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Abstract

The abundance of infected Ixodid ticks is an important component of human risk of Lyme disease, and various empirical
studies have shown that this is associated, at least in part, to landscape fragmentation. In this study, we aimed at exploring
how varying woodland fragmentation patterns affect the risk of Lyme disease, through infected tick abundance. A cellular
automata model was developed, incorporating a heterogeneous landscape with three interactive components: an age-
structured tick population, a classical disease transmission function, and hosts. A set of simplifying assumptions were
adopted with respect to the study objective and field data limitations. In the model, the landscape influences both tick
survival and host movement. The validation of the model was performed with an empirical study. Scenarios of various
landscape configurations (focusing on woodland fragmentation) were simulated and compared. Lyme disease risk indices
(density and infection prevalence of nymphs) differed considerably between scenarios: (i) the risk could be higher in highly
fragmented woodlands, which is supported by a number of recently published empirical studies, and (ii) grassland could
reduce the risk in adjacent woodland, which suggests landscape fragmentation studies of zoonotic diseases should not
focus on the patch-level woodland patterns only, but also on landscape-level adjacent land cover patterns. Further analysis
of the simulation results indicated strong correlations between Lyme disease risk indices and the density, shape and
aggregation level of woodland patches. These findings highlight the strong effect of the spatial patterns of local host
population and movement on the spatial dynamics of Lyme disease risks, which can be shaped by woodland fragmentation.
In conclusion, using a cellular automata approach is beneficial for modelling complex zoonotic transmission systems as it
can be combined with either real world landscapes for exploring direct spatial effects or artificial representations for
outlining possible empirical investigations.
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Introduction

Risk of vector-borne diseases is highly dependent on the

abundance of infected vectors [1,2]. Lyme borreliosis, the most

frequent vector-borne disease of humans in temperate zones [3], is

no exception. The causative agent is the spirochaete Borrelia

burgdorferi sensu lato, which is transmitted by Ixodes ricinus and I.

persulcatus in Europe and I. scapularis in North America. Each post-

egg developmental stage of ticks (larva, nymph and adult female)

takes one blood meal lasting several consecutive days, followed by

potentially prolonged interstadial development. B. burgdorferi is

transmitted between ticks and vertebrate hosts over the course of

the blood meal. A broad range of transmission-competent

vertebrate hosts (so-called reservoir hosts), such as rodents,

insectivores and several bird species [4,5], along with ticks,

contribute to the maintenance of transmission. Medium-sized

mammals, such as hares, and large mammals, like game, cattle and

horses, are reservoir-incompetent but nevertheless important as

they facilitate survival by providing blood meals to large numbers

of adult ticks and thereby contribute to higher tick abundance [6].

Preferential habitats of ticks and many of their hosts occupy a large

fraction of rural landscapes and more suitable conditions can be

found in certain land cover types, or in certain arrangements of

landscape elements.

Landscape fragmentation can be important in shaping disease

patterns. First, landscape fragmentation may lead to an uneven

spatial distribution of pathogen, by subdividing hosts into

subpopulations of varying size, an important element of disease

transmission. Subpopulations varying in size may have different

patterns of pathogen persistence. Second, when pathogens are

established in a subpopulation, the spread of the pathogen across

the landscape may be slowed or prevented by fragmentation as it

interferes with host movement. This is particularly relevant for

tick-borne diseases, which can be transported over long distances

only by moving hosts.

The effects of landscape fragmentation on the dynamics of

vector-borne zoonoses have been receiving increasing attention in

the last decade. Associations between landscape structure, tick

abundance and disease incidence have been found in various

contexts. The extent of habitats, as well as their relative positions
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and transition areas (i.e. ecotones) contributed to high levels of

tick-borne encephalitis incidence in the Latvian countryside [7]

and of I. ricinus abundance in northern Spain [8]. I. ricinus

abundance was found positively related to the length of forest edge

in northern Belgium [9] and significantly associated to isolation

and permeability of woodland patches in central Spain [10]. B.

burgdorferi sensu lato was found more prevalent in I. ricinus

populations in fragmented woodland with low patch surface area

and high edge density in central France [11] and in well-connected

vegetation patches in the western Palearctic region [12]. Similar

observations were made with regard to I. scapularis [13,14,15,16].

Determining the key factors underpinning the spatial variation in

disease risks would facilitate the development and management of

preventive measures. In this study, we aimed at (i) investigating the

effects of woodland fragmentation on infected tick abundance and

(ii) identifying key landscape characteristics associated with risks of

Lyme disease. Our secondary objective was to develop a spatially-

explicit model for understanding the spatial dynamics of tick-borne

diseases. A set of artificial woodland patterns were tested with two

different types of adjacent land cover (i.e. non-vegetated area and

grassland). These patterns were later examined for a set of

landscape characteristics and their associations to the density and

infection of ticks.

Materials and Methods

Model and Parameters
The model was developed using a cellular automata approach.

Space in the model was two-dimensional, rectilinear, and

organized by cells. A time step of one week and a cell size of

one ha were adopted and we focused on a landscape dimension of

50650 cells. Populations of ticks and hosts, and habitat type

constituted three layers of cell attributes:

i. Tick population layer. The three post-egg tick life stages were

considered: larva, nymph, and adult. Total and infectious

populations in both questing and feeding phases were stated

for each cell.

ii. Host population layer. Total populations of two generalised

types of hosts were stated, reservoir hosts and reproduction

hosts. As an important component of disease transmission,

infectious reservoir host population was also stated. Larvae

only fed on reservoir hosts, adults only fed on reproduction

hosts, while nymphs could feed on both host types. The

numbers of host were stable overall but were allowed to vary

in space and time within the space modelled in relation to

movements. Thus, host distributions vary between time steps.

iii. Landscape layer. A simple ‘‘woodland’’ – ‘‘grassland’’ –

‘‘non-vegetated’’ structure was applied with each cell covered

with one of the three classes. Host movement patterns

differed between land cover types. Both woodland and

grassland were assumed to be suitable habitats for ticks and

reservoir hosts. However, grasslands are less suitable for ticks.

Reproduction hosts may enter grassland for short stays (i.e.

a proportion of a time step) but then return to their woodland

habitat. Non-vegetated area relates to harvested or damaged

woodland or grassland (for example by fire). Both types of

host could venture into but not stay in non-vegetated area.

Thus, they return in the same time step and no ticks could

drop off in non-vegetated area. The following model

parameters varied with land cover types: survival rates of

ticks, densities of hosts and movement patterns of hosts.

Transition rules concerning tick development, pathogen trans-

mission and host movement patterns were applied sequentially to

every cell, during each successive discrete time step. In each time

step, cells in the grid were examined in order (i.e. from west to east

and from south to north), and their states were updated

simultaneously after the transition rules had been applied to the

current configuration.

Tick population dynamics. To achieve an accurate repre-

sentation of the spatio-temporal patterns of ticks and infection

patterns, tick developmental stages must be modelled in consider-

able detail [17]. Our model for the tick population dynamics is

very similar to the approaches used by Ogden et al. [18] for I.

scapularis, and Hoch et al. [19] and Hancock et al. [17] for I. ricinus.

However, contrary to these models, our model is spatially explicit

and takes into account the spatial and temporal population

dynamics of ticks and hosts in each cell. While the model structure

is generic, parameter values were based on the literature

pertaining to I. ricinus. The population dynamics discussed in this

section are assumed to be the same for infectious and non-

infectious ticks. The method for including transmission dynamics

is explained in detail in the section on pathogen transmission.

Figure 1 summarizes the development of ticks and the role of

both host types. In the cellular space, there are two major types of

individuals for which we model the population in each cell: the

ticks and the hosts. The ticks are subdivided in larvae (L), nymphs

(N) and adults (A); and the hosts are subdivided in reservoir hosts

(H) and reproduction hosts (R). Ticks can be either in questing (q)

or in feeding (f) phase.

For each cell, the change in the questing tick population of a life

stage at a time step was computed by adding the ticks that

emerged (moulted in the previous time step from a previous life

stage), and by subtracting ticks that died in the previous time step

and ticks that successfully attached to hosts during the current time

step (formulae in Appendix S1). Three key sets of parameters were

used: (i) survival rates, (ii) feeding rates, and (iii) durations of

interstadial development phases (Table 1). In this model, two

categories of constant tick survival rates in woodland were used

respectively for ticks in questing phases (sqL, sqN, sqA) and in the

periods between feeding and moulting into the next life stages (sLN,

sNA, sAL). Since tick survival rates can be significantly influenced by

abiotic factors such as vapour pressure deficit, survival rates

differed between the various land cover types [20,21]. Following

Hoch et al. [19], a scaling factor FGL was used to differentiate

survival rates in the various land covers considered. As estimated

from Mount et al. [22], survival rates of questing and developing

ticks were 6% lower in grassland than in woodland, i.e. FGL = 0.94.

The number of feeding ticks was estimated by fT = aT?X, where T

refers to a tick life stage (L, N, A), X refers to the preferable host

type of the tick life stage (H, R), and a is the average number of

ticks attached to a host, which was also constant. In the case of

nymphs, both host types were considered in the estimation. If the

estimation was higher than the total number of questing ticks, all

questing ticks were assumed to be picked up. Larvae were assumed

to need less than one week to complete a blood meal (around three

days according to Macleod [23]), and nymphs and adults to need

one week [17]. Finally, durations of interstadial development

period (dLN, dNA, dAL) used in the model were set constant for the

present study.

Pathogen transmission. Generally, tick-borne pathogens

can be transmitted by three different routes: (i) systemic, the

pathogen is transmitted during the blood meal taken by an

uninfected tick on an infected host or by an infected tick on an

uninfected host; (ii) non-systemic, the pathogen is transmitted

between co-feeding ticks [24], (iii) transovarial, ticks hatch from
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infected eggs [25]. Since the significance of non-systemic trans-

mission on the maintenance of Borrelia spp. remains unclear

[26,27], only systemic and trans-ovarial transmissions were

considered in this study.

Assuming that adults do not feed on reservoir hosts, systemic

transmission only takes place between reservoir hosts and feeding

ticks in larval and nymphal stages (formulae in Appendix S1,

parameters in Table 1). For each cell in time step t, we modelled

the increased infectious subset of each population concerned (fIT:

feeding infectious larvae and nymphs, IH: infectious reservoir

hosts) based on classical SI models: DfITt = hHT?(IHt/Ht)?(fTt-

fITt); DfIHt = hTH? fITt?(Ht-IHt)/Ht, where hHT and hTH are

constant and denote the pathogen transmission efficiencies (i.e. the

proportion transmitted) from infectious reservoir hosts to suscep-

tible ticks and from infectious ticks to susceptible reservoir hosts.

As ticks only feed once per life stage, ticks getting infected through

systemic transmission could only become infectious in the next life

stage. Besides, the population of questing infectious larvae can be

increased only via trans-ovarial transmission. A constant param-

eter hTE referring to the pathogen transmission efficiency from an

infectious adult female to her eggs was used for this purpose.

Finally, an average weekly removal rate (rH) of infectious reservoir

hosts was considered based on the life span of reservoir host [28].

Host movement patterns. Two modes of host movement

were considered. The first mode concerned the movement in

habitats, i.e. reproduction hosts moving in woodland and reservoir

hosts moving in both grassland and woodland. This type of

movement is modelled using parameters for the movement

capacities of reservoir hosts (MCH) and reproduction hosts (MCR)

in their habitat. These parameters reflect the maximum projected

distance on the 2D axis per time step and were set to 100 m (1 cell)

and 500 m (5 cells) respectively (Table 1). These values are based

on field observations: the bank vole Myodes (Clethrionomys) glareolus

[29], a reservoir host has a home range in the order of magnitude

of 1 ha, while the roe deer Capreolus capreolus [30], a reproduction

host, has a home range of around 100 ha. A random host

movement was considered enabling the hosts to re-distribute every

time step into habitats within their home range. The second mode

of host movement concerned the movements between habitat and

non-habitat, i.e. reproduction hosts moving between woodland

and grassland. Reproduction hosts such as roe deer Capreolus

capreolus venture into open grasslands to forage [31]. However, as

human disturbance is higher in such land covers [32], they

eventually return to woodland. We assumed hosts only spend

a proportion of the time step in grassland (pG) [33]. A detailed

illustration of these methods is presented in Appendix S2.

Ticks can be transported by moving hosts. Nymphs and adults,

taking one week to complete their blood meals, could be

transported between cells. As larvae were assumed to complete

their blood meal in less than one week, the transport of larva was

considered to be negligible. Along with the displacement of

a proportion of hosts between habitats, the same proportion of

total and infectious feeding ticks was transported. Similarly, when

reproduction hosts had spent a proportion of a time step in

grassland, a proportion of nymphs and adults feeding on them

dropped off, and a proportion of questing nymphs and adults were

Figure 1. Tick life stages and their relations to host types. Solid boxes indicate populations stated in the CA model. Solid arrows indicate the
development of tick populations. Dashed lines show attachment relations. Two phases, questing and feeding, were stated for each post egg life
stage. Host preferences of questing ticks differ between life stages. In the model, it was assumed that larvae feed on small-sized animals, adults feed
on large-sized animals, and nymphs feed on both.
doi:10.1371/journal.pone.0039612.g001
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picked up. Questing larvae can thus increase in both grassland and

woodland after engorged adults brought in by reproduction hosts

drop and reproduce.

Landscape heterogeneity. As the rodent density ranges

from 0 to 135 rodents/ha in southern Belgium [34], a medium

level of 75 per ha was assumed for reservoir hosts in both

woodland and grassland. A population density of reproduction

hosts of 0.15 per ha in woodland was estimated by dividing the

total number of game animals in Wallonia (approximately 750000

heads of red deer, roe deer, fallow deer, mouflons and wild boars

in 2008 [35]) by total woodland area in Wallonia (5000 km2 [36]).

In Europe, the densities of nymphs in woodland can be over 10000

nymphs/ha [3] and the infection prevalence of B. burgdorferi s.l. in

nymphal population has been found greater than 20% [37]. These

values were adopted to initialise the model.

Model Implementation
The model was built using Repast Simphony, a cellular

automata and agent-based modelling toolkit based on JAVA. A

torus boundary was considered for the cellular space. In each time

step, tick populations were updated first. Development and

survival of tick infections and populations were calculated for

each cell at each life stage (Figure 1). After that, tick attachment

was examined, and systemic pathogen transmission took place

between ticks and reservoir hosts. Finally, host movements were

considered and feeding nymphs and adults were transported. For

host movement in habitat (i.e. reservoir host moving in grassland

and woodland, and reproduction host moving in woodland),

attached ticks on the out-moving animals were all dropped off at

the end of the step.

Model Validation
A set of simulated results was compared with the study by

Misonne et al. [38], in which nymphal and adult I. ricinus ticks

were collected from four forested sites in southern Belgium in July

1996, and examined by PCR for B. burgdorferi s. l. For the purpose

of validation, a land cover map (Figure 2, cell size 1 ha) with three

land cover types (woodland, grassland and non-vegetated area) of

all study areas was used in the cellular automata model. Woodland

included broadleaf and coniferous forests. Grassland included

pasture and moorland. Non-vegetated area included peri-urban

and water area, or harvested vegetation and deforested area. The

four study sites were located based on the coordinates (exact to

100 m) provided in [38]. To assess the model performance at

Table 1. Parameters used in the model.

Symbol Definition Value Range Source

Parameters in relation to tick life cycle

aL Average no. of larvae on one reservoir host 8 0 , 30 [66,67]

aNH Average no. of nymphs on one reservoir host 0.6 0 , 2 [66,68]

aNR Average no. of nymphs on one reproduction host 0.95 0 , 32 [69,70]

aA Average no. of adults on one reproduction host 6 0 , 28 [69,71]

sqL Weekly survival rate of questing larvae in woodland 0.96 0.95 , 0.99 [72]

sqN Weekly survival rate of questing nymphs in woodland 0.99 N/A [72]

sqA Weekly survival rate of questing adults in woodland 0.99 N/A [72]

b Average no. of eggs per adult 2000 1500 , 2500 [73]

sLN Survival rate from feeding larvae to questing nymphs in woodland 0.8 0 , 0.89 [17,72,74]

sNA Survival rate from feeding nymphs to questing adults in woodland 0.8 0.0 , 0.93 [17,72,74]

sAL Survival rate from feeding adults to questing larvae in woodland 0.45* 0.0 , 0.49 [17,72,74]

FGL Scaling factors for questing and developing ticks survival rates in grassland 0.93 N/A [22]

dLN Duration of development period from feeding larvae into questing nymphs (week) 46 16, 57 [72,74]

dNA Duration of development period from feeding nymphs into questing adults (week) 54 18, 55 [72,74]

dAL Duration of development period from feeding adults to questing larvae (week) 46 19, 50 [72,74]

Parameters in relation to pathogen transmission

hHT Transmission efficiency from reservoir host to larva and nymph 0.6 0.1 , 0.9 [73]

hTH Transmission efficiency from larva and nymph to reservoir host 0.9 0.8 , 1 [75]

hTE Transmission efficiency from adult to egg 0.01 0 , 0.01 [76]

rH Weekly removal rate of infection in reservoir host population due to mortality 0.04 0.03 , 0.12 [77]

Parameters in relation to host movement patterns

MCH Movement capacity of reservoir host per week (m) 100 0 , 150 [29]

MCR Movement capacity of reproduction host per week (m) 500 0 , 4000 [30]

pG Proportion of time step spend in grassland for reproduction host (%) 35 9 , 77 [33]

Parameters in relation to landscape heterogeneity

dH Density of reservoir host in woodland and grassland (ha21) 75 0 , 135 [34]

dR Density of reproduction host in woodland (ha21) 0.15 0 , 34 [35,36]

N/A = Not Applicable.
*Assuming 50% of adults are females produce hatched larvae.
doi:10.1371/journal.pone.0039612.t001
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different spatial scales, Lyme disease risk indices (i.e. density of

nymphs (DON), nymphal infection prevalence (NIP), and their

product, density of infectious nymphs (DIN)) were calculated at

two levels for each site: (i) site map level, a site map (50650 cells)

was extracted, and (ii) sample block level, a 10610 cells map

centred on the coordinates.

Sensitivity Analysis
The sensitivity of the model to all parameters (Table 1) was

assessed using the risk indices (DON, NIP and DIN) as outcomes.

All simulations were performed with site map 1 (site name:

Condroz, Figure 2). For each parameter (P), the following

sensitivity index was calculated [18,39]: S = Log10(LRIi/LRI0)/

Log10(Pi/P0), where LRI0 is a Lyme disease risk index at

equilibrium when using the default values for all parameters

(Table 1), and LRIi is the same Lyme disease risk index when the

parameter value is increased from its default value P0 to Pi.

Variations of +5% were applied to parameters, except for: (i)

weekly survival rates of tick life stage, for which variations of (+5%)

were tested for mortality, as a survival rate greater than 1 is

meaningless, and; (ii) durations of development which were

modified by +1 week. It should be noted that, the increases of

5% in movement capacities (5 m and 25 m for reservoir and

reproduction hosts) only increased the probabilities of out-moving

populations but did not increase the home ranges, for which

a minimum increase of 100 m is needed. Higher S indicates

a stronger effect of the change on the parameter on the risk

indices. Values of 1 or 21 indicate a linear effect.

Effect of Woodland Fragmentation on Lyme Disease Risk
Indices

Fragmentation scenarios. Lyme disease risk indices of

DON, NIP and DIN in woodland were set as the outputs of the

model. With regards to the surroundings of woodland, two

situations (I & II) were hypothesised: non-vegetated area and

grassland. For each situation, we applied different scenarios with

respect to the percentage covered with woodland (20%, 40%, 60

and 80%) and with respect to the size of block (i.e. the basic unit

square). The distribution of the blocks of woodland is randomly

generated for each simulation. The block sizes applied were 161

cell (which is well within movement capacities of both hosts types),

262 cells, (meaning that reproduction hosts can reach the nearest

neighbouring woodland patches, as the smallest between patch

distance is one block, while reservoir hosts cannot), 565 cells and

10610 cells, in which neither types of host can reach the nearest

neighbouring woodland patches. In total, 16 scenarios of

woodland fragmentations were thus considered. Scenarios were

applied to an artificial landscape of 50650 cells (Figure 3). Five

landscapes were randomly generated for each scenario to assess

the variability of outcomes. 80 landscapes were thus generated for

each situation, for a total of 160 landscapes. Finally, 160

Figure 2. Land cover map of the study areas of Misonne et al. [38]. Light green: grassland; dark green: woodland; white: no or sparse
vegetation. Study sites are tagged with coordinates (military grid reference system) and pointed to the corresponding site maps and site names. The
size of cell is 1 ha. Highlighted zones in site maps refer to the sample blocks.
doi:10.1371/journal.pone.0039612.g002
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simulations were performed to record the risk indices, thus one for

each landscape.

Statistical analysis of model outcomes. Beyond percent-

age cover and patch size, other aspects of landscape structure

varied between scenarios, e.g. patch shape. In the final step,

associations between DON, NIP and DIN and landscape

configuration metrics were tested. First, the configuration of the

160 landscapes was characterised using FragstatsTM software.

Three metrics were obtained at landscape level for woodland: (i)

patch density, the number of patches per surface unit; (ii) shape

index, which relates patch perimeter to a standard shape and

increases with increasing shape complexity; and (iii) aggregation

index, which relates the observed number of like adjacencies to the

maximum possible number of like adjacencies. DON, NIP and

DIN were regressed against patch density, shape index and

aggregation index using linear, power and exponential regressions.

Results

Outcomes were recorded after 1560 simulated weeks (30 years)

for validation, sensitivity analysis and simulation.

Comparison with Misonne et al. [38]
The simulated tick density and infection prevalence were in

general in good agreement with the observations of Misonne et al.

[38]. Density and infection prevalence of nymphal and adult ticks

in all site maps (50650 cells) as well as in sample blocks (centred,

10610 cells) achieved equilibrium values for at least five simulated

years (changes between time steps were smaller than 0.5%). For all

site maps, average densities of 7100620 adults and 659006100

nymphs per ha were obtained, which falls within the estimated

actual density range from 67000 to 120000 nymphs and adults per

ha. This range was calculated by assuming a 5%,9% sampling

efficiency [40] for the dragged density provided in Misonne et al.

[38] (i.e. 6000 nymphs and adults per ha). The simulated ratio of

adults to nymphs was 0.11 which is close to but slightly higher than

0.10 from the field. Tick abundances were not compared for each

site as information on the sizes of sampling areas and duration of

sampling periods were missing from the article. The average

infection prevalence of nymphs over the four site maps was

22.5%61.7% (simulated) vs. 22.3% (99 infectious out of 444

trapped), and that of adults was 43.1%62.8% (simulated) v.s.

33.3% (15 infectious out of 45 trapped). At the level of sample

Figure 3. Examples of landscapes fragmented in different scenarios. Green cells refer to woodland areas. White cells refer to non-vegetated
areas in situation I and grassland areas in situation II. The dimension of each landscape is 50650 cells and the size of cell is 1 ha.
doi:10.1371/journal.pone.0039612.g003
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blocks, simulated nymphal infection prevalence failed to reflect the

differences among sites. The averaged values in the last five

simulated years were respectively 22.6%60.5%, 25.1%60.2%,

20.5%60.1% and 22.3%60.5% compared to 19%, 28%, 22%

and 20% from the field. (Test of equal proportions: X2= 0.63, p-

value = 0.8). No other field information was available for further

investigation. Such difference among sites could be due to the

composition and abundance of local host community (c.f. the

results of sensitivity analysis). Adult infection prevalence was not

considered at that level as sample sizes were small (8, 12, 23 and 2

adults trapped in each site). These results indicate a good

performance of the model only at site map level.

Sensitivity Analysis
The stochastic approach for host movements leads to un-

certainty in the sensitivity analysis. The pattern of sensitivity was

consistent when testing parameters with different size of variations,

suggesting S was a robust indicator of sensitivity, similarly to

findings by Keeling and Gilligan [39]. The various model

outcomes responded differently to the variations of the parameters

(Figure 4). The model had high sensitivities to the survival rate

from feeding larvae to questing nymphs, systemic transmission

efficiencies, the average number of larvae on one reservoir host,

the average number of nymphs on one reproduction host, weekly

mortality rate of questing nymphs, proportion of time-step spent in

grassland for reproduction host and the density of reservoir hosts.

The model was relatively insensitive to changes in the duration of

interstadial development, survival rate from feeding nymphs to

questing adults in woodland, weekly mortality rate of questing

adults in woodland, and the movement capacity of reproduction

host per week. The scaling factor of tick survival rates in grassland

had an important impact in grassland only (not shown).

Effects of Woodland Fragmentation on DON, NIP and DIN
Lyme disease risk indices differed greatly among scenarios (with

varying woodland coverage and block size). By contrast, there

were only small differences between the simulations for the five

landscapes within each scenario (with fixed woodland coverage

and block size but varying spatial arrangement; not shown).

The land cover adjacent to woodland had a major impact on

risk indices observed in woodlands. In general, DON varied

relatively little (658616172 nymphs per ha in woodland), and

hence DIN (1714565888 infectious nymphs per ha in woodland)

depended largely on NIP (26.04%68.97% in woodland). DON in

woodland increased as the woodland coverage increased regard-

less of surrounding land cover types (Figure 5). With increasing

block size and woodland coverage, NIP and DIN decreased in

woodland adjacent to non-vegetated area (situation I) but in-

creased in woodland adjacent to grassland (situation II) (Figure 6).

The contrast between the two situations was highest for landscapes

with 20% woodland and 161 cell blocks with NIP and DIN were

85.20% and 85.18% lower in situation II. The contrast was lowest

in landscapes with 80% of woodland cover arranged in 10610 cell

blocks with NIP and DIN dropping by 6.20% and 6.10%. In

grassland, DON, NIP and DIN fluctuated. The peak values of NIP

in grassland were higher than the NIP in woodland, however,

DON and DIN in grassland were always lower than 0.1% of DON

and DIN in woodland.

Key Landscape Metrics to Lyme Disease Risks
Landscape-level metrics of configuration are all significant

predictors (P,0.05) of Lyme disease risk indices in woodland. In

both situations, variations of NIP and DIN were well explained

(R2.0.75 for all functions of involved landscape metrics in all

fitting shapes). For robustness, an arcsine transformation was also

tested [41,42] for NIP. The regression results (not shown) were

consistent with the linear results. The best models for NIP and

DIN in woodland were linear functions of aggregation index that

explained 95.6% and 94.8% of the DIN variance respectively in

situation I and situation II (Figure 7). Patch density and landscape

shape index were positively associated to DIN and NIP in situation

I but negative in situation II. The aggregation index was negatively

associated to risk indices in situation I but positively in situation II.

The pattern of DON was explained at an adequate level (highest

R2=0.88) in situation I but at a limited level (highest R2=0.13) in

situation II. In both situations, patch density and shape index were

negatively associated to DON while aggregation index was

positively associated with it. In general, when woodlands were

surrounded by non-vegetated areas, nymphal infections were

higher in landscapes with longer and more irregular woodland

patches and with lower aggregation level of woodland. However,

when woodland was surrounded by grassland, the reverse applied.

Discussion

Absolute values of the predicted densities depend strongly on

the assumed relationship between dragging data and actual

densities. Therefore, more emphasis should be put on the relative

values than on the absolute values. Our model indicated a strong

influence of woodland fragmentation on Lyme disease risk.

Increasing fragmentation by decreasing coverage of woodland

and decreasing size of blocks lead to (i) an increase of the NIP and

DIN in woodlands adjacent to non-vegetated areas, and to (ii)

a decrease of the NIP and DIN in woodlands adjacent to

grasslands. The reason why grassland made such differences can

be inferred from the parameters and transition rules utilised in the

model. With lower tick survival and lower reproduction hosts

availability, grasslands act as a sink for ticks. Lower survival of

infectious ticks can contribute to lower infection prevalence in

reservoir hosts in grassland. When questing larvae were picked up

in grassland, the probability of getting infected would be lower. As

a result, such larvae dropped off in woodland could dilute infection

in woodland. Consistent with the negative association found by

Guerra et al. [14] between grassland and I. scapularis ticks, our

results emphasise the presence of grassland as a way of reducing

the density and infection prevalence of I. ricinus tick in highly

fragmented woodlands. It can therefore be hypothesised that

strategies like burning or mowing the grassland, which can reduce

tick abundance, may also amplify the Lyme disease risks in

adjacent woodland. The important role of reproduction hosts on

sustaining the local tick population can be highlighted as well. In

situation II, DON was higher in landscapes with greater woodland

covers, where reproduction host abundances at landscape level

were higher. Similar positive relations were also found between

questing I. ricinus abundances and deer densities in various habitat

types [43,44]. Our findings can provide important directions for

future empirical studies, such as including the effects of adjacent

land cover types, as previous analyses mostly focused on wood-

lands [15,45]. In this study, we only examined fragmented

woodland with two extreme situations of adjacent land covers:

entirely grassland or entirely non-vegetated areas. In reality,

woodland are often adjacent to mixed areas, consisting of non-

vegetated areas and grassland, for example suburban residential

(houses and gardens) and agricultural areas (pastures/croplands).

Further insight could be gained by investing the effect of varying

their relative proportion.

By further analysing the simulation results, we found significant

impacts of landscape configuration metrics on Lyme disease risks.

Landscape Fragmentation and Lyme Disease Risk
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Based on these findings, two consequences of woodland fragmen-

tation on host movement can be highlighted. First, movement of

reproduction hosts between isolated forested patches favour

pathogen transmission. Movements between forest patches were

only possible when patches were closer than the movement

capacity of the host. Thus, a higher patch density and a lower

aggregation level can result in higher between-patch movement

rates. In situation I, this led to higher nymphal infection

prevalence in woodland. Theoretical studies have paid increasing

attention to the effects of between-patch host movement on the

invasion and persistence of disease [46,47]. Population groups in

small forest patches can be exposed to considerable risk of direct

disease transmission if between-patch movement of reservoir host

is sufficiently high. In line with Watts et al [48], our model

expands such conclusion to the field of vector-borne diseases,

suggesting reproduction host movement between isolated forest

patches could also favour and maintain disease transmission.

Second, movements of hosts between different land cover types

shape the local patterns of nymphal abundance and infection

prevalence. In the sensitivity analysis, higher movements of

reproduction hosts out of their habitat could lead to lower

woodland DON. Simulation results by Gaff and Gross [49] and

Hoch et al. [19] showed a similar decrease of tick density in forests

when considering an increased deer movement to adjacent

grassland. It can indicate the role of reproduction hosts in

transporting ticks between land cover types. In situation II,

movements of hosts between land cover types were related to the

length of forest edge, which is a function of landscape shape index.

Decreased movements of both reservoir and reproduction hosts to

non-vegetated areas (associated to lower landscape shape index

value) were related to an increase in woodland NIP. This would

provide crucial hypotheses for future empirical studies: controlling

the movements of reproduction host between different land cover

types is unlikely to reduce the pathogen transmission. For instance,

fencing the woodland may not be useful. Fencing has already been

reported to be less useful to remove ticks in the forest or to control

tick infestation in adjacent moorlands [44]. A possible reason can

be that the local absence of a reproduction host may increase tick

feeding on reservoir hosts [50]. This may lead to an increase of

pathogen transmission.

Figure 4. Model sensitivity results. Bar chart indicates the value of sensitivity index (S) on Lyme disease risk indices examined for each parameter.
Black, red and blue bars refer to S values on density of nymphs (DON), nymphal infection prevalence (NIP), and density of infectious nymphs (DIN)
respectively.
doi:10.1371/journal.pone.0039612.g004
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Common processes related to changes in forest area or structure

include forest harvesting and forest conversion. Our findings

suggest possible impacts of forest management practices: if forest is

exploited by removing (i) large clumps rather than a number of

small blocks, (ii) regular shapes like square and round that

minimize forest edge and (iii) those adjacent to areas that are

Figure 5. The effects of woodland coverage on densities of nymphs. Figure shows boxplots of densities of nymphs (DON) in woodland
categorised by woodland percentages in situation I and II. The lower and upper boundaries of box refer to the 1st and 3rd quartiles of DON in each
category. Crosses indicate the median value of DON. The whiskers refer to maximum and minimum DON values in each category. Red lines are two
linear functions of woodland percentage categories on the median value of DON in situation I: (a) DON = 249 * woodland percentage categories
+65973, R2 = 0.92; and in situation II: DON = 265 * woodland percentage categories +66009, R2 = 0.70.
doi:10.1371/journal.pone.0039612.g005

Figure 6. Density of infectious nymphs under different landscape fragmentation scenarios. Figure shows the simulated density of
infectious nymphs (DIN) in woodland for landscapes with different woodland percentages and block sizes in the two situations.
doi:10.1371/journal.pone.0039612.g006
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already deforested, then the risk of Lyme disease may be lowered.

Similar suggestions for forest harvesting have been proposed by

[51]. Although this can lead to slower forest recovery, payoff may

be found in the context of risk of tick-borne diseases.

Biological process models for tick-borne zoonoses are very few

in numbers whilst the published empirical works are numerous.

The situation indicates that a formal framework to understand and

control the transmission of tick-borne zoonotic diseases has not

been achieved. Models for tick population dynamics [17,18,19,52]

are quite detailed in tick biology but none have explicitly stated

landscape heterogeneity. Models for pathogen dynamics [48,49]

adopted representations of landscape but assumed single-host

processes or completely ignored the life stages of tick. This study,

however, helps to bridge the gap. The present model for the

dynamics of both tick and pathogen accommodates a multi-host

structure and tick post-egg life stages onto a cell-based represen-

tation of the landscape. Cell-based representation of the landscape

is strongly associated to remotely sensed data, which are abundant

and provide detailed information on the landscape (e.g. spatial

relationships, attributes etc.). Such data format may be more

convenient to model complex and dynamic systems [53] than the

patch-based approach.

In our model, several simplifying assumptions were made that

may have influenced the results. These could be adapted in future

developments to better represent reality. Firstly, the host

preference of ticks could be more flexible. The present model

simplifies tick feeding by assuming larvae only feed on reservoir

host and adult tick only on reproduction hosts. Evidence that

larvae also feed on reproduction hosts [54] and that adults feed on

reservoir hosts [55] has been published recently. Moreover, in

some instances, host-finding rates could be affected by density-

dependent competition between ticks [56]. Secondly, movement

patterns of host could be more detailed. The stochastic movement

rules adopted in our model were only a first step. The trigger and

completion of the movement may be multi-factorial, for example

dependent on local host density, the phase of movement (i.e.

home-ranging and dispersive) and geographical connectivity [57].

Thirdly, the influence of climate and seasonal weather patterns

could be included. In tick-borne zoonoses transmission systems,

the temporal dynamics of either pathogen or populations of tick

and their hosts have been studied extensively [58,59]. These

temporal dynamics result from environmental factors such as

seasonal changes of climate and host abundance [60,61]. Some

key tick behaviours have been regarded to be particularly sensitive

to season, for example host-finding activity, diapause and

maturation. Fourthly, biodiversity, which can be influenced by

landscape fragmentation [62], may need to be considered. A very

simple species assemblage of two generic hosts was adopted

because the field data of species richness, distribution and

abundance are largely missing in Belgium, and large uncertainties

remain on reservoir capacity of various host species, as well as their

tendency to pick up ticks. However, the changing diversity and

composition of host community can in theory significantly affect

the zoonotic dynamics [63]. When data for more species are

available, more land cover types (for example, ecotones) need to be

included as different species may prefer different types of the land

cover [9] in which ticks also suffer from different mortality rates

[22]. Finally, tick feeding behaviours could be better specified. In

the model, we assumed fixed durations for tick feeding. However,

it has been reported that the duration of feeding can vary, for

example larvae sometimes feed for almost one week [23]. For

computational reasons, a time step of one week was used, which

affected the opportunities for larvae to spread. It may be important

to explore the effect of this assumption, as well as whether or not

the drop-off rhythms of ticks (i.e. the maximum drop-off of

engorged ticks may occur during a specific period in a day) exists

for I. ricinus and responses to temperature and land cover [64].

Cellular automata allow for a certain degree of flexibility in the

theoretical study of complex ecosystems. For example in the tick-

borne disease model at hand, applying a set of simplifying

assumptions allowed to explore the effect of landscape structure.

Beyond the immediate results brought by testing a range of

scenarios, the model also allowed to outline a number of

interesting areas of further empirical investigation. In this regard,

the virtual setting of the model is an excellent complement to

empirical work when field data are insufficient for direct

Figure 7. The effects of woodland aggregation index on densities of infectious nymphs. Red lines indicate two linear functions of
aggregation index (AI) on the simulated densities of infectious nymphs (DIN) in woodland of: (i) DIN = 2170 * AI +34745 in situation I, R2 = 0.96; and
(ii) DIN = 124 * AI+3031, R2 = 0.95 in situation II.
doi:10.1371/journal.pone.0039612.g007
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comparisons [65], or, as is the case for ticks, extremely costly and

challenging to collect. Still, further challenges will be encountered

when applying the model to scenarios based on real-world

situations. It is clear that, when transposing this model to real-

world cases, more challenges may emerge, and require case-

specific modifications.

In conclusion, the model developed in this study incorporated

a cell-based representation of the environment to explore the

effects of forest fragmentation on the risks of Lyme disease in

a spatially-explicit manner. It can be combined with either real

world landscapes or artificial representations. Assuming no

impacts of biodiversity, our simulations have shown a strong

influence of configuration of habitat patterns, i.e. the density,

shape and aggregation level of woodland patches, on density and

B. burgdorferi infection prevalence of I. ricinus ticks. These results

suggest that, via altering the patterns of local host population

interactions, landscape fragmentation can significantly affect the

landscape-level dynamics of Lyme disease risk.
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