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Abstract

Background: Currently, no standard tool is publicly available that allows researchers or policy-makers to quantify the impact
of policies using epidemiological evidence within the causal framework of Health Impact Assessment (HIA). A standard tool
should comply with three technical criteria (real-life population, dynamic projection, explicit risk-factor states) and three
usability criteria (modest data requirements, rich model output, generally accessible) to be useful in the applied setting of
HIA. With DYNAMO-HIA (Dynamic Modeling for Health Impact Assessment), we introduce such a generic software tool
specifically designed to facilitate quantification in the assessment of the health impacts of policies.

Methods and Results: DYNAMO-HIA quantifies the impact of user-specified risk-factor changes on multiple diseases and in
turn on overall population health, comparing one reference scenario with one or more intervention scenarios. The Markov-
based modeling approach allows for explicit risk-factor states and simulation of a real-life population. A built-in parameter
estimation module ensures that only standard population-level epidemiological evidence is required, i.e. data on incidence,
prevalence, relative risks, and mortality. DYNAMO-HIA provides a rich output of summary measures – e.g. life expectancy
and disease-free life expectancy – and detailed data – e.g. prevalences and mortality/survival rates – by age, sex, and risk-
factor status over time. DYNAMO-HIA is controlled via a graphical user interface and is publicly available from the internet,
ensuring general accessibility. We illustrate the use of DYNAMO-HIA with two example applications: a policy causing an
overall increase in alcohol consumption and quantifying the disease-burden of smoking.

Conclusion: By combining modest data needs with general accessibility and user friendliness within the causal framework
of HIA, DYNAMO-HIA is a potential standard tool for health impact assessment based on epidemiologic evidence.
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Introduction

Health Impact Assessment (HIA) is a combination of proce-

dures, methods, and tools that judges the effect of (intended)

programs, projects, or policies on overall population health and

the distributional effects within a population [1]. The rationale

behind HIA is that many risk-factors for chronic diseases are

affected by policy measures outside the realm of health policy (e.g.

transportation, food, or urban planning). Health impact assess-

ments have been carried out at all governmental levels (e.g. local

[2], regional [3], national [4], and supranational [5]). The number

of HIAs is likely to rise due to increased institutional adoption [6]

and political will, in particular at EU level [7]. Currently, there is

a diversity of approaches to the quantification of policy
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interventions [8]. However, for the quantification step in HIA,

a generic modeling tool – i.e. allowing for various and multiple

chronic diseases and arbitrary risk-factors – that takes into account

the standard causal pathway assumed in HIA has been lacking [9].

The standard HIA causal pathway assumes that a policy

intervention leads to a change in risk-factor prevalence which in

turn leads to changes in disease incidence and disease-related

mortality [10]. The two objectives of HIA – to predict future

consequences of implementing different options and to inform

decision makers in choosing between options [11] – address the

technical core of quantification (predict) as well as the context

(inform) in which an HIA takes place. Hence, a potential standard

tool should aim for technical accuracy in the prediction of the

effects of interventions on population health, and yet be effective in

the applied setting of an HIA, where time and resources are

scarce. These objectives were operationalized into six criteria that

a generic model should fulfill to be useful as a standard tool [9].

The first three criteria (real-life population, dynamic projection, and

explicit risk-factor states) ensure that the model structure is sufficiently

accurate in modeling changes in risk-factor exposure over time in

a real-life population in a transparent way. The last three criteria

(modest data requirements, rich model output, and generally accessible) ensure

a wide usability by accounting for the constraints of a decision-

making process.

This article proposes a software – DYNAMO-HIA (DYNamic

MOdeling for Health Impact Assessment) –as a standard tool for

the quantification of user-specified policy interventions within the

HIA-framework.

Materials and Methods

Implementation of Requirements for a Standard Tool
We designed DYNAMO-HIA to satisfy the six criteria that

a generic standard tool for HIA should fulfill. DYNAMO-HIA

models a closed real life population, i.e. stratified by sex and age in

1 year age categories up to the age of 95 without migration

(including the expected number of newborns). The model is

dynamic in 1-year time steps and projects reference and (several)

intervention scenario(s) over time. DYNAMO-HIA has explicit risk-

factor states, i.e. at every time step of the simulation each simulated

individual is classified into a specific risk-factor category. This

ensures an accurate, unbiased estimation and increases the

transparency of the simulation and the resulting output data.

DYNAMO-HIA has a parameter estimation module, mostly

using methods taken from the Chronic Disease Model of Dutch

National Institute for Public Health (RIVM-CDM) [12], reducing

data needs substantially. Incidence and prevalence of a disease are

only needed at the population level, i.e. specified by age and sex

and not by each risk-factor state. The module back-calculates the

risk-factor specific values using the relative risk from each risk-

factors state on diseases. The user can inspect these intermediate

results when desired, thus improving transparency. DYNAMO-

HIA provides rich simulation output available in three forms: (1) raw

output data, allowing detailed analysis by age, sex, and risk-factor

status. This raw data give either the cohort disease life table for

every simulated cohort or the period data for every simulated year;

(2) several dynamic plots, e.g. population pyramids or survival

rates, based on the data that contrast key information between the

reference scenario and the intervention scenario; (3) a range of

summary outcome measures, e.g. cohort-, period-, or disease-free

life expectancy. The graphical user interface allows general

accessibility; no programming or other advanced computing skills

are required.

Model Core
DYNAMO-HIA is a Markov-type model based on a multi-state

model (MSM). The change of the state depends only on current

characteristics, i.e. age, sex, risk-factor status, and health status.

The MSM is implemented as a partial micro-simulation combining

a stochastic micro-simulation to project risk-factor behavior with

a deterministic macro approach for the disease life table [13]. In

the micro-simulation, module large numbers of distinctive risk-

factor biographies are simulated: Given the age and sex-specific

transition probabilities between risk-factor states, the risk-factor

status of each simulated individual is updated in annual increments

(see Fig. 1 for details). In the macro module, a separate disease life

tables is constructed for each risk-factor biographies. These disease

life tables account for competing risks and multiple morbidity [14].

The exact configuration of the disease life tables, i.e. the number

and types of diseases, can be specified by the user (see Fig. 2 for

details). For every risk-factor biography, the probability of disease

incidence and mortality over time is calculated, accounting for the

current age, risk-factor, and disease status (see Fig. 3 for details).

These biography-specific life tables are calculated for each birth-

cohort, i.e. all individuals that are born in the same calendar year.

For example, for a cohort of newborns, risk-factor biographies are

projected and subsequently disease life tables are calculated. Older

cohorts, i.e. those born before the first simulation year, already

have the disease prevalence as specified by the input data, which is

then similarly updated. Population values are obtained by

aggregating the individual biography/diseases life tables: either

across cohorts at a given simulation time point to obtain period

measures or along cohorts to obtain cohort specific measures (see

Fig. 4 for details). The split into a micro and a macro module is

done purely for computational convenience; micro- and macro-

simulations yield the same result when used with the same data

[15,16]. However, time and memory requirements in macro-

simulations rise exponentially when the number of simulated states

increases. In contrast, micro-simulations – unlike customary multi-

state life tables – do not require the a priori specification of all

theoretically possible combinations of diseases/risk-factor states,

but only those states that are actually occupied. However, for

simulating rare events – e.g. lung cancer at young ages – micro-

simulations require the simulation of large numbers of individuals,

offsetting the savings in time and memory requirements.

The epidemiological model uses relative risks by risk-factor

class, i.e. incidences in exposed risk-factor classes are a multiple of

the incidence in non-exposed. The total mortality, i.e. population

level mortality by age and sex, is being decomposed in the

mortality due to the diseases included in the model and other-

cause mortality. This decomposition assumes additive mortality:

the total mortality rate in the population is explained as the sum of

the mortality rate of the included diseases and other-cause

mortality, i.e. mortality from all causes/diseases that are not

explicitly included in the model.

Modeling Policies with DYNAMO-HIA
The goal of HIA is to compare the effect of several policies/

interventions on future population health, keeping the status quo

as the reference scenario. Within DYNAMO-HIA, policies can be

modeled in two ways (both approaches can be applied simulta-

neously and/or targeted at selected parts of the population only).

The first approach is to define a counterfactual risk-factor

prevalence that is assumed to be reached after a successful one-

time, sustained intervention, e.g. a reduction in alcohol consump-

tion caused by a tax increase or a ban on smoking in public. The

approach of defining counterfactual risk-factor prevalences is akin

to epidemiological methods, where total or partial eradication of

DYNAMO-HIA
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a risk-factor is quantified. DYNAMO-HIA does this quantification

dynamically, i.e. effects are projected over time. The second

approach is to alter the transition probabilities between different

risk-factor states, i.e. changing the risk-factor behavior of the

population. This approach is closer to the reality of many health

interventions that try to influence life style choices of individuals,

e.g. halving the future number of teenagers that become obese.

The specification of the transition probabilities influences greatly

the future development of the risk-factor prevalence, which is

always debatable. As an option, DYNAMO-HIA provides the use

of net transition probabilities [17]: DYNAMO-HIA estimates

internally the transition probabilities that keep the age-specific

risk-factor prevalence constant, ignoring any future cohort effects.

Illustration
To illustrate the usability of DYNAMO-HIA, we present two

stylized example applications. The first illustration projects the

consequences of a policy-induced increase in alcohol consumption

and resembles a prospective HIA. The second illustration

quantifies the changes in population health if smoking were to

be eradicated and resembles a burden of disease study. In both

applications, we model the effects of risk-factors on total mortality

and nine diseases (ischemic heart disease, stroke, diabetes, COPD,

breast-, lung, esophageal-, colorectal-, and oral-cancer) and keep

the age-specific risk-factor prevalence constant over time by using

net transition probabilities between risk-factor classes, i.e. ignoring

any future cohort effects. Hence, the difference between the

reference scenarios and the intervention scenarios depends solely

on the different initial risk-factor prevalences. The data sources

and the relative risk used are shown in detail in the supporting

information (see Table S1, Table S2, Table S3, Table S4, and

Table S5).

Liberalizing access to alcohol: The swedish case. In

2004, Sweden was forced to lift her its ban on private alcohol

imports [18]. Prospective studies were forecasting an increase in

overall alcohol consumption and consequently a worsening of

a number of alcohol-related harm indicators. In our reference

scenario, we keep the alcohol consumption prevalence observed in

2002 constant during the projection period and assume a one-time

change in the consumption of pure alcohol by 1 L per-capita,

producing a counterfactual risk-factor prevalence for the in-

tervention scenario as seen in Fig. 5. We project both scenarios for

25 years in the future (see Table 1).

The annual excess number of deaths due to increased alcohol

consumption is on average approx. 170 deaths, accruing to some

4,300 additional deaths over the 25 year period. This projected

difference in overall population mortality also reflects all other

effects a risk-factor has on other-cause mortality, accounting for

not included diseases and – more salient in the case of alcohol –

injuries/accidents via the relative risk of a risk-factor on total

mortality. This absolute number is rather small compared to the

overall population of some 9 million; hence, the effect on total life

expectancy and, similarly, the overall difference in disease-free life

expectancies between the reference and the intervention scenario

are negligible.

Alcohol intake has a pronounced effect on a number of the

diseases projected in the model. In projection year 25, the biggest

difference in absolute cases is for diabetes with approx. 6,600 more

cases, followed by stroke with an excess prevalence of approx.

1,700 cases. Ischemic heart disease, the most prevalent of the

included diseases, is overall less affected by the change in alcohol

intake. The population prevalence differs only marginally over the

simulation period, but still accounts for approx. 700 additional

cases; this is partly caused by the beneficial effect of moderate

drinking by some age groups (see Table S3). From the five

included cancers, the increase in breast cancer is the most notable:

in projection year 25, the excess prevalence is approx. 1,800 cases

in the intervention scenario. For the other cancers, the increase in

prevalence cases is relatively minor: for oral cancer approx. 750,

for colorectal cancer approx. 280, and for esophageal cancer

approx. 60 additional cases in the counterfactual scenario. COPD

shows a slight decrease in absolute numbers, although it is not

causally related to alcohol intake. This is due the higher number of

deaths, thus there are less persons alive to contract this disease.

Figure 1. Example of risk-factor biographies for a risk-factor with three categories. DYNAMO-HIA simulates individuals and projects their
risk-factor biographies. The risk-factor status is being updated in one-year increments, given age- and sex-specific transition probabilities. The age-
and sex-specific risk-factor status determines the relative risk of a person to contract a disease or to die. DYNAMO-HIA allows one risk-factor per
scenario. This risk-factor can be either categorical (up to ten categories), duration dependent (up to ten categories, of which one is duration
dependent, i.e. the risk on disease in this category depends on how long a person is in the category), or a continuous distribution (normal or log-
normal, specified by entering mean, standard deviation, and, in the case of the log-normal, skewness).
doi:10.1371/journal.pone.0033317.g001
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Total elimination of smoking: A projection with UK

data. Smoking is a major public health concern. This illustra-

tion quantifies the gain in population health obtainable if an entire

population would consisted of never smokers compared to a real

life population that keeps the currently observed smoking behavior

unchanged. Smoking is measured in three categories (never-,

former-, current-smoker). The data for this illustration are from

the UK and projected 25 years into the future (see Table 1 and

Table 2). In the counterfactual, the whole population consists of

never smokers and no uptake of smoking.

In 25 years, the population of non-smokers is projected to have

approx. 1,510,000 more individuals than a population keeping the

current smoking behavior. This translates into a total life

expectancy of 81.4 years for the counterfactual compared to

79.0 years for the reference scenario. This gain in life expectancy is

substantially larger for men than for women: For men the

difference is more than 3 life years (76.9 in the reference scenario

compared to 80.0 in the intervention scenario) and women 1.8

years (81.0 compared to 82.8). The projected life expectancies

clearly demonstrate that in DYNAMO-HIA no autonomous

trends are assumed, e.g. a secular increase in life expectancy that

one may expect over the next 25 years.

Smoking also has a causal effect on a number of diseases. The

biggest reduction in the modeled diseases is for COPD. In

projection year 25, the average life years lived with COPD is

approx. 0.9 years less in the intervention scenario than in the

reference scenario, more than halving population prevalence from

1.7% to .5%. The next biggest reduction is for IHD, with approx.

half a year less expected life years with this disease; a difference in

prevalence of one percentage point. Similarly, the prevalence of

stroke goes down by approx. 0.4 percentage points (from 2.3% to

1.9%). The three included cancers that are related to smoking are

reduced as well (lung cancer by approx 87,000 cases, esophageal

cancer by approx 38,000, and oral cancer by approx 9,200 cases).

However, other included diseases that are not causally related to

smoking (diabetes, breast-, and colorectal cancer) increase in

prevalence thanks to the larger number of surviving individuals

that are now at risk of contracting those diseases.

Discussion

Within the rapidly developing field of HIA no standard method

on quantification has emerged yet [19], but three approaches

predominate the field: regression based methods, quantitative risk

assessment, and population health models. The regression based

Figure 2. Stylized structure of disease life table. The disease life tables contain disease clusters. Each disease cluster consists of one or more
diseases. Within disease clusters, intermediate diseases – that is, a disease that increase the risk of getting another disease – can be specified (e.g.
having diabetes increases the risk of getting IHD). All diseases are chronic diseases, i.e. excess mortality depends on age and sex and not on time
since onset of disease. However, acutely fatal and/or cured fraction can be specified for diseases. The disease life table assumes independence
between disease clusters. The user can freely specify the relative risks from risk-factor to disease, from risk-factor to death, and from intermediate
disease to other diseases.
doi:10.1371/journal.pone.0033317.g002

DYNAMO-HIA
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methods originated in econometrics and usually estimate the long

term relationship between exposure (e.g. per-capita consumption)

or proxy variables (e.g. tax rate on alcohol) and health outcomes of

interest on an aggregate level, adjusting for further variables as

suggested by (economic) theory. This approach usually takes only

limited notice of underlying epidemiological mechanisms. Quan-

titative risk assessment, originating from (environmental) exposure

assessment of toxic substances, makes explicit use of dose-response

relationships derived through epidemiological studies. These

approaches are usually static, i.e. do not account for changes over

time in real-life populations. Population health models combine

epidemiological evidence and insights on causality to dynamically

quantify the effect of risk-factors on population health.

DYNAMO-HIA fills a gap among the already existing

population health models that are suggested for application in

HIA [9,20]. Compared to existing models, DYNAMO-HIA strikes

a balance between being sufficiently technically accurate and

ensuring wide usability. Technically equal or more complex

models – e.g. POHEM, ARMADA, RIVM-CDM – allow for

greater flexibility in modeling but are not publicly available, and

require highly specialized input data and proficiency in specialized

programming languages (except ARMADA). More accessible

models – e.g. PREVENT, Proportional Multi-state Life Table

(MSLT), GBD – lack dynamic projection capabilities (except

PREVENT and multiple cohort versions of the MSLT [21]) and

do not have explicit risk-factor states. This technical simplification

ignores mortality selection and may lead to biased estimates [9].

DYNAMO-HIA is specially designed to fit within the standard

framework of HIA, synthesizing elements of already well

established modeling approaches. Our approach allows for

a flexible risk-factor configuration (categorical, duration de-

pendent, continuous); generic chronic diseases as specified by the

user (with intermediate diseases, partially fatal diseases, and/or

diseases with a cured fraction); arbitrary specification of– age and

sex-specific – relative risks; and minimal data needs by requiring

only population level data (see Fig. 6). Furthermore, a mouse-

driven graphic user interface allows straightforward handling of

the software, i.e. no knowledge of a programming language is

required. In addition to exporting the existing, partly customiz-

able, graphs into files – e.g. detailed plots of mortality rates or

prevalences of risk-factors or diseases, both over time and age-

specific – most calculated data can be exported for use in

separate software (e.g. Excel). These raw output data allow

further analyses, such as grouping diseases into categories (e.g.

Figure 3. Stylized cohort life tables (with only one disease, three different biographies, and five time steps). For every risk-factor
biography, a disease life table is constructed. Diseases incidence, i.e. transition from a healthy to a diseased status, equals the baseline incidence –
that is, the incidence when in a risk-factor class with a relative risk of one for the specific age- and sex-category – times the relative risk due to the
given risk-factor and diseases status (in the case of an intermediate disease). The transition from healthy to dead equals the baseline other-cause
mortality of the healthy, i.e. age- and sex-specific total mortality rate minus the excess mortality rate of the diseases included in the disease life table,
multiplied by the relative risk due to the given risk-factor status on other-cause mortality. The transition from diseased to dead equals the sum of the
excess mortality of the disease (given each age and sex) and the baseline other-cause mortality of the healthy, multiplied by the relative risk in the
given risk-factor status. Remission is not explicitly modeled, but for diseases with cured fraction the excess mortality is zero in a ‘‘cured’’, i.e. user-
specified, fraction. Partly acutely fatal diseases, i.e. diseases with very high mortality immediately after contracting the disease while for those who
survive this critical period the excess mortality only depends on age and sex, are modeled by specifying the fraction of the incidence cases that die
immediately.
doi:10.1371/journal.pone.0033317.g003
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IHD and stroke or all cancers), including costs, or constructing

additional graphs.

DYNAMO-HIA simulates the effect of a single risk-factor on

a population without migration. However, the categorical risk-

factor can be used to partition the population in up to ten

distinctive categories. For example, a population could be

partitioned along a risk-factor – say, non-smokers and smokers –

and socio-economic status – say, with and without college

education – having in total four different groups to assess policies

that are more successful for people with certain socio-economic

status. The possibility of partitioning a population also allows

quantification of the effect of an environmental hazard. In this

case, for example, the population is partitioned according to their

proximity to the hazard source – say, noise exposure or air

pollution due to a new airport – with 5% of the total population

living less than 5 km from the hazard source, 5% to 10% living less

than 10 km and so on. This requires, of course, sufficient insight

into which part of the population is affected and knowledge of the

relative risks of the modeled exposure on the included diseases and

total mortality.

A category may also represent a combination of known risk-

factors: For example, smoking status and BMI – smoking/non-

smoking and normal weight/overweight/obese – could be

modeled by partitioning the population into six distinctive risk-

factor categories. However, this would require knowledge about

the relative risk of the combined risk-factor class – say, relative risk

of being obese and a smoker on the included diseases and total

mortality.

The overall performance of a model crucially depends on the

quality of the input data. In particular for dynamic models, the

epidemiological data has to be mutually consistent, otherwise

projected changes in the prevalences might be caused by

mismatching data and not by the changes in the risk-factors. A

limitation is that an autonomous trend in the rates, e.g. annual

reduction in overall mortality or disease incidence, cannot be

specified. Autonomous trends are often observed for past time

periods and caused by a number of factors; chief among them

improved curative interventions and changed risk-factor behav-

ior. In a risk-factor based model, however, the specification of

a future autonomous trend must be net of any underlying risk-

Figure 4. Schematic overview of the dimension of a multi-cohort, multistate-life table. Each plane is a distinct cohort with varying starting
ages for cohorts already existing at the starting year of the simulation and starting age zero for cohorts born during the simulation run. The cohort life
tables, consisting of the set of individual risk-factor biographies, follow every already existing birth cohort until the cohort reaches 105 years of age. In
addition, every year of the simulation a cohort of newborns is created and – after simulating individual risk-factor biographies for them – is followed
through the appropriate disease life tables as well. This allows collecting health data for each cohort according to their risk-factor status (longitudinal)
or the health status of the population by age, sex, and risk-factor status by each year of the simulation (cross-sectional).
doi:10.1371/journal.pone.0033317.g004

DYNAMO-HIA
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factor behavior, as this is already specified explicitly at some

other place in the model. Such specific data on future trends is

hardly reliably available, if at all, and would, in most cases, only

modestly affect the difference between reference and intervention

scenarios. Hence, an ordinal ranking of policy alternatives would

be rarely affected while still revealing the most effective

intervention.

In health impact assessment, three criteria are used to assess

validity: formal validity, plausibility, and predictive validity [22].

Formal validity assesses the degree to which correct methods are

applied correctly. The model structure of DYNAMO-HIA is well-

founded in epidemiological evidence – incidence, prevalence, and

excess mortality – and demographic modeling practice, i.e.

a multistate Markov-type model of chronic disease with explicit

risk-factor states and inclusion of intermediate diseases.

Plausibility assesses the degree to which an observer deems the

theoretical framework understandable, applicable, and plausible.

Hence, DYNAMO-HIA deliberately restricts itself to the well-

established causal chain ‘‘risk-factor exposure -. incidence -

.prevalence -. disease-related mortality -. overall population

health’’ and requires only data that is available in sufficient quality

for the most common diseases (e.g. cancer, CVD, diabetes,

COPD) and risk-factors (e.g. smoking, BMI, alcohol) in developed

countries. In the Swedish application example, our results for the

number of excess deaths is slightly lower than estimates based on

a regression approach utilizing historical relationships and

aggregate-data pooled from several Nordic countries [18]. One

reason for this difference lies in the relative risks on all-cause

mortality used in our illustration. These are taken from

epidemiological studies and capture only the effect of individual

exposure, i.e. drinking behavior. Consequently, our results do not

account for broader effects that a change in alcohol consumption

may have on population health, i.e. abstainers or moderate

drinkers becoming victims of increased alcohol-induced violence

or accidents caused by the increased number of intoxicated

drinkers.

Plausibility and well-established formal methods should not be

mistaken for constantly delivering expected results. Dynamic

projections may reveal counterintuitive yet correct results and,

hence, lead to important insights. In the smoking application, for

example, the number of breast cancer cases in the never-smoker

scenario is larger than in the reference scenario, although smoking

has no causal link to breast cancer incidence. This seemingly

unexpected result is caused by an increase in overall longevity of

a healthier living population and, hence, an increased number of

females susceptible to breast cancer. This phenomenon is well

known among modelers of health care costs; dynamic analysis has

shown repeatedly that a population-level reduction in obesity or

smoking may lead to higher health care costs in the long run

[23,24].

Predictive validity is the degree to which predictions are confirmed

by facts; according Veerman et al [22], however, this criterion

usually cannot be established in the context of HIA. The

sometimes decades-long time lag between a change in policy

and a change in the corresponding health effects makes it difficult

to conduct a full evaluation of the HIA prediction. Moreover,

a HIA might influence policy in such a way as to (successfully)

invalidate its own predictions.

We emphasize that a software model like DYNAMO-HIA is

only a decision-support tool. It helps to quantify the expected

differences in population health given two (or more) different

scenarios: one of them a baseline scenario (without the in-

tervention) and one (or more) scenario(s) with intervention(s). It

does not predict the development of future population health as

such. Decision makers must be constantly aware that real-world

phenomena are necessarily more complex and that no model can

predict future events with 100% accuracy. In HIA, it may be

useful to avoid calling the results of mathematical models

Figure 5. Swedish prevalence of alcohol consumption intervention scenario compared with reference scenario (Alcohol
consumption is measured by five categories of daily intake of grams of pure alcohol: 0–,0.25 g/d, 0.25–,20 g/d, 20–,40 g/d,
40–,60 g/d, $60 g/d).
doi:10.1371/journal.pone.0033317.g005
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‘predictions’, but rather projections of ‘‘what if ’’ scenarios in

a clearly defined and simplifying framework. The term ‘prediction’

should be reserved for the entire process, in which a software

model is only one element of the utilized evidence [9,25,26].

Internal validity was extensively tested. To allow future

thorough checking of cross validity by outside experts as well,

the software and the source code are publicly available (www.

DYNAMO-HIA.eu). In its current form, DYNAMO-HIA also

facilitates unproblematic one- and multi-way sensitivity analysis,

by allowing easy manipulation of all input parameters. Like most

other population health models, however, the current version of

DYNAMO-HIA does not include a probabilistic sensitivity

analysis (PSA). Implementing a PSA in population health models

is time and cost intensive; the extra data needed to conduct a PSA

are difficult to obtain and preparing them requires expert

knowledge. However, DYNAMO-HIA can be used in batch

mode, allowing users with sufficient computing skills to build a PSA

shell around the software, if desired.

DYNAMO-HIA is available for free download and includes

a data set covering a large number of EU countries (www.dynamo-

hia.eu). This internally consistent data set has prevalence data for

three risk-factors (smoking, BMI, alcohol), nine diseases (incidence,

prevalence, excess mortality), and population data (e.g. total

mortality, projected number of newborns). This data set allows

instant use of DYNAMO-HIA for the covered countries. However,

DYNAMO-HIA is also usable with external data on other

countries, (sub-)populations, diseases, or risk-factors. Furthermore,

the already included data set can be easily updated when more

recent data become available. DYNAMO-HIA can be used for

a range of applications, in particular if additional data are available.

Recent application of DYNAMO-HIA include comparison of

tobacco control scenarios [27]; the effect of an increase in obesity

levels for the Dutch population [13]; the EU-wide gains in

population health when increasing prices on alcohol [28]; and the

potential health gains and losses in the EU achievable through

feasible prevalences of life-style related risk factors [29]. The

current focus of DYNAM-HIA is on policies at the national level,

but the software can, in principle, also be used for applications at

the regional or local level.

Conclusion
DYNAMO-HIA differs from other population health models

for HIA [20] in several important aspects. From the outset, it has

been designed for public use within HIA-applications by featuring

a user-friendly graphic interface, and employing a model structure

that ensures accurate simulation using epidemiological evidence

while having modest data needs.

Figure 6. Overview of required input data (age- and sex-specific).
doi:10.1371/journal.pone.0033317.g006
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