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Abstract

Molecular crowding is one of the characteristic features of the intracellular environment, defined by a dense mixture of
varying kinds of proteins and other molecules. Interaction with these molecules significantly alters the rates and equilibria of
chemical reactions in the crowded environment. Numerous fundamental activities of a living cell are strongly influenced by
the crowding effect, such as protein folding, protein assembly and disassembly, enzyme activity, and signal transduction.
Quantitatively predicting how crowding will affect any particular process is, however, a very challenging problem because
many physical and chemical parameters act synergistically in ways that defy easy analysis. To build a more realistic model
for this problem, we extend a prior stochastic off-lattice model from two-dimensional (2D) to three-dimensional (3D) space
and examine how the 3D results compare to those found in 2D. We show that both models exhibit qualitatively similar
crowding effects and similar parameter dependence, particularly with respect to a set of parameters previously shown to act
linearly on total reaction equilibrium. There are quantitative differences between 2D and 3D models, although with a
generally gradual nonlinear interpolation as a system is extended from 2D to 3D. However, the additional freedom of
movement allowed to particles as thickness of the simulation box increases can produce significant quantitative change as a
system moves from 2D to 3D. Simulation results over broader parameter ranges further show that the impact of molecular
crowding is highly dependent on the specific reaction system examined.
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Introduction

Chemistry in a living cell operates very differently than would

be predicted from models of the same chemical reactions in an

idealized in vitro environment, which is diluted and well-mixed [1].

Many features of a living cell make the intracellular environment

distinctive, such as compartmentalization, active transport, the

cytoskeleton network, and molecular crowding. More accurately

addressing the effects on molecular interactions of these key

features of cellular reaction systems is crucial to building more

realistic models of reaction systems in the in vivo environment.

Molecular crowding – i.e., the dense crowding of many kinds of

macromolecules in a cell – directly influences many fundamental

biological processes, such as protein folding [2,3], protein

aggregation and assembly [4–7], enzyme activity [8,9], reaction

kinetics [10,11], and signal transduction [12]. Molecular crowding

can hinder diffusion and provide strong steric hindrance to various

reaction types, either inhibiting or enhancing chemical reactions

based on many parameters of the system in question [13–15].

These complicated interrelated parameters make the strength and

direction of the crowding effect extremely hard to accurately

predict for any given model system.

Previously, we developed a two-dimensional stochastic off-

lattice model (2DSOLM) [16] based on Green’s function reaction

dynamics [17]. The model was designed to better satisfy two

constraints that confront all computational models: realism and

efficiency. For example, continuum models such as ordinary

differential equations and lattice Monte Carlo models [18–20] are

very efficient but greatly simplify the actual system being modeled.

Coarse-grained particle models, such as Brownian dynamics

models using hard sphere particles with simplified interaction

potentials [21], provide greater accuracy in exchange for increased

computational cost. Full atomic resolution particle models [22,23]

provide even more realistic models of particles’ behavior but at a

high computational cost that makes it infeasible to simulate large

systems or long time scales, especially in highly crowded

conditions. Our prior stochastic off-lattice model (SOLM) uses

Green’s function reaction dynamics (GFRD) [17] to simulate

realistic Brownian particle trajectories with reduced computational

cost using discrete event models. In addition, SOLM uses a simple

coarse-grained particle model to allow one to vary multiple

parameters relevant to the crowding effect without the need for

detailed and costly atomic structure calculations. Other similar

approaches have proven successful for modeling reaction chem-

istry in crowded conditions. The virtual cytoplasm method also

relies on a particle-based off-lattice model on a similar mesoscopic

scale to address molecular crowding, but uses fixed time and space

steps rather than the fully continuous time and space allowed by
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GFRD [24]. Kim and Yethiraj’s reaction model uses Brownian

dynamics combined with coarse-graining to similarly simulate the

effect of crowding on a model of membrane receptor reactions

[25]. In addition, Tsao, Minton, and Dokholyan’s didactic model

compares an analytical with a simulation method to uncover how

the crowding effect alters protein folding and association using a

toy model [26].

We have further shown that it is possible to use such simplified

particle simulations to train multiparameter regression models,

providing a method for predicting the effects of crowding on

reaction systems that can combine the fast runtime of simple

analytical methods with the greater versatility of particle models

[27]. This simulation-based approach provides a more general and

efficient algorithm to build a stochastic reaction model in various

crowded conditions that can be expected to be easily extensible to

more complicated models of particle structure and dynamics for

which analytical models are unsuited. In addition, our stochastic

models can easily investigate the crowding effect for different

physical and system parameters by allowing us to alter the

parameter value singly or in combination. In the present work, we

extend our SOLM model from 2D to 3D, while retaining the

GFRD and coarse-graining approach key to our model’s

efficiency, and compare the two model variants. Two-dimensional

models have shown considerable value for exploring the theory of

crowding, given their simplicity and relative computational

tractability, but the question remains whether conclusions drawn

from such models are of significant value in describing three-

dimensional system. The question is particularly significant for

‘‘nearly’’ two-dimensional systems, such as diffusion in a

membrane or at the leading edge of a migrating cell, where two-

dimensional models have extra appeal. We specifically examine

whether the parameter dependencies of crowding observed in our

prior 2D models are qualitatively the same as those in 3D and how

the quantitative behaviors vary as we interpolate between the two.

This study is intended to help judge when one can rely on

conclusions from 2D models and how well the two dimensional

particle models and associated regression approach will extend to

3D systems. The work provides guidance for the degree to which

we can rely on prior 2D models as descriptions of generic

crowding phenomena and where 2D or 3D models can be trusted

in modeling either 3D or pseudo-2D systems.

Results

Crowding simulations
We characterized the effects of crowding on reaction chemistry

across model types by examining the effects on a simple

homodimerization test system for a variety of parameter sets.

We examined two different homodimerization test cases for

investigating the crowding effect on the model binding system:

one using a varying reactant concentration (CR: measured by the

volume ratio of occupied reactant particles to the simulation box)

without any inert crowding agent and the other using a fixed

reactant concentration with additional varying inert crowding

agent concentration (CI: measured by the volume ratio of

occupied inert crowding particles to the simulation box). For

these two test cases, we used a 50 nm650 nm650 nm cubic

simulation space and used default parameter values, explained in

Methods. We simulated eight C values (0.1, 0.15, 0.2, 0.25, 0.3,

0.35, 0.4, 0.45: measured by the volume ratio of occupied

particles to the simulation box) for varying reactant concentra-

tions without any inert crowding agents. For the second test case,

we fixed reactant concentration to 0.1 and changed the inert

crowding agent concentrations (CI) for eight C (CR+CI) values

(0.1+0.0, 0.1+0.05, 0.1+0.1, 0.1+0.15, 0.1+0.2, 0.1+0.25, 0.1+0.3,

Figure 1. Simulation snapshots of 3DSOLM. (A) 0.1CR+0.05CI in a 50 nm650 nm650 nm space at the initial state, (B) 0.1CR+0.05CI in a
50 nm650 nm650 nm space at the quasi-equilibrium state (25 ms), (C) the same condition as (B) but showing only the center position of each
particle to aid the visualization, (D) 0.1CR in a 50 nm650 nm65.125 nm space at the quasi-equilibrium state (25 ms), (E) 0.1CR+0.35CI in a
50 nm650 nm625.625 nm space at the quasi-equilibrium state (25 ms), (F) the same condition as (E) but showing only the center position of each
particle to aid the visualization. Cyan spheres represent reactant monomers, magenta spheres represent reactant dimers, black spheres represent
inert crowding agents, and outer green spheres represent diffusion limit spheres for (A), (B), (D), and (E). (C) and (F) use the same color scheme for the
center positions of the particles.
doi:10.1371/journal.pone.0030131.g001
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0.1+0.35). Figure 1 illustrates 3DSOLM simulation. Figure 1(A)

and (B) show simulation snapshots of the initial state and the

quasi-equilibrium state (25 ms) of the 0.1CR+0.05CI test case,

respectively. Figure 1(C) shows the center positions of particles in

Fig. 1(B), for better visualization. Cyan spheres represent reactant

monomers, magenta spheres represent reactant dimers, black

spheres represent inert crowding agents, and green spheres

represent diffusion limit spheres, a construct of the GFRD

algorithm describing the volume in which a particle might have

diffused with appreciable probability since its position was last

evaluated.

Figure 2 shows simulation results for these two test cases.

Figure 2(A) shows the reaction progress of a homodimerization

reaction from 0 to 25 ms for both 0.1 CR+0.35 CI and 0.45 CR

without any inert crowding agent. The reaction progress curve

shows the number of dimers versus time for 10 independent

simulation runs. The curve starts at zero because all reactants are

initially monomers, and then quickly moves to the quasi-

equilibrium state within 2 ms for the most crowded case

(C = 0.45) with default parameter values. After 2 ms, it fluctuates

around the average value with a seemingly consistent range for the

remainder of the simulation due to random exchanges between

monomers and dimers after the model reaction reaches its

equilibrium state. Because the less crowded cases reach quasi-

equilibrium faster, we assume that 5 ms is sufficient time to reach

quasi-equilibrium for the test reaction system and this 5 ms interval

is a reasonable upper bound on mixing time across crowding levels

in our simulation conditions. We examine a total of 5 time points

(5, 10, 15, 20, 25 ms) for each simulation run for analyzing

simulation results in order to measure the long term behavior of

the test reaction system after quasi-equilibrium based on our

assumption of the upper bound on mixing time. To better display

the rapid changes early in the simulation, the plot shows a

resolution of 0.15625 ms for the first five time points then averages

over 0.78125 ms intervals for subsequent time points. Figure 2(B)

shows the number of dimers for pure CR simulations at the quasi-

equilibriums state. Comparing with the idealized model, which is

calculated based on an idealized mass-action model of Eq. (21) in

the Methods using simulation data at C = 0.1, the average number

of dimers increases 1.16 fold from 0.1 to 0.45 CR. Even without

any inert crowding agent, the reaction can still be influenced by

crowding from reactant molecules themselves. Figure 2(C) shows

the number of dimers for fixed 0.1 CR+additional CI. The average

number of dimers increases up to 1.5-fold as the concentration of

inert crowding agents increases from 0.0 CI to 0.35 CI, and it

clearly shows a strong crowding effect compared to the idealized

model, again calculated based on an idealized mass-action model

using simulation data at C = 0.1. Estimated Keq values, calculated

using Eq. (19) in Methods and shown in figure 2(D), demonstrate

more clearly how the crowding effect alters the reactions. The Keq

curve is dramatically increased by adding either additional inert

crowding agents or reactants. Inert crowding agents cannot

change their excluded volume through binding, as reactants can,

and so they provide a stronger steric hindrance and a stronger

crowding effect than reactants alone for given parameter

conditions and initial concentration.

Figure 2. Crowding simulation results. (A) Reaction progress for 0.1 CR+0.35 CI and 0.45 CR without inert crowding agents, with C = 0.45 for both
test cases, (B) Dimer counts from 3DSOLM and the idealized model for the pure CR (0.1, 0.15, …, 0.45), (C) Dimer counts from 3DSOLM and the
idealized model for the 0.1 CR+ additional CI (0.0, 0.05, …, 0.35), (D) Keq from 3DSOLM, the idealized model, and SPT for the 0.1 CR+ additional CI, pure
CR (0.1, 0.15, …, 0.45). The simulation space is 50650650 nm3.
doi:10.1371/journal.pone.0030131.g002
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We also calculated the estimated Keq using statistical thermody-

namics and scaled particle theory (SPT) [14,28,29] by assuming that

the 1% pure reactant case was reasonably diluted condition so that

non-ideal interactions among particles were negligible. Based on

this assumption, we ran additional simulations for 1% pure reactant

case, and used as the results of these low-concentration simulations

to represent the reaction in the ideal state, explained in detail in

Methods. These additional SPT data show how the particle

simulations can deviate from expectations from an analytical model

explicitly accounting for the excluded volume effect of macromo-

lecular crowding. The estimation from SPT showed similar

enhancement of Keq as the total concentration increased. As with

SOLM, the 0.1 CR+additional CI cases showed a stronger crowding

effect than the pure CR case in SPT. However, the difference

between SOLM and SPT increased at densely crowded conditions

(C = 0.4–0.45) for the 0.1 CR+additional CI cases, while the pure CR

case did not. This observation suggests that the particle simulations

reveal effects of crowding beyond purely total excluded volume, an

issue examined in the next section.

Parameter variations
A major concern of our approach is how parameter changes in

3DSOLM affect binding chemistry, singly or in combination, for

various crowded conditions. Here, we examine the following

physical parameters of the homodimerization simulations: the

probability of binding upon collision between two reactant

monomers; the mean time between dissociation events, defined as

the inverse of the dissociation rate constant; the diffusion coefficient

for reactants and inert crowding particles; and the volume ratio of

dimer to monomer, reflecting the relative compactness of a dimer.

To simulate the various parameter values, we used a

50 nm650 nm650 nm cubic simulation box and tested a fixed

reactant concentration with varying inert crowding agent concen-

trations. We simulated five binding probability values (B = 0.1, 0.3,

0.5, 0.7, 0.9), five breaking mean time values (M = 0.6, 0.8, 1.0, 1.2,

1.4 ns), five diffusion coefficient values (D = 1.3, 4.63, 7.97, 11.3,

14.63610211 m2s21), and five ratios of dimer to monomer volume

(a = 1.6, 1.8, 2.0, 2.2, 2.4). For each simulation, we simulated eight

total concentration values (C = CR+CI = 0.1+0.0, 0.1+0.05, 0.1+0.1,

0.1+0.15, 0.1+0.2, 0.1+0.25, 0.1+0.3, 0.1+0.35). For each such test,

all parameter values aside from the one being tested were held at

their default values: B = 0.7, M = 1.0 ns, D = 4.63610211 m2s21,

a = 2.0, b = 1.0, dth = 0.125 nm.

Figure 3 shows Keq values of SOLM and SPT for these four

varying parameters (B, M, D, and a), calculated by simulation data

and Eq. (19) and 1% simulation data and Eq. (22), respectively.

Several features are apparent in the figure. First, all Keq curves for

both SOLM and SPT show increasing Keq with increasing

concentrations of inert crowding particles. Second, the equilibrium

state shows a noticeable response to all parameter variations. In

detail, increasing B, M, or D or decreasing a increase the equilibrium

constant and thus produce more dimers, based on Keq values from

both SOLM and SPT. Keq values estimated by SPT match well with

those from SOLM for low (C = 0.1) to moderate levels of crowding

(C = 0.3). However, SPT starts to appreciably underestimate Keq as

estimated from simulations starting at a moderate level of crowding,

and the difference between the two increases as the total

concentration increases, similar to figure 2(D). SPT is based on

statistical thermodynamic calculations of the volume exclusion effect

to derive corrections to the equilibrium constant at the ideal state.

The 1% concentration simulations using SOLM provide reasonably

accurate Keq values for the ideal condition, based on correction

factors in table 1. Thus SPT values closely follow those of the

simulations in the range of low to middle concentrations. However,

the difference between SPT and SOLM tends to increase at higher

total concentrations. We attribute this difference primarily to two

factors. First, SPT estimates crowding effects based on a model of

pairwise interactions of excluded volume that neglects the relatively

higher excluded volume effect implied when one considers the

maximal possible packing densities of a lattice of spheres [28], while

SOLM accounts for this effect by explicitly modeling the individual

particles in a simulation. SOLM, on the other hand, may overstate

the crowding effect at the high end because of its use of a threshold

distance (dth) beyond a particle’s physical radius at which interactions

between particles can occur. Particles are required to be outside this

distance of one another after reaction or collision events, effectively

causing an increase in the crowding level.

One of the difficulties in accurately modeling crowded systems is

the complex patterns of cross-dependency between distinct

parameters. We chose to examine simultaneous changes in the a
and C, parameters shown in 2D to exhibit cross-correlated non-

linear effects on binding equilibria in crowded media [27].

Figure 3(D) shows a similar cross-dependency between a and C

in 3D. A smaller a in highly crowded conditions exaggerates the

crowding effect relative to that seen with larger a while the

crowding effect is small across the range of a values examined at

low to moderate levels of crowding.

To more quantitatively analyze the different parameter effects

on equilibria for various crowded conditions in 2D and 3D, we

built regression models for each parameter case. We first built a

regression model for 3D using least-squares fitting. Figure 4(A)

shows Keq curves of the simulation and best fit regression models

for varying degrees of polynomial from 0th to 4th order. We chose

a fourth degree polynomial based on leave-one-out cross

validation tests, shown in figure 4(B). The regression model of

Keq for the default parameter case is

Keq Cð Þ3D~10{20 0:6654C4{0:5853C3z0:1896C2
�

{0:0254Cz0:0013Þ ½molecules{1m3�:
ð1Þ

As shown in the best-fit regression model of Eq (1), the total

concentration nonlinearly altered the equilibrium of reaction

system. This nonlinear effect of the total concentration parameter

on the binding reaction has been observed in previous experiments

[4–7,14,22] and in our previous 2D simulations [27,30]. To

reasonably compare between 2D and 3D, we built an additional

regression model for 2D using the same degree as in the 3D case

based on previous 2D simulation data [27,30]. The best-fit

regression model in 2D is given in Eq. (2).

Keq Cð Þ2D~10{14 0:2979C4z0:1631C3{0:1327C2
�

z0:0358Cz0:0003Þ ½molecules{1m2�:
ð2Þ

Note that, because of the difference in simulation space in 2D

(100 nm6100 nm) and 3D (50 nm650 nm650 nm) and the

resulting different units of concentration, the absolute coefficients

of the regression polynomials in 3D and 2D are not directly

comparable.

Comparison between best-fit regression models in 2D and 3D,

however, shows that the influence of total concentration on crowding

is qualitatively similar between 2D and 3D. The other three

parameters (B, M, and D) show a similar effect in 2D and 3D, both

quantitatively and qualitatively. The parameters B, M, and D

separately and linearly influence the equilibrium state of the model

Three-Dimensional Crowding Model
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reaction system for both 2D and 3D. Figure 5(A), (C), (E), and (G)

show the Keq curves of simulation and best-fit regression models for

2D and figure 5(B), (D), (F), and (H) show the Keq curves of simulation

and best-fit regression models for 3D for varying B (0.1, 0.3, 0.5, 0.7,

0.9), M (0.6, 0.8, 1.0, 1.2, 1.4 ns), D (1.95, 6.95, 11.95, 16.95,

21.95610211 m2s21 for 2D and 1.30, 4.63, 7.97, 11.30,

14.63610211 m2s21 for 3D), and a (1.6, 1.8, 2.0, 2.2, 2.4), with

other parameters set to default values (B = 0.7, M = 1.0 ns,

D = 6.95610211 m2s21, a = 2.0, b = 1.0, dth = 0.5 nm for 2D and

B = 0.7, M = 1.0 ns, D = 4.63610211 m2s21, a = 2.0, b = 1.0,

dth = 0.125 nm for 3D simulations). The best-fit regression models

for 2D and 3D in this figure are

Figure 3. Keq estimated from SOLM and SPT for fixed 0.1 CR+ additional CI and varying parameter values (B, M, D, a). (A) Variation
across five B values (0.1 bottom, 0.3, 0.5, 0.7, 0.9 top), (B) Variation across five M values (0.6 bottom, 0.8, 1.0, 1.2, 1.4 ns top), (C) Variation across five D values
(1.3 bottom, 4.63, 7.97, 11.3, 14.63610211 m2s21 top), (D) Variation across five a values (1.6 top, 1.8, 2.0, 2.2, 2.4 bottom). All other parameter values for each
test are set to their default values: B = 0.7, M = 1.0 ns, D = 4.63610211 m2s21, a = 2.0, b = 1.0, and dth = 0.125 nm in a 50 nm650 nm650 nm simulation box.
doi:10.1371/journal.pone.0030131.g003

Table 1. Ko [1610225molecules21m3] and Gexc for various parameter conditions.

B Ko Gexc M Ko Gexc D Ko Gexc a Ko Gexc H Ko Gexc

0.1 0.85 1.05 0.6 5.77 1.05 1.3 2.79 1.05 1.6 9.80 1.04 5.125 12.48 1.04

0.3 2.98 1.05 0.8 7.59 1.04 4.6 9.39 1.04 1.8 9.88 1.04 10.25 10.83 1.04

0.5 5.63 1.05 1.0 9.39 1.04 8.0 15.70 1.04 2.0 9.39 1.04 15.375 10.33 1.04

0.7 9.39 1.04 1.2 11.27 1.04 11.3 23.09 1.04 2.2 9.27 1.04 20.5 10.13 1.04

0.9 14.69 1.04 1.4 13.19 1.04 14.6 29.18 1.04 2.4 9.29 1.04 25.625 9.91 1.04

Ko values are calculated by 100 independent simulation runs of 3DSOLM for the 1% pure reactant case in 100 nm6100 nm6100 nm for varying B, M, D, and a cases and
400 nm6400 nm6Height (H nm) for different heights of simulation boxes. Except for the specific parameter examined in each experiment, all parameter values are set
to the default values: B = 0.7, M = 1.0 ns, D = 4.6610211 m2s21, a = 2.0, b = 1.0, dth = 0.125 nm in 3DSOLM.
doi:10.1371/journal.pone.0030131.t001
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Keq C,Bð Þ2D~Keq Cð Þ2D

B

0:7

� �
½molecules{1m2�, ð3Þ

Keq C,Mð Þ2D~Keq Cð Þ2D

M

1:0ns

� �
½molecules{1m2�, ð4Þ

Keq C,Dð Þ2D~Keq Cð Þ2D

D

6:95|10{11m2s{1

� �

½molecules{1m2�,
ð5Þ

Keq C,Bð Þ3D~Keq Cð Þ3D

B

0:7

� �
½molecules{1m3�, ð6Þ

Keq C,Mð Þ3D~Keq Cð Þ3D

M

1:0ns

� �
½molecules{1m3�, ð7Þ

Keq C,Dð Þ3D~Keq Cð Þ3D

D

4:63|10{11m2s{1

� �

½molecules{1m3�:
ð8Þ

Thus, binding probability upon collision between two reactants

(B), mean time of dissociation reaction (M), and diffusion

coefficient (D) independently and linearly altered the equilibrium

constants and these parameter effects on Keq can be accurately

predicted by linear scaling for both 2D and 3D cases.

The volume ratio of dimer to monomer (a), however, shows a

strong cross-dependency with the total concentration parameter

(C) and must be fit in a multi-dimensional parameter space, similar

to 2DSOLM [30]. Figure 4(C) shows the leave-one-out cross

validation results for various degree of polynomial of a and C for

3DSOLM. The fifth-degree polynomial was selected as the best-fit

regression model. Using the same polynomial least-square fitting

method [30], the regression polynomial of a and C is

Keq C,að Þ3D~10{19|½({0:0094)z(0:0874Cz0:0148a)

z({0:173Ca{0:0334C2{0:0059a2)z(0:1314Ca2

z0:018C2az0:0842C3{0:0017a3)z {0:0468Ca3
�

z0:0272C2a2{0:1962C3az0:2298C4z0:0017a4
�

z 0:0069Ca4{0:0187C2a3z0:127C3a2{0:35C4a
�

z0:4148C5{0:0003a5)
�
� ½molecules

�1
m3�: (9)

Figure 5(H) shows the Keq curves from the average values of

simulations and fit values from the regression polynomial of Eq. (9)

for varying a. To aid comparison, we again built regression models

for the 2D case to match the degree of the best-fit 3D model, using

fifth degree models for a and C in both 2D and 3D, as shown in

Eq. (10).

Keq C,að Þ2D~10{13|½({0:0034)z({0:0114Cz0:0096a)

z(0:0247Caz0:0218C2{0:0099a2)z({0:012Ca2

{0:0743C2az0:1944C3z0:0049a3)z({0:0027Ca3

z0:1043C2a2{0:5075C3az0:8148C4{0:001a4)

z(0:0015Ca4{0:0298C2a3z0:1751C3a2{0:409C4a

z0:2529C5z0:0001a5)� ½molecules
�1

m2� (10)

The regression models in 3D and 2D show that the parameter

effect of a is again nonlinear and cross-dependent with C, but can

be accurately predicted by a high-order polynomial regression

model, as shown in figure 5 (G,H).

Interpolating between 2D and 3D models
The densely crowded environment can impede diffusion and

provide steric hindrance to reaction events for both reactants and

Figure 4. Leave-one-out cross validation test to determine the best fitted regression model. (A) Simulation curve for fixed 0.1 CR+
additional CI with all other parameters set to the default values and best fit regression curves for different degree of polynomials, (B) Root mean
square error values for the leave-one-out cross validation (5 time points for each run, 10 independent runs for 25 ms), (C) Root mean square error
values for the leave-one-out cross validation for simultaneous variation in a and C (five a values:1.6, 1.8, 2.0, 2.2, 2.4) and (eight C values: 0.1, 0.15, …,
0.45).
doi:10.1371/journal.pone.0030131.g004
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products of a chemical reaction. The impact of crowding on

diffusion would be expected to act differently in a 2D versus a 3D

model, although it is not prima facie clear how the extra dimension

will specifically alter the equilibrium and reaction rates of binding

chemistry in one condition versus the other. To better understand

the differences between 2D and 3D models, we conducted

additional simulations varying the height of the simulation space

while holding width and length fixed. These simulations were

intended to examine the difference between 2D and 3D on a

continuum between a purely 2D model and a full 3D model. We

varied the height of the simulation box from 5.125 nm (the

thickness of a single layer of particles, resulting in a pseudo-2D

model that we call the x1 model) to 25.625 nm (five times of the

single layer, x5) in increments of 5.125 nm. We note that the

thickness here describes the volume in which the center of a

particle can move, so the x1 model does allow some diffusion in

the height dimension, but too little for particles to pass above or

below one another. The width and length of the box is fixed at

50 nm650 nm. For each test case, we simulated eight C values

(0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45) for fixed reactant

concentrations of 0.1 with varying additional inert crowding agent

concentrations and varying pure reactant concentrations without

inert crowding agents. Figure 1(D) and (E) show simulation

snapshots of the quasi-equilibrium state (25 ms) for 0.1CR at

5.125 nm thickness and 0.1CR+0.35CI at 25.625 nm thickness,

respectively. Figure 1(F) shows the center position of particles in

Figure 1(E), for better visualization. Cyan spheres represent

reactant monomers, magenta spheres represent reactant dimers,

black spheres represent inert crowding agents, and green spheres

represent diffusion limit spheres of SOLM. We allow a diffusion

limit sphere can grow beyond the simulation box until the

diffusion limit sphere touches the diffusion limit sphere of another

neighboring particle. If the center position of a newly sampled

particle is outside of the simulation box, then the position of the

particle is reflected to the inside of the box based on the reflective

boundary assumption in 3DSOLM. In the 5.125 nm height case,

shown in figure 1(D), both sampled and reflected positions of a

particle can be outside of the simulation box with very low

probability, in which case the simulator samples the position of the

particle again until the new position of the particle is inside of the

box. The hard reflective boundary condition makes the simulation

progress fast but the actual simulation volume is extended because

it allows a particle to move across the reflective boundary plane

until the center position of the particle reach the boundary plane.

For tests varying the height of the simulation box, we used a

different convention for labeling the concentration than elsewhere

in the manuscript in order to more accurately describe boundary

effects. Specifically, we calculated concentrations by accounting

for the additional one particle-width beyond the bounding box

that part of a particle can occupy. Although this correction was

applied throughout the manuscript when calculating excluded

volume effects, it is omitted elsewhere in labeling the axes of plots

to improve readability. For example, the corrected volume of the

single layer case (x1, 5.125 nm) is 55655610.125 nm3 and the

corrected concentration for (C = 0.1–0.45) is C = 0.043–0.188.

Figure 6 shows Keq curves for both SOLM and SPT for these

various height cases using the corrected volume and concentra-

tion. As with our previous test cases, Keq increases as the total

concentration increases by the excluded volume effect, and fixed

CR with additional CI cases show a stronger crowding effect than

pure CR cases. For SOLM, decreasing the height of the simulation

box increases the equilibrium constant of the test reaction system,

which means that providing less freedom of movement to particles

increases the crowding effect similar to the limitation provided by

inert crowding agents. Estimated Keq from SPT, however, cannot

distinguish well the effects of varying the height of the simulation

box because SPT calculates the non-ideal interaction among

particles but does not consider edge effects with the bounding

compartment that contains the reactants and inert crowding

particles. Although the 1% pure reactant simulations slightly

capture the effect of various heights, the estimated Keq values from

SPT do not clearly show the effect of thickness of the simulation

box, compared with SOLM.

Crowding effects over broader ranges of intrinsic
reaction rates

Molecular crowding can either enhance or inhibit reaction

systems [1,14] depending on complex interactions among many

factors. As a further test of the realism of our model, we have

Figure 5. Simulation vs. Regression for Keq in 2D and 3D. (A, B)
varying parameter B (0.1 bottom, 0.3, 0.5, 0.7, 0.9 top), (C, D) varying
parameter M (0.6 bottom, 0.8, 1.0, 1.2, 1.4 ns top), (E, F) varying
parameter D (1.95 bottom, 6.95, 11.95, 16.95, 21.95610211 m2s21 top)
for 2D and (1.3 bottom, 4.63, 7.97, 11.3, 14.63610211 m2s21 top) for 3D
cases, (G, H) varying parameter a (1.6 top, 1.8, 2.0, 2.2, 2.4 bottom). The
first column (A,C,E,G) shows 2D cases and the second column (B,D,F,H)
shows 3D cases. Simulation curves show averages from 10 independent
runs for 3D and 30 independent runs for 2D at 5 time points (5, 10, 15,
20, 25 ms) per run for fixed CR = 0.1 and varying CI (0.0, 0.05, 0.1, 0.15,
0.2, 0.25, 0.3, 0.35).
doi:10.1371/journal.pone.0030131.g005
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conducted additional validation experiments over much broader

parameter ranges to demonstrate the existence of domains in

which crowding may enhance, inhibit, or show little effect on

binding. We specifically excluded the parameters a and b shown in

our 2D model to be able to modulate the net direction of the

crowding effect [30], focusing instead on parameters B and M,

which control the binding probability of collision and the

dissociation rate, because these would be expected to interact

only indirectly with crowding levels. We simulated homodimer-

ization reactions for parameter variation over four orders of

magnitude in B (0.1, 0.01, 0.001, 0.0001) and M (10 ns, 100 ns,

1 ms, 10 ms) in a 50 nm650 nm650 nm simulation box at four

crowding levels: 0.1CR+0.0CI, 0.1CR+0.1CI, 0.1CR+0.2CI, and

0.1CR+0.3CI. Other parameters are set to their default values

(D = 4.63610211 m2s21, a = 2.0, b = 1.0, and dth = 0.125 nm). We

simulated 10 independent runs with 25 ms per run. Figure 7 shows

reaction progress curves for these experiments and figure 8 shows

inferred equilibrium constants as a function of crowding level for

each condition. Figure 7 shows a general trend towards increased

dimerization at increased crowding levels, although with consid-

erable variability in crowding influence across conditions. Figure 8

confirms this trend, although it also shows that the effect can be

quite variable from one condition to another. In particular, under

conditions of slow dissociation (large M) high levels of crowding

tend to have a net negative effect on binding equilibrium. For

example, Keq for B = 0.0001, M = 10 ns increases by 20.5 fold from

0.1CR to 0.1CR+0.3CI, while Keq for B = 0.1, M = 10 ms decreases

by 0.9 fold over the same range of crowding levels. The effects on

reaction kinetics of different crowding levels are also quite variable

across the parameter space, with figure 7 showing little apparent

difference in rates across crowding levels in the presence of high

binding probabilities but large variations when collisions rarely

lead to binding.

Discussion

We have built our 3DSOLM model to explore how crowding

and other simulation parameters alter the equilibrium state of a

model reaction system in 3D, and compared the results with our

previous models in 2D. Like the 2D case [16], the 3D model

revealed a strong crowding effect, typically enhancing binding

affinities by inhibiting dissociation events, across a range of

physiologically realistic levels of crowding. This effect was

observed in cases of both increasing concentrations of inert

crowding agents and increasing reactant concentrations, although

it is less pronounced for high reactant concentrations, as would be

expected given the greater ability of the pure-reactant system to

alter total volume through dimerization. Changes in the

parameters B, M, and D in 3DSOLM showed a similar linear

variation in binding equilibrium to that seen in 2DSOLM [27]. In

addition, changes in the cross-dependent parameters a and C in

3DSOLM showed a similar nonlinear variation in binding

equilibrium to that seen in 2DSOLM [30]. We would expect

such effects to be more or less pronounced in different regions of

the parameter space and a search across several orders of

magnitude does indeed reveals that different parameter domains

can lead to very different magnitudes of crowding effects and to

either enhancement or suppression of net binding equilibrium. In

experimental studies, additional possible interaction types lacking

from our model have also been shown to modulate the crowding

effect, e.g., the presence of repulsive interactions between particles

[2–7], attractive interactions between reactants and crowding

agents [31], or other nonspecific protein-protein interactions [32].

In other circumstances, crowding has been found to have no

strong crowding effect on protein-protein interactions [33]. Our

model considers only steric hindrance and the resulting excluded

volume effect, and further work would therefore be needed to

determine how our conclusions would be affected by the presence

of other such long-distance interactions.

Comparison between SOLM and SPT in figure 3 shows that

the calculated Keq values from both methods are close to each other

at low-to-moderate crowding levels, but the calculated Keq values

from SOLM are larger than those derived from SPT in high

crowding conditions. Although both methods use a hard sphere

particle model, SOLM is a particle-based method, simulating

individual particles explicitly. SPT, on the other hand, estimates

Figure 6. Keq from SOLM and SPT for variable heights of the simulation space. (A) Keq from SOLM and SPT for fixed amount of CR+
additional CI, (B) Keq from SOLM and SPT for pure CR without inert crowding agents. Simulation boxes have length and width of 50 nm in all cases.
Five different heights are examined: 5.125 nm (single particle layer with threshold distance, x1), 10.25 nm (double layer, x2), 15.375 nm (x3), 20.5 nm
(x4), 25.625 nm (x5). Note that this figure uses concentrations corrected for boundary effects to label the x-axis in contrast to the other figures, in
order to better illustrate the trend across concentrations.
doi:10.1371/journal.pone.0030131.g006
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the total excluded volume effect by summing over pairwise

contributions, an approximation that can understate the degree to

which particle movement is restricted, and thus understate the

crowding effect, in conditions of very high crowding [28]. SOLM,

conversely, may overstate the crowding effect under similar

conditions because of the use of a threshold distance maintained

between particles following reaction events. While one can in

principle make this threshold distance effect arbitrarily small by

reducing the distance, such a reduction would come at a cost of

increased run time. The main advantage of SPT is its higher

efficiency than SOLM, whose run time increases quadratically

with particle counts. Our regression modeling method is intended

to give advantages of both, allowing approximations closer to those

one would derive from an explicit particle model like SOLM but

in run times close to those of a fast analytical approximation like

SPT. Because both methods use the hard sphere model and

assume that the excluded volume by solvents is negligible, they

would be expected to be less realistic than typical Brownian

dynamics or molecular dynamics methods, which may explicitly

consider effects of water molecules or other nonbonded interac-

tions. The regression approach should, however, in principle be

extensible to more realistic particle models such as these.

A key question in this study is how 2D and 3D crowding models

differ. The question is relevant in part because of the many 2D

studies already in the literature [34,35] as well as the considerable

computational advantages of 2D models over 3D for large systems.

In addition, it is important for properly characterizing the

crowding effect in genuinely 2D or nearly 2D environments, such

as diffusing reaction systems within a membrane. Other examples

of systems involving nearly 2D diffusion may include assembly of

vesicles and sorting of cargo for intracellular transport [36] and

migration of T cells, which can move on the surface of endothelial

lining (2D) or interstitial space (3D) [37]. Migration of T cells from

2D to 3D involves specific signaling pathway, such as MEK-

Cofilin [37], but it is still unknown how the crowding effect act in

this condition. We examined the issue of whether crowding effects

are qualitatively different in 2D versus 3D models by interpolating

between a cubic 3D space and a pseudo-2D model produced by a

simulation space too narrow to allow particles to pass one another

in one dimension. Our model does show significant quantitative

differences in Keq as height varies, as shown in figure 6, primarily

due to a much stronger barrier to diffusion, once the third

dimension is effectively lost. In biological systems, various sizes

and shapes of proteins contribute to the crowding effect [38,39].

Our results suggest that the specific influence of these

combinations of shapes and sizes in conjunction with the volumes

in which they diffuse must be considered to judge whether a given

system is effectively 2D or 3D for the purposes of accurately

capturing the crowding effect. The results do, however, suggest

that 2D and 3D models provide qualitatively consistent results

across various parameters and that these effects do interpolate

gradually between the two, indicating that fully 2D models can

provide good matches to expected behaviors from nearly 2D

systems. Likewise, the results show that the regression approach

Figure 7. Reaction progress across variations in parameters B and M at four crowding levels. Blue curves correspond to a concentration
of 0.1CR+0.0CI, magenta curves to 0.1CR+0.1CI, green curves to 0.1CR+0.2CI, and black curves to 0.1CR+0.3CI. Error bars show the standard deviation of
10 independent runs. Other parameters are set to their default values: D = 4.63610211 m2s21, a = 2.0, b = 1.0, and dth = 0.125 nm in a
50 nm650 nm650 nm simulation box.
doi:10.1371/journal.pone.0030131.g007
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we developed in 2D as a way of accelerating multiparameter

simulations of chemistry in crowded conditions work comparably

in 3D as in 2D systems [30]. However, this consistency between

2D and 3D may be lost if we consider additional interactions with

compartments or other large obstacles, such as cytoskeleton

networks and nondiffusible polymers. Such observations may

prove useful in guiding development of efficient crowding models

for more complex and more realistic biological systems, and in

particular in understanding how one can safely trade off model

detail for improved computational tractability without compro-

mising model accuracy.

Materials and Methods

Discrete event time calculation
The main algorithm of 3DSOLM is the same as that described

for our prior 2DSOLM model [16]. Both stochastic off-lattice

models use the GFRD discrete event simulation method [17] to

efficiently simulate particle diffusion in continuous time and space.

In 3DSOLM, we apply a hard reflective cubic or rectangular box

boundary condition. The test binding reaction system is a

homodimerization reaction. All particles in 3DSOLM are spheres.

The radius of a diffusion limit sphere (Rdiff) in 3DSOLM is set to:

Rdiff (3D)(Dt)~(3xRMS, 3yRMS, 3zRMS)~3
ffiffiffiffiffiffiffiffiffiffiffi
6DDt
p

, ð11Þ

where xRMS~yRMS~zRMS~
ffiffiffiffiffiffiffiffiffiffiffi
2DDt
p

and D is diffusion coefficient

from the Stokes-Einstein’s diffusion equation (D~
kT

6pgr
), shown in

figure 9(A). Each Cartesian coordinate of the diffusion limit sphere is

three times the standard deviation of the Gaussian distribution for a

single coordinate in isolation. The square of the distance in which the

particle has diffused in a three-dimensional space can be expressed as

the sum of the squares of three independent normal distributions, a

quantity that is chi-square distributed with three degrees of freedom.

The probability that the particle will be confined to the radius of the

diffusion limit sphere (Rdiff) is then equivalent to the probability that the

chi-square random variable is within (Rdiff)
2, which is 97.07%, covering

most of the space of possible Brownian diffusion within the spherical

volume. We can calculate the collision time (t’) of two diffusion limit

spheres as follows:

dAB~Rdiff ,A(t0{tA)zRdiff ,B(t0{tB)~3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6DDtA

p
z3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6DDtB

p
~3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6D(t0{tA)

p
z3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6D(t0{tB)

p
,

ð12Þ

where dAB is the distance between two particles, A and B, and tA and tB
are the times at which the positions of particles A and B were last

determined, shown in figure 9(B). The three different radii of the

diffusion limit spheres of a reactant monomer, dimer, and inert particle

are then:

Rdiff (3D)monomer~3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Dt

kT

6pgrmonomer

s

~3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt

kT

pgrmonomer

s
~C

ffiffiffiffiffi
Dt
p

,

ð13Þ

Rdiff (3D)dimer~3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Dt

kT

6pgrdimer

s

~3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt

kT

pga1=3rmonomer

s
~C

ffiffiffiffiffiffiffiffi
Dt

a1=3

r
~C

ffiffiffiffiffi
Dt
p

a1=6
,

ð14Þ

Figure 8. Keq calculated from SOLM simulations depicted in figure 7. Keq values were calculated using average dimer counts from 10
independent runs for 5 time points (5, 10, 15, 20, 25 ms) per run.
doi:10.1371/journal.pone.0030131.g008

Three-Dimensional Crowding Model

PLoS ONE | www.plosone.org 10 January 2012 | Volume 7 | Issue 1 | e30131



Rdiff (3D)inert particle~3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Dt

kT

6pgrinert particle

s

~3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt

kT

pgb1=3rmonomer

s
~C

ffiffiffiffiffiffiffiffi
Dt

b1=3

s
~C

ffiffiffiffiffi
Dt
p

b1=6
,

ð15Þ

where C~3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kT

pgrmonomer

s
. The parameter a is the ratio of dimer

volume to monomer volume (a :
4

3
p r3

dimer~a
4

3
p r3

monomer), and the

dimer radius is therefore rdimer~a1=3rmonomer. The parameter b is the

ratio of inert particle volume to reactant monomer volume

(b :
4

3
p r3

inert particle~b
4

3
p r3

monomer), and the inert particle radius is

therefore rinert particle~b1=3rmonomer.

We can derive a more general equation by plugging Eqs. (13–

15) into Eq. (12):

ffiffiffiffiffiffiffiffiffiffiffiffi
t’{tA

p

n
1=6
A

z

ffiffiffiffiffiffiffiffiffiffiffiffi
t’{tB

p

n
1=6
B

~dAB=C, ð16Þ

where nA~nB~1, if the particle A and B are reactant monomers,

nA~nB~a, if the particle A and B are reactant dimers, and

nA~nB~b, if the particle A and B are inert particles.

The collision time (t’) of two diffusion limit spheres, which is the

analytical solution of Eq. (16), follows:

t0~x2 dAB=Cð Þ2ztA~
{d1zd2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zd3d2

2{d2
1 d3

q
(d2zd1)(d2{d1)

0
@

1
A

2

dAB=Cð Þ2ztA, if d1=d2 or nA=nB,

t0~
(dAB=C)2n1=3

4
z

tAztB

2
z

tA{tBð Þ2

4(dAB=C)2n1=3
, if nA~nB~n,ð17Þ

where d1~n
{1=6
A , d2~n

{1=6
B , d3~

tB{tA

dAB=Cð Þ2
.

Equilibrium constant calculation by SOLM
We examine the crowding effect for various parameter

conditions and different mixtures of reactants and inert crowding

agents. To simplify analysis of the crowding effect specifically, we

use a simple homodimerization reaction as our test system. The

governing chemical equation of the test homodimerization

reaction is:

MzMzI
�?
Kz

/�
K{

DzI , ð18Þ

where M is the reactant monomer, D is the reactant dimer, I is

the inert crowding particle, Kz is the forward reaction rate, and

K{ is the reverse reaction rate. The equilibrium constant can be

computed from Eq. (18) as follows:

Keq~
kz

k{

~
½Deq�½I �
½Meq�2½I �

~
½Deq�
½Meq�2

~
Deq=V

(M0{2Deq)=V
� �2

~
Deq|V

M0{2Deq

� �2
½molecules{1 m3�, ð19Þ

where ½Deq� is the concentration of dimers at the quasi-equilibrium

state, ½Meq� is the concentration of monomers at the quasi-

equilibrium state, M0 is the number of initial monomers, Meq is

the number of monomers at the quasi-equilibrium state, Deq is the

number of dimers at the quasi-equilibrium state, and V is the

volume of simulation space. The concentration of a particle in Eq.

(19) is determined by the empirically measured number of particles

in the simulation divided by the total volume of the simulation

space, similar to standard molar concentrations. The crowding

effect of [I] drops out in Eq. (19), because this governing equation

is based on the idealized mass-action model. We calculate the

estimated Keq of the binding reaction for various concentrations of

[I] using Eq. (19) with the simulation results from 3DSOLM,

based on the assumption that 3DSOLM appropriately represents

the crowding effect of all particles in the various conditions. In

addition, we can estimate the average number of dimers at the

quasi-equilibrium state using the estimated Keq. From Eq. (19), the

estimated Deq is Eq. (21).

4KD2
eq{ 4KM0z1ð ÞDeqzKM2

0 ~0: ð20Þ

Figure 9. Three dimensional stochastic off-lattice model. (A) The radius of the diffusion limit sphere (Rdiff) for a given diffusion coefficient (D)
and time interval (Dt), (B) A discrete event in SOLM.
doi:10.1371/journal.pone.0030131.g009
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Deq~
4KM0z1+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4KM0z1ð Þ2{16K2M2

0

q
8K

~
4KM0z1{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8KM0z1
p

8K
,

ð21Þ

where K~
Keq

V
.

Equilibrium constant calculation by SPT
We calculated the apparent equilibrium constant for various

densities of reactants and inert crowding particles, and various

volume ratio parameter (a) values using scaled particle theory

[28,29] and thermodynamic activity theory [14]. In thermody-

namic theory, no interaction between particles occurs at the ideal

gas state. The equilibrium constant at the ideal state (Ko) is altered

by the non-ideal interactions with increasing density of either

reactants or inert crowding particles. The non-ideal interaction is

approximately calculated using scaled particle theory and activity

coefficients of reactants. The apparent equilibrium constant of

various densities of particles is Keq~CexcKo (22), where Cexc is

a correction factor for the excluded volume effect. For

our homodimerization reaction in Eq. (18), the correction factor is

Cexc~
c2

M

c1
D

~e2 ln cM{ ln cD , where cM and cD are activity coeffi-

cients of reactant monomer and dimer, respectively. Based on

scaled particle theory [28,29], assuming all particles are hard spheres,

the activity coefficients for reactant monomers and dimers are

ln cM~{ ln (1{S3)z
6S2RM

1{S3
z

12S1

1{S3
z

18S2
2

1{S3ð Þ2

 !
R2

M

z
8S0

1{S3
z

24S1S2

1{S3ð Þ2
z

24S3
2

1{S3ð Þ3

 !
R3

M

ln cD~{ ln (1{S3)z
6S2RD

1{S3
z

12S1

1{S3
z

18S2
2

1{S3ð Þ2

 !
R2

D

z
8S0

1{S3
z

24S1S2

1{S3ð Þ2
z

24S3
2

1{S3ð Þ3

 !
R3

D

S0~
p

6
rMzrDzrIð Þ

S1~
p

6
rM2RMzrD2RDzrI 2RIð Þ

S2~
p

6
rM 2RMð Þ2zrD 2RDð Þ2zrI 2RIð Þ2
� �

S3~
p

6
rM 2RMð Þ3zrD 2RDð Þ3zrI 2RIð Þ3
� �

,

where r (density) = number of particles/simulation volume and

RX = radius of a particle for each particle species X: M (reactant

monomer), D(reactant dimer), or I(inert crowding particle). Finally,

the apparent equilibrium constant is calculated by multiplying the

correction factor by Ko, which is calculated from simulation results at

1% pure reactant concentration for all other given parameter

conditions. As shown in table 1, the calculated correction factors to

the 1% pure reactant simulations for various parameter conditions

were consistently close to 1, which shows that the 1% concentration

case is sufficiently dilute to be treated as an ideal state while

introducing minimal errors into subsequent SPT estimations.

Simulation conditions and experiments
3DSOLM has seven different parameters: the total concentra-

tion (C), defined as the volume ratio of all particles to the

investigated simulation space; the probability of binding upon a

collision between two reactant monomers (B); the mean time for

dissociation events (M), defined as the inverse of the dissociation

rate constant; the diffusion coefficient (D); the volume ratio of a

dimer to a reactant monomer (a); the volume ratio of an inert

particle to a reactant monomer (b); and the threshold distance

between two particles (dth), describing the maximum distance at

which two particles can interact with one another. We established

a baseline simulation parameter set with default parameter values

of B = 0.7, M = 1 ns, D = 4.63610211 m2s21, a = 2, b = 1, and

dth = 0.125 nm. These default values were chosen based on our

prior 2DSOLM simulation studies [16,27,30] to produce a

reasonably strong crowding effect as well as to approximate a

reasonable range of temperature and viscosity conditions of the

cytoplasm [40,41]. The radius of a reactant monomer is fixed at

2.5 nm. Initially, all reactants are monomers for the test

homodimerization reaction. To achieve the maximum possible

packing density, however, we placed particles initially on the

hexagonal close-packed spherical lattice at the maximum possible

packing density for whichever of reactant monomers and crowding

agents occupies the larger total volume and then randomly

inserted particles into the corresponding grid positions. The radius

of the spherical lattice is the radius of selected particles for

maximum density plus half of the threshold distance, in order to

prevent particles from interacting with each other in the initial

state. This protocol was developed because it makes it possible to

initialize in highly crowded conditions where independent uniform

placement of particles would usually result in overlapping

particles. Initially, all particles are located inside of the simulation

box. The reflective boundary condition in 3DSOLM allows a

particle to move partially outside the simulation space until the

center position crosses the simulation boundary plane, similar to

2DSOLM [16]. Because a particle in 3DSOLM can partially cross

the boundary plane of the simulation box after the initial state, we

corrected the total concentration values to account for the

additional volume outside the simulation box that particles can

partially occupy. Each simulation was run for 25 ms with 10

repetitions per simulation, with progress recorded every

0.15625 ms. For each condition, we measured reaction progress

by the mean number of dimers as a function of time across all

simulations.

The 3DSOLM simulation program was implemented in C++
and run on a Linux Beowulf cluster. The collected data files were

analyzed and plotted using Matlab (R2008a).

Simulation movie file
We created a movie file to demonstrate the simulation process

in 3DSOLM and show the effect of molecular crowding. Video S1

presents a comparison of 0.1 CR and 0.1 CR+0.35 CI simulations.

The first half of the movie shows each system in the initial (pre-

equilibration) state, and the second half of the movie shows a

quasi-equilibrium state. High-resolution versions of the movies can
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be downloaded from: http://www.cs.cmu.edu/,russells/projects/

crowding/SOLM.html.

Supporting Information

Video S1 Simulation movie of 3DSOLM in low and high
crowding conditions. The movie shows sample trajectories for

two simulations, the left side representing a low crowding (0.1 CR)

case and the right side representing a high crowding (0.1 CR+0.35

CI) case. All other parameters are set to their default values:

B = 0.7, M = 1.0 ns, D = 4.6610211 m2s21, a= 2.0, b= 1.0,

dth = 0.125 nm in a 50 nm650 nm650 nm simulation box. The

first half of the movie shows each system in its initial pre-

equilibration state and the second half of the movie shows the

same systems in a quasi-equilibrium state. Cyan spheres are

reactant monomers, magenta spheres are reactant dimers, and

black spheres are inert crowding particles. Diffusion limit spheres

are shown in green for all particles.

(MOV)
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