian cancers from pathology proven ovarian benign

conditions. As such, the performance of the test in our preliminary

evaluation can not be generalized to a clinical population, which

would require an independent validation study.

Supporting Information

Table S1 Assays Performed on Samples. The antigen, autoim-

mune and infectious disease panels consisted of the following

assays.

Found at: doi:10.1371/journal.pone.0004599.s001 (0.04 MB

DOC)

Table S2 Sources of Specimens by Collection Site.

Found at: doi:10.1371/journal.pone.0004599.s002 (0.08 MB

DOC)
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