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Abstract

Background: Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson disease
(PD). LRRK2 contains an ‘‘enzymatic core’’ composed of GTPase and kinase domains that is flanked by leucine-rich repeat
(LRR) and WD40 protein-protein interaction domains. While kinase activity and GTP-binding have both been implicated in
LRRK2 neurotoxicity, the potential role of other LRRK2 domains has not been as extensively explored.

Principal Findings: We demonstrate that LRRK2 normally exists in a dimeric complex, and that removing the WD40 domain
prevents complex formation and autophosphorylation. Moreover, loss of the WD40 domain completely blocks the
neurotoxicity of multiple LRRK2 PD mutations.

Conclusion: These findings suggest that LRRK2 dimerization and autophosphorylation may be required for the
neurotoxicity of LRRK2 PD mutations and highlight a potential role for the WD40 domain in the mechanism of LRRK2-
mediated cell death.
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Introduction

PD is a neurodegenerative disease characterized by tremor,

rigidity, akinesia, and postural instability [1] that affects 4% of the

population over the age of 65 [2]. The economic impact ranges

from 13 to 29 billion dollars annually in the US alone [3]. All

current treatments for PD act by suppressing disease symptoms;

none slow or prevent the underlying neurodegenerative process.

Incomplete understanding of the molecular mechanisms that

mediate neurodegeneration in PD has limited the development of

neuroprotective drugs.

Mutations in a growing list of genes have been linked to the

pathogenesis of PD [4,5], providing valuable clues into the

pathogenic mechanisms of the disease [6]. LRRK2 is one of these,

and multiple aspects of LRRK2 biology have combined to create

considerable interest in this protein. First, LRRK2 mutations are

the most common genetic cause of PD [4]. LRRK2 mutations

account for approximately 5% of familial and 2% of sporadic PD

[7,8]. Second, most patients with LRRK2 mutations exhibit

clinical and pathological features that are indistinguishable from

idiopathic PD [9]. Finally, the well-defined catalytic domains

present in LRRK2 render functional assays on this molecule

tractable, and suggest that it may be amenable to therapeutic

targeting.

LRRK2 is a complex 286 kDa protein that contains multiple well-

recognized domains, including (in order, from amino to caboxyl

terminus): LRR, Ras of complex (ROC), carboxyl-terminus of ROC

(COR), kinase and WD40 domains (Figure 1A). Multiple studies

have focused on the functions of the ROC and kinase domains

[10,11,12,13]. LRRK2 isolated from murine brain possesses

GTPase activity, but this activity is considerably lower when

LRRK2 is isolated from other tissues [13,14]. GTP binding

stimulates LRRK2 kinase activity, potentially linking the ROC

domain to the activity of the kinase domain [14]. In vitro assays

demonstrate that LRRK2 can both autophosphorylate (via an

intramolecular process) as well as trans-phosphorylate proteins such

as moesin, 4E-BP, and myelin basic protein (MBP) [15,16,17,18].

Evidence from the Dictyostelium LRRK2-homolog suggests that the

COR domain acts as a hinge to transduce an intramolecular signal

between the ROC and the kinase domain providing a potential

mechanism for ROC’s regulation of LRRK2 kinase activity [19].

Cookson and colleagues have also suggested that the COR functions

as a hinge based on their analysis of the human LRRK2 COR and

ROC domains [20].

Mutations in the kinase, COR, and ROC domains segregate

with PD in large family studies [21]. Biochemical analyses of these

mutations have focused on the kinase activity of LRRK2. One

mutation in the kinase domain (G2019S; figure 1A) increases

kinase activity approximately three-fold while other pathogenic

mutations have an effect on kinase activity ranging from 0–50%

[11,16,17]. Notably, disrupting the kinase activity by mutating a

conserved lysine in the kinase domain that mediates ATP binding

eliminates the neurotoxicity of LRRK2 [10,11]. Interestingly,

placing LRRK2 PD mutations in the corresponding residues of
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LRRK1, LRRK2’s closest homologue, fails to enhance the ability

of this molecule to effect cell death [22].

Some evidence indicates that LRRK2 may exist as a dimer.

LRRK2 interacts with itself, as shown by immunoprecipitation of

differentially tagged LRRK2 molecules [18,23]. Crystallization of

LRRK2 fragments containing the ROC domain found that it

forms a ROC-ROC dimer [20], and studies in a related protein

from the bacteria C. tepidum suggest that the adjacent COR

domain dimerizes [24]. Subsequently, a significant fraction of

LRRK2 was found to migrate in a ,600 kDa complex on blue

native gels and on a size-exclusion gel-filtration column, with the

remainder migrating as a much larger complex [18]. These studies

did not further analyze the composition of these complexes,

leaving open the possibility that they contained LRRK2

complexed with other proteins (e.g. HSP90, or FADD), rather

than homo-multimers of LRRK2. It is also unknown whether the

presence of LRRK2 in these complexes is related to its ability to

effect neuronal death.

The contribution of the LRR and WD40 protein-protein

interaction domains to LRRK2 function has not been extensively

explored, yet either or both of these may contribute to the proper

formation of LRRK2-containing complexes. Notably, a sequence

variation (G2385R) in the WD40 domain has been implicated as a

risk factor for PD [25,26,27]. In addition, the WD40 domain is of

particular interest, as this is a region of particular divergence

between LRRK1 and LRRK2. Multiple observations [21,28]

indicate the LRRK1 may not contain a bone fide WD40 domain,

potentially contributing the failure of LRRK2 PD mutations to

enhance the neurotoxicity of LRRK1 [22]. Based on these

observations, we undertook a detailed study of the WD40 domain

of LRRK2, exploring its potential involvement in LRRK2

complex formation, kinase function and ability to cause neuronal

cell death.

Results

Homology Modeling of the WD40 Domain
The failure of LRRK2 PD mutations to alter the neurotoxicity

of LRRK1 and the apparent divergence between C-terminal

regions of LRRK2 and LRRK1 led us to model and compare this

region of the two proteins. We began by using homology modeling

to assess the structure of residues 2101-2527 of LRRK2. Modeling

templates with E-values ranging from 1020 to 1024 were identified

in the Protein Data Bank [42] using the profile-profile alignment

program HMAP [41]. Models based on each template were

generated using NEST software [29]. The top four models were

TUP1 (PDB code 1erj), actin interacting protein 1 (1nr0), cytosolic

Fe-S assembly protein 1 (2hes), BUB3 mitotic checkpoint protein

(1yfq). All four models produced a similar structure of a beta-

propeller cylinder repeat with a cleft composed of basic residues

typical of WD40 domains (Figure 1).

A similar search of the non-redundant sequence database (nr)

using residues 1561–2038 of LRRK1 did not identify any

similarity of the LRRK1 carboxyl-terminus to LRRK2 or any of

its close homologs when 5 iterations of PSI-BLAST with an E-

value cutoff of 0.001 was employed. The HMAP profile-profile

alignment did not generate any matches with E-value better than

0.46. Using the most closely matched templates, we constructed

LRRK1 models as described above for LRRK2. Again, the top

four models as ranked by the statistical potential DFIRE were

examined. Three of the four templates were beta-propeller

proteins. Nevertheless, even with the beta-propeller repeat

templates, there was very little consistency in the models. One of

the highest-ranking models for LRRK1 was based on a template

for the BUB3 mitotic checkpoint protein (PDB code 1yfq) that was

also used for LRRK2. This, combined with the fact that the

highest-ranking models were all beta-propeller proteins, suggests a

Figure 1. LRRK2 C-terminus forms distinct beta-propeller configuration. Molecular surface of the homology model of the WD40 domain of
LRRK2 (left) using the structure of the BUB3 mitotic checkpoint protein (PDB code 1yfq) as a template. The coloring of the surface is determined by
the electrostatic potential at each point on the surface (red = acidic, white = neutral and blue = basic). The prominent basic cleft shown at the center
of the molecule was consistently present in other models of the WD40 domain of LRRK2 based on other templates. The basic character of this cleft
was due to a set of basic residues that were consistently placed in each of the models we examined (K2367, R2413, K2415, R2456, R2477 and K2478).
A ribbon diagram of the same model is shown at the right, highlighting these residues in sphere representation. These residues were consistently
clustered together in all of the models examined. Similar modeling of LRRK1 C-terminus failed, highlighting previously suggested divergence
between LRRK1 and LRRK2 in this region.
doi:10.1371/journal.pone.0008463.g001

WD40 Domain of LRRK2
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remote relationship between the putative WD40 domain of

LRRK1 to the WD40 domain of LRRK2. However, the lack of

conservation of the WD repeat motif, absence of any detectible

primary sequence relationship between the carboxyl-terminus of

each protein, and the variability in the LRRK1 models suggests

that LRRK1 and LRRK2 are highly diverged. Moreover, the

LRRK2 WD40 has a positively-charged (i.e. basic) cleft (Figure 1A)

typical of functional WD40 domains, and a similar positively-

charged region was not evident in the LRRK1 models. This

analysis was therefore not consistent with the presence of a

functional WD40 domain in LRRK1, raising the possibility that

this domain plays a role in the neurotoxicity associated with

LRRK2 PD mutations.

The WD40 Domain Is Required for LRRK2 Neurotoxicity
We explored the role of the WD40 domain in LRRK2

neurotoxicity by testing whether the WD40 is necessary for the

LRRK2 PD mutations to elicit neurotoxicity in a well-established

LRRK2 neurotoxicity assay [10,11,30]. To accomplish this, we

first generated wild-type and PD mutant LRRK2 constructs with

and without the WD40 domain (WD40 lacking constructs are

referred to as ‘‘DWD’’; Fig. 2A), and confirmed that all molecules

exhibited similar stability and expressed at similar levels

(Supplemental Figure S1). We then transfected mouse primary

neuronal cultures with these LRRK2 constructs, or a construct

expressing GFP alone, and quantified the percentage of transfect-

ed cells (i.e., GFP positive) undergoing apoptosis. Specifically, we

transfected neurons with either full length or DWD constructs of

wild-type, R1441C- or G2019S-LRRK2. Deletion of the WD40

domain completely blocked the neurotoxicity associated with both

LRRK2 PD mutations tested (Figure 2C).

Deletion of the WD40 Domain Eliminates LRRK2
Autophosphorylation

The kinase function of LRRK2 is linked to its neurotoxicity

[10,11], so we next examined whether deleting the WD40 domain

alters LRRK2 kinase activity. We performed in vitro kinase assays

on LRRK2 immunoprecipitated from transfected 293T cells,

assessing both autophosphorylation and trans-phosphorylation of

the model substrate myelin basic protein (MBP). Strikingly,

deletion of the WD40 domain essentially abolished LRRK2

autophosphorylation (Figure 2D). In contrast, the effects on trans-

phosphorylation of MBP were more modest, particularly for

G2019S LRRK2, for which removal of the WD40 domain had

Figure 2. The WD40 domain is critical for LRRK2 neurotoxicity and autophosphorylation. (A) Schematic of LRRK2 and DWD40-LRRK2
showing major domains. The WD40 domain was removed by terminating LRRK2 at amino acid 2146. (B) A LRRK2-transfected apoptotic neuron. The
arrow indicates a non-apoptotic nucleus, and the arrowhead indicates an apoptotic cell co-transfected with GFP and RC-LRRK2. (C) Removal of the
WD40 domain abolishes the neurotoxicity of PD-mutant forms of LRRK2. Wild-type LRRK2 (WT), R1441C LRRK2 (RC), and G2019S LRRK2 (GS) with and
without the WD40 domain (DWD40) were assessed for neurotoxicity. Murine cortical neurons were co-transfected with LRRK2 constructs and GFP,
and the percentage of apoptotic nuclei were assessed 48 hours post-transfection. Data represent the mean6seven individual experiments. Data was
assessed using ANOVA followed by Duncan’s Multiple Range analysis p,0.05. (D) Removal of the WD40 domain has a differential effect on LRRK2
autophosphorylation and trans-phosphorylation. The different forms of LRRK2 were immunoprecipitated from 293T cells and assessed for their ability
to autophosphorylate and to trans-phosphorylate MBP. Top panel is an autoradiogram and bottom panel is silver-stained gel demonstrating the
presence of the different forms of LRRK2 and MBP in similar amounts between different conditions.
doi:10.1371/journal.pone.0008463.g002
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little effect. However, the level of MBP phosphorylation for the

WD40-deleted constructs was only slightly greater than for kinase

dead LRRK2.

LRRK2 Forms a Dimeric Complex That Is Lost Upon WD40
Deletion

The striking correlation between loss of autophosphorylation and

reduced neurotoxicity led us to further explore the effects of the loss

of the WD40 domain on LRRK2 biology. Given the well-known

role of WD40 domains in protein-protein interactions, one effect of

the DWD truncation could be the failure of LRRK2 to interact

normally with binding partners. LRRK2 has been reported to be

part of a ,600 kDa complex, as well as of much larger complexes

[20]. The size of the larger complex is difficult to estimate

accurately, but it is not part of the void volume. Moreover, studies

using recombinant fragments of LRRK2 indicate that the ROC-

COR region of the protein exists as a dimer that may be disrupted

by the R1441C PD mutation [20]. Thus, we next explored whether

loss of the WD40 domain alters LRRK2 complex formation.

To assess LRRK2 complex formation we analyzed lysates from

293T cells transfected with full-length wild type and PD mutant

LRRK2 using blue native gel electrophoresis and size exclusion gel

filtration. Experiments employing both of these methods demon-

strate that LRRK2 is predominantly found in two complexes: a

,600 kDa ‘‘a-complex’’ and a much larger ‘‘b-complex’’ (Figs. 3A

and B). Interestingly, we did not observe monomeric LRRK2, and

neither of the LRRK2 PD mutations appeared to alter the

formation of these complexes (Fig. 3A; data not shown).

The absence of monomeric LRRK2 led us to question whether

the ,600 kDa complex was a LRRK2 dimer or monomeric

LRRK2 complexed with other proteins with which it has been

demonstrated to interact [31,32,33]. To address this question we

co-transfected 293T cells with two forms of full length LRRK, one

tagged with V5 and the other tagged with FLAG, and used

immunoprecipitation to analyze pooled fractions containing the a-

or b-complexes. IP performed with anti-FLAG antibody demon-

strated that the two forms of LRRK2 clearly co-purify from the a-

complex, but much less so from the b-complex fractions

(Figure 4C). Theoretically, if all LRRK2 in these complexes is

dimeric and generated randomly from the two tagged molecules,

half of the molecules will be homo-dimers (FLAG-FLAG or V5-

V5) while the other half will be heterodimers (FLAG-V5 or V5-

FLAG). In this scenario, immunoprecipitation would pull down

twice as many molecules corresponding to the IP antibody

compared to the other tagged form (i.e., a FLAG pull-down will

isolate FLAG-FLAG, FLAG-V5 and V5-FLAG molecules; 4

FLAG molecules and 2 V5 molecules). To determine the relative

sensitivity of the V5 and FLAG antibodies, we sequentially probed

the same membrane from the FLAG IP, first with V5 (lower gel,

Fig. 3C) and then (following stripping) with FLAG (upper gel,

Fig. 3C). Densitometry measurements on the input lanes of the a-

complex showed that the V5 antibody is ,1.5X more sensitive

than the FLAG antibody (Figure 3C: FLAG input OD = 3.05; V5

input OD = 4.54). We then used this correction factor to correct

for the enhanced sensitivity of the V5 antibody by dividing the OD

measurement of the V5-probed IP by 1.5. We found that

approximately 1.9X more FLAG- than V5-LRRK2 co-immuno-

precipitated from the a-complex, indicating that much, if not all,

of this complex is dimeric LRRK2 (FLAG-LRRK2 IP OD = 4.95;

V5-LRRK2 IP OD: 3.97/1.5 = 2.65; Ratio of FLAG/V5: 4.95/

2.65 = 1.87). In contrast, very little LRRK2 was co-immunopre-

cipitated from the b-complex.

To explore whether there might be a relationship between the

presence of LRRK2 in these protein complexes and its neurotox-

icity, we tested whether DWD40-LRRK2, which lacks neurotox-

icity, normally distributes in these complexes. Strikingly, DWD40-

LRRK2 largely redistributed from the a- to the b-complex when

assessed by either blue native gel electrophoresis or size-exclusion

gel-filtration chromatography (Figures 4A & B). We did not observe

monomeric DWD40-LRRK2, and immunoprecipitation of differ-

entially tagged DWD40-LRRK2 molecules confirms that it remains

able to oligomerize (data not shown).

Discussion

Previous work demonstrated that LRRK2 can self-associate and

is found primarily in a 500–600 kDa complex that was proposed

to represent dimeric LRRK2 [18]. However, this work did not

exclude the possibility that the 500–600 kDa complex contained

monomeric LRRK2 associated with Hsp90, tubulin, or other

LRRK2-interacting proteins [31,32,33]. In contrast, by perform-

ing co-immunoprecipitation experiments selectively on fractions

containing the a or b complexes, we demonstrate conclusively that

the a complex is composed of a LRRK2 dimer, whereas most

LRRK2 in the b complex is monomeric. We did not observe

monomeric LRRK2 in blue native gel or gel-filtration chroma-

tography, indicating that LRRK2 may exist as constitutive dimer.

Our observations correlating the loss of the LRRK2 dimer and

suppression of neurotoxicity raise the possibility that strategies that

prevent LRRK2 dimerization may interfere with its function and

ability to cause neuron death.

Experiments utilizing fragments of mammalian or bacterial

LRRK2 suggest that the pathogenic R1441C LRRK2 mutation

disrupts LRRK2 dimerization [18,24]. In our studies of full length

human LRRK2, we did not observe isolated monomeric LRRK2

when studying the wild type, DWD40 or R1441C forms of the

protein. Moreover, we find that R1441C-LRRK2 distributes

between the a and b complexes similarly to the wild type protein.

While our experiments employed LRRK2 overexpression, and

may therefore not accurately reflect the behavior of endogenous

levels of protein, they suggest that if, in the context of the intact

protein, the R1441C mutation disrupts dimerization of the ROC

domain, other LRRK2-LRRK2 interaction points maintain the

dimeric LRRK2 complex. The fact that R1441C-LRRK2

remains dimeric is further consistent with a potential role for this

form of LRRK2 in its neurotoxicity.

Previous work on LRRK2 has focused almost exclusively on how

functional changes in its GTPase and kinase domains may affect

neurotoxicity. However, LRRK2 is a large multi-domain protein

and the potential role of other domains in LRRK2 function and

ability to cause neurodegeneration is much less well explored.

Similar to our findings, previous work demonstrates that deletion of

the WD40 domain almost entirely prevents autophosphorylation

[16]. In addition, the G2385R polymorphism in the WD40 domain

is over-represented in ethnic Chinese patients with PD [34], and this

polymorphism increases the sensitivity of cells to hydrogen peroxide

[27]. Our structural studies indicate that the carboxyl-terminal

regions of LRRK1 and LRRK2 differ considerably (Fig. 1), and

these differences may contribute to an explanation of previous work

demonstrating the failure of LRRK2 PD mutations to cause

neurotoxicity when placed in the context of the LRRK1 protein

[22]. While one study suggests that LRRK1 contains a WD40

domain [35], this putative WD40 domain, if it exists, is divergent

from a canonical WD40 domain. Homology modeling of the

LRRK2 carboyxl-terminus strongly supports the notion that this

region forms a WD40 domain, including the presence of a well-

defined patch of positively charged residues. In contrast, the

LRRK1 carboxyl-terminus is not well modeled as a WD40 domain,

WD40 Domain of LRRK2
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and data from human subjects further indicates a lack of selective

pressure to maintain key residues [36]. Our observation that PD

mutant forms of DWD40-LRRK2 do not induce apoptosis indicates

that these PD-linked mutations require the WD40 domain to cause

neuron death. Consistent with this notion, a previous study

demonstrated that deleting the WD40 domain blocks the ability

of LRRK2 to activate caspases in SH-SY5Y cells [37]. Our data are

consistent with this report, and we advance this finding by assessing

toxicity in neurons with an additional PD mutation, and by

characterizing the biochemical properties of DWD40-LRRK2.

The WD40 domain is a scaffolding structure that is found in a

wide range of proteins but is often utilized to produce vesicles and

Figure 3. LRRK2 is found in a dimeric and a high molecular weight complex. (A) Native gel electrophoresis of wild type and PD mutant
forms of LRRK2. GFP-tagged wild-type, R1441C- and G2019S-LRRK2 were separately transfected into 293T cells and whole cell lysates prepared from
these cells were separated by a non-denaturing blue native gel and immunoblotted using anti-GFP antibody. (B) Size-exclusion gel filtration
chromatography of wild type and PD mutant forms of LRRK2. Lysates prepared from LRRK2-transfected cells as in (A) were separated by gel filtration
chromatography show a similar pattern of two complexes as seen using blue native electrophoresis. (C) The a-complex is a LRRK2 dimer. 293T cells
were co-transfected with FLAG- and V5-tagged LRRK2 and separated by size exclusion gel filtration as in (B). Fractions 20–23 (a-complex) and 12–15
(b-complex) were pooled and immunoprecipitated with the anti-FLAG antibody and immunoblotted with anti-FLAG (upper panel) or anti-V5 (lower
panel). The amount of V5-LRRK2 that co-immunoprecipitates with the anti-FLAG antibody indicates that the majority, if not all, of the a-complex is a
LRRK2 dimer, while the majority of LRRK2 in the b-complex is monomeric. (D) V5-LRRK2 singly transfected and processed as in (C) demonstrates that
there is no cross reactivity between anti-FLAG and V5-LRRK2.
doi:10.1371/journal.pone.0008463.g003

WD40 Domain of LRRK2
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sort cargos [38,39]. The physiological role of LRRK2 is not well

understood, making detailed analysis of the effects of the WD40 on

LRRK2 function difficult. The WD40 deletion eliminated the

600 kDa dimer complex and LRRK2 autophosphorylation

activity indicating the necessity of the WD40 for the structure

and auto-regulatory function of LRRK2. Our findings highlight

the importance of the WD40 domain for LRRK2 function in

neurons, and indicate that future studies of the WD40 domain

may help to elucidate important features of LRRK2 biology

relevant to the pathogenesis of Parkinson’s disease.

Materials and Methods

Structural Modeling
Residues 2101–2527 of LRRK2 were taken to represent the

WD40 domain of LRRK2. No suitable modeling templates were

found using one iteration of PSI-BLAST [40] and an E-value

cutoff of 0.001 so the profile-profile alignment program HMAP

[41] was then used to identify possible templates from the Protein

Data Bank [42]. Eleven template structures were selected with E-

values ranging from 10220 to 10224 for subsequent modeling.

Sequence to structure alignment of the WD40 domain to each of

these templates was also carried out with HMAP. Models based on

each template were constructed using the program NEST [29].

Since there were a number of templates with similar E-values and

since the homology was remote, an evaluation of the models

themselves was carried out using the statistical potential DFIRE

[43] and the top four were structurally aligned to each other to

determine whether the models based on different templates were

consistent with each other. These models were based on the

structures of TUP1 (PDB code 1erj), actin interacting protein 1

(1nr0), cytosolic Fe-S assembly protein 1, (2hes) and BUB3 mitotic

checkpoint protein (1yfq). Although there were some differences

between the models at the amino and carboxyl-termini, the region

for residues 2364–2480 were consistent with each other using the

different proteins as models for the LRRK2 WD40.

Residues 1561–2038 were taken to represent the putative

WD40 domain in LRRK1. A search of the non-redundant

sequence database (nr) using 5 iterations of PSI-BLAST with an E-

value cutoff of 0.001 did not identify any similarity to LRRK2 or

any of its close homologs. Using the HMAP profile-profile

alignment program and a larger E-value cutoff of 10.0 a number

of templates were identified, none with E-value better than 0.46,

however. Models based on these templates were constructed as

described above for LRRK2 and again the top four models as

ranked by the statistical potential DFIRE were examined.

Although the top three were all beta-propeller proteins, there

was very little consistency between the models themselves and the

characteristic WD motif was poorly conserved. One of the highest

ranking models for LRRK1 was based on a template that was also

found for LRRK2, the BUB3 mitotic checkpoint protein (PDB

code 1yfq). This, combined with the fact that highest ranking

models were all beta-propeller proteins suggests a relationship,

however remote, between the putative WD40 domain of LRRK1

to the WD40 domain of LRRK2. But the lack of conservation of

the WD motif, the absence of any detectible primary sequence

Figure 4. The WD40 domain is necessary for the formation of the dimeric LRRK2 a-complex. (A) Native gel electrophoresis demonstrates
absence of the LRRK2 dimer for DWD40-LRRK2, and an increase in the high molecular weight LRRK2 immunoreactivity (B) Size-exclusion gel filtration
chromatography of DWD40-LRRK2 similarly demonstrates a decrease in the a-complex and increase in b-complex.
doi:10.1371/journal.pone.0008463.g004

WD40 Domain of LRRK2
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relationship between the WD40 domains of each protein, and the

variability in the models of LRRK1 suggests that they are highly

diverged. Moreover, the LRRK2 WD40 has a positively-charged

(i.e. basic) cleft (Figure 1A), but no similar positively-charged

region was evident in the models of LRRK1.

LRRK2 Neuron Toxicity Assay
Cortical neurons were prepared from 16.5 gestation day mouse

embryos as previously described [30,44]. Using Lipofecatamine

2000 on DIV 4, neurons were transfected with GFP alone or co-

transfected with GFP and LRRK2 (WT and mutants as indicated)

in a 1:9 ratio. This ratio is required to ensure expression of LRRK2

in GFP expressing cells, as LRRK2 is a large protein that often

expresses poorly. Both N-terminally GFP tagged and un-tagged

LRRK2 constructs were used and gave similar results (data set

described used amino-terminal tagged GFP LRRK2; untagged data

is not shown). The use of GFP-tagged LRRK2 was undertaken

because this improves the identification of transfected cells, thus

streamlining the counting procedure. The LRRK2 constructs were

made using the Gateway system as described previously [30]. Cells

were fixed with 4% formaldehyde at DIV 6, blocked for 1 h in 10%

goat serum, 0.1% triton-X PBS and probed overnight at 4uC with

1:1000 anti-GFP polyclonal antibody (#ab6556, Abcam) in

blocking solution. The cells were then probed with an anti-rabbit

FITC antibody for 1 hour (#711-095-152, Jackson Immuno).

Coverslips were mounted with VectaShield/DAPI (#H-1200,

Vector Labs). The percentage of GFP-positive neurons with either

apoptotic bodies or pyknotic nuclear features was determined as

described previously [30]. Data set shown is the average of seven

independent experiments.

Blue Native Electrophoresis
HEK293T cells (86106 cell/10 cm plate) were transfected using

Lipfectamine 2000 according to company protocol (11668027,

Invitrogen). The cells were collected in a HEPES lysis buffer:

20 mM HEPES pH 7.0, 150 mM NaCl, 0.1% NP-40, 2 mM

EGTA, 10% glycerol, 1 mM DTT, 200 mM Na2VO4, 10 mM

NaF, 25 mM b-glycerophosphate, Complete Protease Inhibitor

Cocktail (#11836153, Roche). The cells were disrupted by slowly

forcing sample through 21 and 26.5 gauge syringes 5x and 10x

respecitvely and centrifuged for 20 minutes at 20,0006g at 4

degrees Celsius. Blue native gel electrophoresis was performed

according to the protocols accompanying the blue native gel buffers

(#BN2008, Invitrogen). The gel was subsequently incubated in

0.1% SDS for 20 minutes before transferring to a polyvinylidene

fluoride (PVDF) membrane. Western blot was performed using

previously described procedures [45]. Blots were then probed for

GFP-LRRK2 using 1:2000 anti-GFP mAb (sc-9996, Santa Cruz) in

0.1% Tween 20, 5% milk PBS. Anti-mouse HRP-conjugated

secondary antibody was used at 1:10,000 (#34080, Thermo

Scientific) followed by detection with West Pico Supersignal

chemiluminescence (#31430, Thermo Scientific).

Size-Exclusion Gel-Filtration
HEK293T cells (226106) were plated in a 15 cm dish and

transfected the following day using Lipofectame/Plus reagent

(#18324/#11514, Invitrogen) according to manufacturer’s pro-

tocol. The cells were lysed using the HEPES lysis buffer described

above in the methods for Blue Native gel electrophoresis, and

subsequently homogenized with 20 strokes with dounce and

centrifuged 20,0006g for 20 minutes at 4 degrees Celsius. Size-

exclusion gel filtration was performed using a GE Superose

10/300 GL Tricorn 6 Column with an AKTA FPLC apparatus.

Samples were collected at a flow rate of 0.24 ml/minute in

0.35 ml fractions and subsequently separated on a 7.5% bis-tris

polyacrylamide gel. Following transfer to a PVDF membrane, the

samples were probed with anti-GFP or anti-V5 antibody (#R960,

Invitrogen) as described in the methods for Blue Native gel

electrophoresis. The GFP- and V5-tagged LRRK2 constructs

were made described previously with the tags placed on the amino

terminus [30].

In Vitro Kinase Assay
2.66106 HEK293T cells were plated in a 6 cm dish for each

condition. Cells were transfected and harvested as described above

for Gel Filtration. Immunoprecipitation was performed on a

rotator at 4uC. The lysates were then pre-cleared for 30 min with

50 ul of pre-washed protein A agarose beads (#11719408, Roche).

GFP-tagged LRRK2 was immunoprecipitated from 1 ml of lysate

(2 mg/ml protein concentration) using 1 ul of anti-GFP antibody

(#ab6556, Abcam). 50 ul protein A agarose beads was then added

to the lysates for 2 h. The beads were then washed gently in 50 ul

kinase assay buffer (Tris-HCl pH 7.5, 200 mM Na2VO4, 5 mM b-

glycerophosphate, 1 mM DTT, 10 mM MgCl2) by continuously

rotating the samples. Labeled ATP and MBP (10 mM Cold ATP,

1 mg MBP, and 0.5 ml cP32-ATP; #BLU502A250UC, Perkin

Elmer) were then added and the mixture was incubated at 30uC
for 30 min while shaking at 14000 rpm on a thermoshaker

(#PMHT, Boekel Grant-Bio). Samples were then separated using

SDS-PAGE and silver stained according to Silverquest protocol

(#LC6070, Invitrogen).

Supporting Information

Figure S1 Immunoblot of LRRK2 demonstrating equivalent

expression. All (GFP-tagged) constructs with and without PD

mutations and the WD40 domain were transfected into 293T to

assess expression levels. Immunoblot was stained using anti-GFP

and b-tubulin was used as a loading control.

Found at: doi:10.1371/journal.pone.0008463.s001 (1.12 MB

TIF)
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