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Abstract

Introduction: The classification of breast cancer patients into risk groups provides a powerful tool for the identification of
patients who will benefit from aggressive systemic therapy. The analysis of microarray data has generated several gene
expression signatures that improve diagnosis and allow risk assessment. There is also evidence that cell proliferation-related
genes have a high predictive power within these signatures.

Methods: We thus constructed a gene expression signature (the DM signature) using the human orthologues of 108
Drosophila melanogaster genes required for either the maintenance of chromosome integrity (36 genes) or mitotic division
(72 genes).

Results: The DM signature has minimal overlap with the extant signatures and is highly predictive of survival in 5 large
breast cancer datasets. In addition, we show that the DM signature outperforms many widely used breast cancer signatures
in predictive power, and performs comparably to other proliferation-based signatures. For most genes of the DM signature,
an increased expression is negatively correlated with patient survival. The genes that provide the highest contribution to
the predictive power of the DM signature are those involved in cytokinesis.

Conclusion: This finding highlights cytokinesis as an important marker in breast cancer prognosis and as a possible target
for antimitotic therapies.
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Introduction

A reliable prediction of the outcome of a breast cancer is

extremely valuable information for deciding a therapeutic strategy.

The analysis of gene expression profiles obtained with microarrays

has allowed identification of gene sets, or genetic ‘‘signatures’’, that

are strongly predictive of poor prognosis (see [1,2] for a recent

survey). In the past few years, two types of cancer signatures have

been developed, commonly designated as ‘‘bottom-up’’ or ‘‘top-

down’’. In top-down (or supervised) signatures, the risk-predicting

genes are selected by correlating the tumor’s gene expression

profiles with the patients’ clinical outcome. One of the most

powerful top-down signatures is the so-called 70-gene signature,

which includes genes regulating cell cycle, invasion, metastasis and

angiogenesis [3]. This signature outperforms standard clinical and

histological criteria in predicting the likelihood of distant

metastases within five years [4]. Although highly predictive of

cancer outcome, top-down signatures have the drawback of

including different gene types, thereby preventing precise

definition of the biological processes altered in the tumor.

Bottom-up (or unsupervised) signatures are developed using sets

of genes thought to be involved in specific cancer-related processes

and do not rely on patients’ gene expression data. Examples of

these signatures are the ‘‘Wound signature’’ that includes genes

expressed in fibroblasts after serum addition with a pattern

reminiscent of the wound healing process [5,6], the ‘‘Hypoxia

signatures’’ that contains genes involved in the transcriptional

response to hypoxia [7-9], and the ‘‘Proliferation signatures’’ that

include genes expressed in actively proliferating cells [10,11].

Other bottom-up signatures are the ‘‘Embryonic Stem cells (ES)

signature’’ [12], the proliferation, immune response and RNA

splicing modules signature [13] (henceforth abbreviated as

‘‘Module signature’’) the ‘‘invasiveness gene signature’’ (IGS) [14]

and the chromosomal instability signature (CIN) [15]. The ‘‘ES

signature’’ is based on the assumption that cells with tumor-

initiating capability derive from normal stem cells. This signature

reflects the gene expression pattern of embryonic stem cells (ES)

and includes genes that are preferentially expressed or repressed in

this type of cells [12]. The ‘‘Module signature’’ was generated by

selecting gene sets that were enriched in nine pre-existing
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signatures, and consists of gene modules involved in 11 different

processes including the immune response, cell proliferation, RNA

splicing, focal adhesion, and apoptosis [13]. The IGS signature

includes genes that are differentially expressed in tumorigenic

breast cancer cells compared to normal breast-epithelium cells; the

186 genes of this signature are involved in a large variety of

cellular functions and processes [14]. The CIN signature has

features of both top-down and bottom-up signatures; it was

developed by selecting genes with variations in the expression level

correlated with the overall chromosomal aneuploidy of tumor

samples [15].

Tumors are characterized by frequent mitotic divisions and

chromosome instability. In addition, several independent studies

have shown that mitotic activity in breast cancer samples from

lymph node-negative patients positively correlates with poor

prognosis [16-19]. We thus reasoned that genes required for

mitotic cell division and genes involved in the maintenance of

chromosome integrity could be used to develop a new cancer

signature. In a recent RNAi-based screen performed in Drosophila

S2 cells [20], we identified 44 genes required to prevent

spontaneous chromosome breakage and 98 genes that control

mitotic division. Thus, considering the strong phylogenetic con-

servation of the mitotic process, rather than relying on functional

annotation databases, we used the 142 Drosophila genes identified

in the screen [20] to develop a new bottom-up signature that

includes genes involved in cell division but not yet annotated in the

literature. 108 of these 142 Drosophila genes have unambiguous

human orthologs. Here we show that these 108 human genes

constitute an excellent signature to predict breast cancer outcome.

This Drosophila mitotic signature, or ‘‘DM signature’’, has minimal

overlap with pre-existing gene signatures and outperforms most of

them in predictive power.

Materials and Methods

Definition of the DM signature
The 142 D. melanogaster mitotic genes described in [20] were first

converted into Entrez gene ids (file gene_info.gz downloaded from

the Entrez Gene ftp site in June 2008). We then used Homologene,

build 62, to obtain the 108 human orthologues that compose the

DM signature. We considered only one-to-one orthology relation-

ships reported in Homologene. This criterion led to the exclusion

from the DM signature of several human genes that are commonly

considered homologous to the Drosophila genes. However, the

degree of homology between these human genes and their

Drosophila counterparts was not sufficient for inclusion in Homo-

logene.

Breast cancer datasets
We used the following publicly available breast cancer datasets:

NKI [4]; Pawitan ([21] - Gene Expression Omnibus (GEO-) series

GSE1456); Miller ([22] - GEO series GSE3494); Sotiriou ([23] -

GEO series GSE2990); Desmedt ([24] - GEO series GSE7390);

and Wang ([25] - GEO series GSE2034). We used relapse-free

survival times when available, and overall survival times otherwise.

Since the Sotiriou, Desmedt and Miller datasets have some

patients in common, we merged the Sotiriou and Desmedt

datasets in a single dataset, from which we removed the patients

included in the Miller dataset. We refer to this combined dataset as

the Sotiriou-Desmedt dataset. Normalized expression data and

clinical data for the NKI dataset were obtained from http://www.

rii.com/publications/2002/nejm.html. For the Affymetrix-based

datasets, we obtained gene expression values from the raw data,

using MAS 5.0 algorithm as implemented in the Simpleaffy [26]

package of Bioconductor [27]. For all datasets we considered only

the probesets unambiguously assigned to one Entrez Gene ID in

the platform annotation. For the Affymetrix platform, we used the

annotation provided by the manufacturer, version 25, which

allowed us to identify single or multiple probesets for 105 of the

108 DM signature genes. For the NKI dataset we used the

annotation file provided in the website mentioned above; the

correspondence between sequence accession number and Entrez

gene was obtained from the Entrez gene ftp site; 98 of the 108 DM

genes were thus associated with one or multiple probes.

Determination of the predictive power of the genes in
the DM signatures by clustering analysis

To determine whether the expression profiles of the genes

included in the DM signature are significantly and robustly

correlated with the disease outcome we used the following

procedure on the datasets mentioned above: (a) selecting the

microarray probes unambiguously associated to the signature

genes; (b) creating two groups of patients by Pearson correlation-

based hierarchical clustering, using only the expression profiles of

the probes selected in step a; (c) determining by a standard log-

rank test, as implemented in the survival library of R, whether the

cumulative probability of survival is significantly different between

the two groups.

Determination of prognostic scores
For all datasets we divided the patients into two groups (good- and

poor-outcome) based on their status at five years. We then calculated

the prognostic scores for outcome prediction at five years using the

following procedures. For the 70-gene signature, the score of a

patient is the cosine-correlation of the expression profile of genes

with good-prognosis found in http://www.rii.com/publications/

2002/nejm.html [4]. The genes in the signature, given at as acces-

sion numbers, were translated into Entrez gene IDs and then into

Affymetrix probesets using Affymetrix annotation files, version 25.

We obtained 76 probesets for the HG-U133A platform, and 109

probesets for the HG-U133A and HG-U133B platforms considered

together. Probesets corresponding to the same gene were assigned

the same coefficient in the good-prognosis profile.

For the Wound and IGS signatures, the score of a patient is

given by the Pearson correlation of the expression profile of the

signature genes. For the Wound signature the core serum response

centroid is available at http://microarray-pubs.stanford.edu/

wound [5]. The genes in the signature were translated into Entrez

gene ids and then into Affymetrix probesets using the procedure

described above. We obtained 493 probesets for the HG-U133A

platform, and 667 probesets for the HG-U133A and HG-U133B

platforms considered together. Probesets corresponding to the

same gene were assigned the same expression value in the core

serum response centroid. The centroid for the IGS signature is

directly given in Affymetrix probesets [14].

For the CIN [15], Proliferation [11] and Hypoxia [9]

signatures, the score of a patient is the sum of the logarithmic

expression of the signature genes in the patient sample. For the

CIN and Proliferation signatures, the gene symbols, were

translated first into Entrez gene ids and then into Affymetrix

probesets as described above. The Hypoxia signature is directly

given in terms of Affymetrix probesets.

For the DM signature, the prognostic score of a patient is given

by

X

g

z(g)x(g,p)
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where the sum is over all the probesets associated to the signature,

z(g) is the z-score of probeset g computed in the Pawitan dataset

and x(g,p) is the logarithmic expression level of probeset g in patient

p. The Affymetrix probesets that comprise the DM signature

together with their z-scores are reported in Table S1.

We used Receiver Operating Characteristic ROC curves to

compare the scalable scores on three datasets (Miller, Wang and

Sotiriou-Desmedet). The area under the curves and the related

standard error were computed using the Hmisc library and

programs available at http://biostat.mc.vanderbilt.edu/s/Hmisc.

The Pawitan and NKI datasets were not used in this comparison

because they were involved in the training of the DM and 70-gene

signatures, respectively.

Contribution of specific gene classes to the predictive
power of the signature

The contribution of each probeset g to the difference in score

between poor- and good-prognosis patients is defined as

P(g){G(g)ð Þz(g)

where P(g) (G(g)) is the logarithmic expression of the probeset

averaged on all poor (good) prognosis patients and z(g) is the z-

score of the probeset. Given a subset of the DM signature (e.g.

cytokinesis-related genes), we used a Mann-Whitney U test to

compare the contribution of the probesets included in the subset to

the contribution of all the other probesets.

Results

Generation of the DM signature
We have recently carried out an RNAi-based screen to detect

Drosophila genes required for chromosome integrity and for the

fidelity of mitotic division [20]. Since these types of genes tend to

be transcriptionally co-expressed, we first used a co-expression-

based bioinformatic procedure to select a group of 1,000 genes

highly enriched in mitotic functions. We then performed RNAi

against each of these genes in Drosophila S2 cultured cells.

Phenotypic analysis of dsRNA-treated cells allowed the identifica-

tion of 142 genes representative of the entire spectrum of functions

required for proper transmission of genetic information. 44 of

these genes were required to prevent spontaneous chromosome

breakage. The remaining 98 genes specified a variety of mitotic

functions including those required for spindle assembly, chromo-

some segregation and cytokinesis [20]. Based on the observed

RNAi phenotypes, these 142 genes were subdivided into 18

phenoclusters [20].

To construct the DM signature we identified the human

homologues of these Drosophila genes, according to Homologene

[28]. Both the genes required for chromosome integrity and those

involved in the mitotic process turned out to be highly conserved

in humans. 36 of the 44 chromosome-integrity genes and 72 of the

98 mitotic genes had clear human orthologues. These 108 human

genes, and their classification according to the phenotypes

associated with RNAi-mediated silencing of their Drosophila

counterparts, are listed in Tables 1 and S1. Collectively, the

genes in Table 1 constitute the DM signature. The remaining 34

Drosophila genes identified in the screen [20] were not included in

the DM signature because they did not have an unambiguous

human homologue in Homologene (Release 62).

The DM signature shares very few genes with pre existing

signatures. We considered the top- down 70-gene signature [3]

and several bottom-up signatures based on various aspects of

cancer biology: the Wound signature [5,6]; the ES signature [12];

the IGS signature [14] the Hypoxia signatures of Sung et al. [8]

and Winter et al. [9]; the Proliferation signature of Starmans et al.

[11]; the proliferation/immune response/RNA splicing (Module)

signature [13] and the chromosomal instability (CIN) signature [15].

The number of genes that the DM signature shares with the 70-

gene, ES, IGS, Wound and Hypoxia signatures is extremely small.

The overlap is higher with the Module, Proliferation and CIN

signatures, but none of these signatures shares more than 20% of its

genes with the DM signature (Table 2).

25 of the 108 genes of the DM signature are included in the list

of genes periodically expressed during the cell cycle in HeLa cells

[10], compared to 5.8 expected by chance (P = 2.2E-10). Thus, as

expected for genes involved in cell division, a substantial fraction

of the DM signature genes has a cell cycle-dependent expression.

The prognostic value of the DM signature
For a preliminary assessment of the predictive power and

robustness of the DM signature we used six publicly available

breast cancer datasets: (i) NKI, which contains expression data

from primary breast tumors of 295 consecutive, relatively young

(age,52 yrs) patients [4]; (ii) Pawitan, which includes data from

159 consecutive breast cancer patients [21]; (iii) Miller, with data

from 251 patients selected from a consecutive series based on the

quality of the material [22]; (iv) Desmedt and (v) Wang, which

contains expression data from 198 and 286 lymph-node negative,

systemically untreated patients, respectively [24,25]; (vi) Sotiriou,

which includes 189 invasive breast carcinomas [23]. Due to the

presence of common samples, we merged the Desmedt and

Sotiriou datasets into a single one and removed from it the patients

that were also included in the Miller dataset. All datasets contain

both ER-positive and ER-negative samples.

Although most of these gene expression data were generated

using the same microarray platform, and could in principle be

merged in a single dataset as recently described [13], we evaluated

the DM signature on the individual datasets. We chose this

approach because the robustness of a gene signature on

independent datasets is an important criterion for validation of

its predictive power. In our prognostic power analysis, we used

relapse-free survival times when available, or overall survival times

otherwise. Because three genes of the DM signature (H3F3A,

PPAN-P2RY11 and KIF4) were not represented in the Affymetrix

platform, we performed our analyses on 105 genes. For each

dataset, patients were divided into two groups based on the

expression profiles of the genes in the DM signature using

hierarchical clustering. Differences in survival probability between

the two groups were then evaluated with a standard log-rank test

on Kaplan-Meier curves. Figure 1 shows that the differences in

survival are statistically significant for all datasets considered.

As mentioned above, the DM signature contains two broad

classes of genes, namely 72 mitotic genes (71 in platform) and 36

genes required for the maintenance of chromosome integrity (34 in

platform). To determine the relative contribution of these two gene

classes to the predictive power of the DM signature, we performed

the analysis using the two categories of genes separately. Both gene

groups turned out to be independently predictive of survival

(Figure S1). However the predictive power of the global signature

was higher in all cases.

We also asked whether the DM signature is predictive of

survival in other tumors besides breast cancer. Using the

hierarchical clustering approach described above, we found that

the DM signature is predictive of survival in a large lung cancer

dataset [29] (P = 3e26) and in a glioma dataset [30] (P = 0.0170).

However, the DM signature is not significantly predictive in other

lung cancer [31] and glioma [32] datasets, and in renal [33] or
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ovarian [31] cancer datasets. The p-values of the log-rank tests for

non-breast datasets are reported in Table S2.

Evaluation of a prognostic score for the DM signature
Subdivision of patients into risk groups using the unsupervised

clustering-based approach described above allows assessment of

the predictive power of a gene signature, but does not allow

specificity (fraction of low-risk patients correctly classified) and

sensitivity (fraction of high-risk patients correctly classified) to be

tuned according to specific requirements. However, such tuning is

important in clinical applications, because the misclassification of a

high-risk patient is potentially more harmful than the misclassi-

fication of a low-risk patient. Indeed, the 70-gene signature [3],

which is used in clinical practice, assigns a risk score to each

patient; patients are then classified based on a score threshold that

can be tuned to obtain the desired compromise between specificity

and sensitivity. Scalable prognostic scores, each computed from

gene expression data with a specific algorithm, have been

previously defined also for the Wound [6], IGS [14], Proliferation

[11], CIN [15] and Hypoxia [9] signatures.

We determined a scalable prognostic score for the DM

signature, using a procedure similar to that employed by Wang

and co-workers [25]. We define the DM prognostic score as the

sum of the logarithmic expression values of the signature genes,

each multiplied by its z-score. The Cox z-score measures the

correlation between the expression pattern of a gene and survival

of the patient. A positive (negative) z-score indicates negative

(positive) correlation between the gene expression level and

patient’s survival time.

We used the Pawitan dataset as training set and computed the

Cox z-scores for the Affymetrix probesets associated with the DM

signature (the z-scores of all probesets are shown in Table S1). The

distribution of these z-scores is consistently shifted towards positive

values compared to the distribution of the z-scores of all genes

represented on the microarrays (P-values between 1.1e-6 and 3.3e-

15 from one-sided Mann-Whitney U test) (Figure S2). Thus, as

expected for proliferation-related genes, for most genes in the DM

signature an increased expression level is negatively correlated

with survival.

We then compared the DM signature score with the scores of 6

other scalable signatures for performance in predicting cancer

outcome at 5 years. For this analysis we used ROC curves

generated with the Affymetrix datasets not employed for training

(Miller, Sotiriou-Desmedt and Wang). The scores of the CIN [15],

Proliferation [11], 70-gene [3], Wound [6], IGS [14], and

Hypoxia [9] signatures were computed as described in the

respective references, after mapping the genes to the Affymetrix

platform (see Methods for details). As shown in Figure 2, the

predictive power of the 3 proliferation-based signatures (DM, CIN

and Proliferation), measured by the Area Under ROC Curves

(AUC), is very similar in all datasets and systematically higher than

that of the 70-gene, Wound, IGS, or Hypoxia signature.

Table 2. The DM signature shares very few genes with other
major cancer signatures.

Signature
# of genes in
the signature

Genes in common with
the DM signature

Module 261 18 (6.9%)

CIN 71 14 (19.7)

ES 1029 14 (1.4%)

Wound 371 6 (1.6%)

Proliferation 52 6 (11.5%)

70-gene 61 2 (3.3%)

Hypoxia (Winter) 92 2 (2.2%)

IGS 175 2 (1,1%)

Hypoxia (Sung) 126 1 (0.8%)

doi:10.1371/journal.pone.0014737.t002

Table 1. Classification of the 108 genes of the DM signature according to the RNAi phenotypes of their Drosophila orthologues.
The phenoclusters, indicated in bold characters, are described in detail in [20].

RNAi phenotypes elicited by the Drosophila genes Names of the human orthologues

Chromosome aberrations (CA) C15orf44, CASP7, CNOT3, CTPS, CUL4B, CWC15, DCAKD, DDB1, FRG1, H3F3A,
MSH6, ORC5L, PCNA, PIAS1, PPAN-P2RY11, POLA1, PRIM2, PRPF3, RAD54L, RFC2,
RPA1, RRM2, SART1, SF3A3, SMC1A, TAF6, TFDP2, TK2, TPR, TYMS, WBP11, WDR46,
WDR75, XAB2, XRN2, ZMYM4.

Abnormal chromosome structure. CC1, loss of sister chromatid cohesion
in heterochromatin; CC2 and CC3, defective lateral and longitudinal
chromosome condensation, respectively

CC1: MCM3, MCM7, SMC3.
CC2: NCAPD2, NCAPG, SMC4, SMC2.
CC3: MASTL, ORC2L, TOP2A.

Abnormal chromosome segregation. CS1, defective chromosome
duplication; CS2, precocious sister chromatid separation; CS3 and CS4,
lack of sister chromatid separation; CS5, defective chromosome
segregation during anaphase

CS1: CDT1.
CS2: BUB3, KNTC1, ZW10.
CS3 and CS4: ASCC3L1, CCNB1, CDC40, DHX8, KIAA1310, LSM2, PRPF31, SF3A1,
SF3A2, SF3B1, SF3B2, SF3B14, SLU7, SNRPA1, SNRPE, TXNL4A, U2AF1, U2AF2.
CS5: ANAPC5, ANAPC10, CDC20, KIF4A, KIN, PSMC1, SFRS15.

Abnormal spindle morphology: SA1, short spindles; SA2, spindles
with a low MT density; SA3, poorly focused spindle poles, SA4
miscellaneous spindle defects

SA1: CKAP5, EIF3A, EIF3D, EIF3E, EIF3I, GTF3C3, MAPRE3, NOC3L, RRP1B, TBK1,
THOC2, TUBB2C, WDR82.
SA2: TRRAP, TUBGCP4, TUBG2.
SA3: ASPM, CENPJ, MKI67IP, PPP1R8.
SA4: CDC2, KIFC1, KIF11, KIF18A.

Abnormal spindle and chromosome structure: SC1, defective
chromosome condensation and cytokinesis; SC2, multiple mitotic defects

SC1: AURKC, RBBP7.
SC2: PLK1.

Frequent cytokinesis failures: CY1 and CY2, defective in early and late
cytokinesis, respectively

CY1: ECT2, KIF23, PRC1, RACGAP1.
CY2: ANLN, CIT.

doi:10.1371/journal.pone.0014737.t001
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Since the DM signature and the two other proliferation-based

signatures perform similarly in predicting outcome at 5 years (see

Fig. 2), we compared their performance in greater detail at three

sensitivity values. In Table 3, we show for each signature and

dataset both the specificity and the P-value of the log-rank test

that compares the survival probabilities of the two groups of

patients identified by the signature. These parameters provide

different assessments of the predictive power: while the specificity

refers to the ability of the signature to predict the outcome only at

the 5-year endpoint, the P-value takes into account the complete

survival curves, and thus measures the ability to stratify the

patients over the whole time range. The results in Table 3 show

that the DM signature performs slightly better than the other two

signatures at the higher sensitivities, especially in terms of P-

value. The differences in performance between the three

signatures are driven by the fraction of patients that are

discordantly classified in the different signatures. These fractions,

which range from ,2% to ,10% in the three datasets, are

reported in Table S3.

We also performed multivariate Cox analysis to ascertain

whether the DM signature predicts survival independently of other

molecular and clinical tumor markers. The results for the Miller

dataset (Table 4), which is the richest in clinical annotations, and

those for the other datasets (Table S4) clearly show that the DM

score is a predictor independent of several tumor parameters.

Multivariate Cox analysis on the Miller dataset showed that also

the other proliferation-based signatures are independent of the

same parameters considered for the DM signature (Table S5).

The patients that would benefit the most from an effective

prognostic predictor are those with lymph-node negative breast

cancers. The Wang dataset includes only lymph-node negative

patients, while the Miller and Sotiriou-Desmedt datasets include

both node-positive and negative patients. Therefore we evaluated

the performance of the DM signature on the patients of the latter

datasets by computing the AUC under ROC curves at the five-

year endpoint. For both the Miller and the Sotiriou-Desmedt

studies, the AUC values obtained for the lymph node-negative

patients were very similar to the values obtained for the entire

Figure 1. Predictive power of the DM signature. Kaplan-Meier analysis using the DM signature shows significant differences in survival of
patients from five independents breast cancer datasets.
doi:10.1371/journal.pone.0014737.g001

Figure 2. Comparative evaluation of the prognostic score of the DM signature. The prognostic score of the DM signature is compared to
those obtained from the CIN [15], Proliferation [11], IGS [14], Hypoxia [9], 70-gene [3], and Wound [5] signatures in the three datasets not used for
training. The scores are used to predict outcome at five years. The bars show the areas under the ROC curves (AUC).
doi:10.1371/journal.pone.0014737.g002
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datasets (0.616 vs 0.67, and 0.678 vs 0.683, respectively). Thus, we

conclude that the DM signature is a robust predictor of survival in

lymph-node negative patients.

Contribution of specific genes and gene classes to the
predictive power of the DM signature

We next asked whether any of the phenotypic classes identified

by the RNAi screen (chromosome condensation, chromosome

integrity, chromosome segregation, spindle assembly and cytoki-

nesis) [20] is especially relevant in separating poor- from good-

prognosis patients. We computed the contribution of each

probeset in the DM signature to the difference in score between

poor- and good-outcome patients (see Methods); we then

compared the contribution of specific gene classes to the total

score of the 105 genes of the DM signature. For the three

Affymetrix datasets not used as training, the cytokinesis genes

(ANLN, CIT, ECT2, KIF23, PRC1, RACGAP1) turned out to

contribute to the difference in score significantly more than other

genes (P-values between 0.0025 and 0.012, two-sided Mann-

Whitney U test). The function of these genes is highly conserved,

as they are required for cytokinesis in both Drosophila and humans

(reviewed in [34]). Interestingly, high z-scores were also observed

for ASPM, KIF18A and PLK1 (Table S1). The Drosophila homo-

logues of these genes (asp, Klp67 and polo) are involved in multiple

mitotic stages and are required for cytokinesis [34]. In addition

there is evidence that ASPM and PLK1 are involved in human cell

cytokinesis [34]. Thus, it appears that cytokinesis genes have

higher prognostic value than other mitotic genes and genes

required for chromosome integrity.

In the DM signature, there are a few genes whose expression is

positively correlated with survival (Table S1). The gene with the

most negative z-score is PIAS1 (z = 24.07, averaged on two

probesets), an E3 ligase involved in sumoylation of DNA repair

proteins including BRCA1 [35]. Remarkably, it has been recently

shown that the expression of this gene is substantially reduced in

colon cancers [36].

Discussion

We have shown that the DM signature is highly predictive of

survival in five major breast cancer datasets. The DM signature

contains two classes of genes required for cell proliferation: genes

that maintain the integrity of mitotic chromosomes and genes that

mediate mitotic division. Cell proliferation-associated genes have

been previously used to construct several cancer signatures, and

large subsets of this type of genes are included in most supervised

signatures [37]. Thus, it has been suggested that genes required for

cell proliferation may underlie the prognostic power of many

cancer signatures [37].

Consistent with this idea, we found that the DM signature has a

predictive power for breast cancer outcome similar to that of two

other proliferation-based signatures, the CIN signature [15] and

the Proliferation signature of Starmans et al. [11]. In addition, we

showed that the DM signature outperforms 4 additional signatures

that contain different proportions of proliferation-related genes,

the Hypoxia [9] the Wound [5,6], the IGS [14] and 70-gene

signature, which is currently used in clinical practice [3].

Table 3. Comparison of the performances of the proliferation-based signatures.

90% sensitivity DM CIN Proliferation

P value Specificity P value Specificity P value Specificity

Miller 2.26E-04 0.318 5.44E-04 0.352 4.89E-04 0.352

Sotiriou-Desmedt 4.44E-03 0.335 0.0312 0.329 0.0124 0.329

Wang 4.08E-03 0.226 0.0114 0.260 0.015 0.227

70% sensitivity DM CIN Proliferation

P value Specificity P value Specificity P value Specificity

Miller 1.77E-04 0.614 7.63E-03 0.523 3.02E-03 0.562

Sotiriou-Desmedt 4.51E-04 0.613 4.25E-04 0.600 1.24E-03 0.574

Wang 4.25E-04 0.547 5.58E-04 0.547 1.19E-03 0.536

50% sensitivity DM CIN Proliferation

P value Specificity P value Specificity P value Specificity

Miller 3.91E-04 0.733 8.81E-04 0.705 1.42E-03 0.716

Sotiriou-Desmedt 0.138 0.697 0.134 0.722 0.161 0.690

Wang 6.85E-03 0.669 2.41E-03 0.691 0.022 0.641

The best performing signature in terms of specificity or P-value is shown in bold.
doi:10.1371/journal.pone.0014737.t003

Table 4. Multivariate Cox analysis for the Miller dataset
shows that the DM score is predictive of survival
independently of other molecular and clinical tumor markers.

Covariate Odd ratio (95% C.I.) P-value

LN (positive = 1, negative = 0) 2.82 (1.53–5.21) 8.95E-04

DM score (range 0–10) 1.32 (1.08–1.60) 0.0057

Size (mm) 1.04 (1.01–1.06) 0.0065

ER (positive = 1, negative = 0) 3.34 (1.11–10.00) 0.031

Age (years) 1.02 (1.00–1.04) 0.057

PGR (positive = 1, negative = 0) 0.53 (0.23–1.23) 0.14

P53 (mutant = 1, wt = 0) 0.97 (0.49–1.95) 0.95

Grade (1–3) 0.99 (0.56–1.75) 0.96

LN = lymph node status; ER = estrogen receptor status; PGR = progesteron
receptor status.
doi:10.1371/journal.pone.0014737.t004
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Altogether, these results indicate that the signatures enriched in

proliferation genes are the most powerful predictors of breast

cancer outcome.

What is the basis of the high prognostic value of the DM signature

and why does it outperform many of the extant signatures? We

propose that the high performance of the DM signature reflects its

specifically high content in genes truly involved in cell proliferation.

The proliferation-associated genes in other signatures have been

selected on the basis of their periodic expression pattern during the

cell cycle and include several genes that, although periodically

expressed, are not involved in basic cell cycle processes [10,37]. In

contrast, genes predicted to play a conserved role in either the

maintenance of chromosome integrity or mitosis, are expected to be

essential for cell cycle progression and cell proliferation. The

expression of these genes should therefore reflect the cell

proliferation rate within a cancer better than the gene sets of the

other signatures. Consistent with this idea, we have shown that most

of the DM signature genes with a high predictive power display

increased expression in poor outcome patients (Figure S2).

The idea that survival of breast cancer patients is negatively

correlated with the frequency of dividing cells within a tumor

sample is not novel. Indeed, it has been shown that a correct

measure of the mitotic activity [16,19] can accurately identify

high-risk cases among lymph node-negative patients. However, to

be effective, the analysis of mitotic activity must be carried out by

well-trained personnel, using a strictly defined protocol [16,19].

On the other hand, measuring gene expression in tumor biopsies,

might not take into account intra-tumor heterogeneity [16],

although it might be technically less demanding. We do not know

how prognostic values obtained by cytological analysis of mitotic

activity compare with values obtained with the DM signature or

with the other proliferation signatures. Unfortunately, in the

available studies where both mitotic activity and gene expression

have been determined in the same tumor sample [4,11], the

mitotic activity was not measured by protocols of proved reliability

[38], preventing a direct comparison. We believe that future

studies addressing this point will be instrumental to refine our tools

for risk assessment in lymph node-negative patients.

We have shown that a group of genes required for cytokinesis

(ANLN, CIT, ECT2, KIF23, PRC1, RACGAP1, ASPM, KIF18A and

PLK1) contributes to the predictive power of the DM signature

significantly more than the other genes. All cytokinesis genes

display high positive z-scores, indicating that their increased

expression is negatively correlated with survival. Strikingly, there is

evidence that ANLN, ECT2, PRC1, RACGAP1, ASPM, and PLK1

are upregulated in a variety of human cancers and that their

overexpression often correlates with poor outcome (see for

example [39-47] and references therein). In addition, it has been

shown that two of these genes, ETC2 and ANLN, are amplified in

cancer cells [42,48]. These findings raise the question of why

cytokinesis genes have a higher prognostic value and tend to be

more upregulated poor prognosis patients compared to other

mitotic genes. It is possible that overexpression of cytokinesis genes

is an oncogenic factor per se. However, the finding that PRC1

overexpression does not result in cell growth enhancement [45]

argues against this possibility. Another possibility is that cytokinesis

proteins are limited in amount or stability compared to other

mitotic proteins. That is, when cell proliferation is strongly

enhanced, normal levels of gene transcription and translation

would not be sufficient to produce the amounts of cytokinesis

proteins required for proper execution of the process. As a result,

cancers cell clones overexpressing cytokinesis genes would be

favoured over clones in which these genes are normally expressed.

This hypothesis is very attractive but it is not sufficiently supported by

current data. Further experiments will be required to examine the

role of cytokinesis genes in cancer development. For example, one

could produce stably transformed cancer-derived cells and ask

whether overexpression of cytokinesis genes confers growth advan-

tage compared to overexpression of other types of mitotic genes.

Our study indicates that the DM signature improves risk

stratification for breast cancer patients compared to the major

extant signatures. In addition, the identification of new cancer

prognostic genes with well-defined biological functions, such as

those of the DM signature, provides valuable information for

development of new prognostic tools based on gene expression.

For example, according to a previous approach [6,11,13] the

genes of the DM signature could be merged with those of other

signatures to further improve risk stratification. Finally, our finding

that cytokinesis genes tend to be overexpressed in patients with

poor prognosis sets forth this class of genes and their protein

products as targets for antimitotic therapies.

Supporting Information

Figure S1. Predictive power of the mitotic and chromosome-

integrity genes of the DM signature. Kaplan-Meier survival

analysis was performed on five breast cancer datasets using either

the 34 chromosome integrity genes or the 71 mitotic genes of the

DM signature represented in the Affymetrix platform.

Found at: doi:10.1371/journal.pone.0014737.s001 (0.07 MB

PDF)

Figure S2. Distribution of the z-scores of the genes of the DM

signature compared to the distribution of z-scores of all genes

represented in five breast cancer datasets. Distribution of the z-

scores of the genes of the DM signature compared to the

distribution of z-scores of all genes represented in five breast

cancer datasets. The z-scores were obtained using Cox univariate

analysis. Note that the distribution of the signature genes is shifted

towards positive values.

Found at: doi:10.1371/journal.pone.0014737.s002 (0.28 MB

PDF)

Table S1. Ranking of the Affymetrix probesets of the DM

signature according to their z-scores. The Affymetrix probesets

associated with the DM signature genes are ranked according to

their Cox z-score computed on the training dataset (Pawitan). The

contribution to the difference in score between poor and good

prognosis patients in the other datesets is also reported. The

phenoclusters associated with the Drosophila genes [20] are

abbreviated as follows: CA, chromosome aberrations; CC1, loss of

sister chromatid cohesion in heterochromatin; CC2 aberrant

lateral chromosome condensation; CC3, aberrant longitudinal

chromosome condensation; CS1, defective chromosome duplica-

tion; CS2, precocious sister chromatid separation; CS3 and CS4,

lack of sister chromatid separation; CS5, defective chromosome

segregation during anaphase; SA1, short spindles; SA2, spindles

with a low MT density; SA3, poorly focused spindle poles; SA4

miscellaneous spindle defects; SC1, defective chromosome con-

densation and cytokinesis; SC2, multiple mitotic defects; SC1,

defective in early cytokinesis; SC2, defective in late cytokinesis.

Found at: doi:10.1371/journal.pone.0014737.s003 (0.06 MB

XLS)

Table S2. Predictive power of the DM signature in cancers

other than breast. The P-values were obtained from the log-rank

test by comparing the cumulative probability of survival of clusters

of patients in other cancer types.

Found at: doi:10.1371/journal.pone.0014737.s004 (0.01 MB

XLS)
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Table S3. Differently classified patients by the three prolifera-

tion-based signatures. For each dataset and pair of proliferation-

based signatures, we report the number of patients classified in

different outcome groups, using score cutoffs corresponding to the

same sensitivity.

Found at: doi:10.1371/journal.pone.0014737.s005 (0.01 MB

XLS)

Table S4. Cox multivariate analysis for the NKI, Sotiriou-

Desmedt and Wang datasets. The analysis shows that the DM

signature is a predictor independent of several clinical parameters.

Found at: doi:10.1371/journal.pone.0014737.s006 (0.01 MB

XLS)

Table S5. Cox multivariate analysis for the Miller dataset. The

analysis shows that the CIN and Proliferation signatures are

predictors independent of several clinical and molecular param-

eters.

Found at: doi:10.1371/journal.pone.0014737.s007 (0.01 MB

XLS)
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