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Abstract

The molecular heterogeneity of acute leukemias and other tumors constitutes a major obstacle towards understanding
disease pathogenesis and developing new targeted-therapies. Aberrant gene regulation is a hallmark of cancer and plays a
central role in determining tumor phenotype. We predicted that integration of different genome-wide epigenetic regulatory
marks along with gene expression levels would provide greater power in capturing biological differences between leukemia
subtypes. Gene expression, cytosine methylation and histone H3 lysine 9 (H3K9) acetylation were measured using high-
density oligonucleotide microarrays in primary human acute myeloid leukemia (AML) and acute lymphocytic leukemia (ALL)
specimens. We found that DNA methylation and H3K9 acetylation distinguished these leukemias of distinct cell lineage, as
expected, but that an integrative analysis combining the information from each platform revealed hundreds of additional
differentially expressed genes that were missed by gene expression arrays alone. This integrated analysis also enhanced the
detection and statistical significance of biological pathways dysregulated in AML and ALL. Integrative epigenomic studies
are thus feasible using clinical samples and provide superior detection of aberrant transcriptional programming than single-
platform microarray studies.
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Introduction

Regulation of gene expression involves multi-layered mecha-

nisms in which epigenetic modifications such as DNA methylation

and histone tail modifications play a major role[1,2]. Post-

translational modifications of histones at specific residues help to

determine chromatin structure and therefore accessibility to gene

promoters and regulatory regions. Amongst these marks, acetyla-

tion of lysine 9 on histone H3 (H3K9 acetylation) has been linked

to gene activation and active transcription[3,4]. Cytosine meth-

ylation at promoter regions, on the other hand, is associated with

gene silencing[5]. Epigenetic regulation of gene expression has

additional complexities; not only is the presence of specific

epigenetic marks important but their localization and density also

seem to play a crucial role[6–8].

Disruption of epigenetic regulation during malignant transfor-

mation can profoundly alter a cellular phenotype, resulting in

aberrant cellular proliferation and survival. Epigenetic dysregula-

tion is currently recognized as one of the hallmarks of cancer

[9,10]. DNA methylation at promoter regions of key negative cell

cycle regulators and DNA repair genes leads to their abnormal

epigenetic silencing in many neoplasms[5,11–14]. However, it is

not clear whether this aberrant DNA methylation pattern is

sufficient to determine gene silencing, or whether it is in fact part

of a more complex process involving chromatin remodeling factors

and changes in histone modifications[15,16].

Gene expression profiling studies have been performed with

the aim of dissecting the molecular subtypes of several neo-

plasms, in an effort to predict accurately tumor behavior and to

identify important oncogenic genes and biological pathways.

These studies have revealed the presence of unique gene

expression signatures distinguishing specific subgroups of cancers

and have served to improve our understanding of the biology of

these diseases (e.g. [17–20]). However, only part of the cellular

information is contained at the messenger RNA level, and

transcriptional activity is dependent on multiple factors. Among

these factors are epigenetic marks, such as cytosine methylation

and histone tail modifications, which help to determine and

regulate chromatin structure and function including gene

expression.
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Therefore, while gene expression studies using DNA micro-

arrays have had a great impact in the study of cancer, it is

important to recognize that there are limitations associated with

this technique. Firstly, gene expression microarrays capture a

snapshot of the cell’s transcriptome, detecting genes being actively

transcribed at the time of RNA extraction, but they do not capture

any information concerning the genes’ regulatory states and

consequently their potential for transcriptional changes in

response to stimuli. For example, a locus such as the O6-

methylguanine DNA methyltransferase (MGMT) gene is not

prognostically useful in terms of its basal expression state [21]

but the cytosine methylation status of its promoter provides an

excellent indicator of how well gliomas will respond when treated

by alkylating agents [22]. We hypothesize that biologically

significant changes in expression can be missed by expression

arrays due to technical limitations, but might be captured by

epigenomic studies by identifying genes at which promoter

cytosine methylation or H3K9 acetylation differ and testing them

with highly-quantitative techniques.

In order to test these hypotheses, we carried out genome-wide

studies for DNA methylation and H3K9 acetylation as well as

gene expression microarrays in patients with acute myeloid and

lymphoblastic leukemia (AML and ALL, respectively). These cell

types were chosen so that we could test whether the technical

approach we were exploring was feasible in typical clinical

samples, using cell types that should be markedly distinctive. We

show here that the integration of the information captured by

these different platforms results in a more comprehensive detection

of differentially regulated genes and an enhancement of the

apparent biological relevance of the findings.

Results

Multiplatform epigenomic microarray analysis can be
performed on routine leukemia clinical samples

Bone marrow aspirates from three adult patients with AML and

two patients with ALL were enriched for mononuclear cells by

Ficoll gradient separation to yield .90% leukemia blast cells (see
Table 1 for patient characteristics). Frozen aliquots of these

samples were thawed for analysis using three different microarray

platforms. Unsheared high quality genomic DNA was extracted

from 5–10 million cells for genome-wide cytosine methylation

analysis using the HELP (HpaII tiny fragment enrichment by

ligation mediated PCR) assay[23]. Ten million cells were cross-

linked by exposure to formaldehyde for ChIP-chip with a specific

antibody for histone H3 lysine 9 (H3K9) acetylation, a specific

antibody for total histone H3 and non-specific rabbit IgG. Total

RNA was extracted from 20 million cells using Qiagen’s RNeasy

mini kit for expression array analysis.

The HELP cytosine methylation analysis was performed in

triplicate for each sample. Methylation status could be assigned in

.86% of probe sets (i.e. 1–14% of probe sets failed to provide a

clear signal). The correlation between cytosine methylation profiles

in individual replicates from the same sample was r = 0.93–0.99 and

correlation amongst different patients was r = 0.78–0.91 (Figure
S1A). After initial quality control one replicate from ALL-2 was

excluded from further analysis. ChIP-chip was performed in

duplicates and the correlation between replicates was r = 0.92–

0.93, while correlation between different patients ranged between

r = 0.88–0.92 (Figure S1B). After initial quality control one

replicate from ALL-2 and one from AML-3 were excluded from

further analysis. Gene expression analysis was performed in

quadruplicate and the best two replicates for each patient were

selected based on our initial quality control (see methods section).

Correlation between replicates was r = 0.95–0.99. Correlation

between the five patients in gene expression ranged from

r = 0.84–0.96. (Figure S1C). For each platform, single locus gene

validation was performed on a subset of genes respectively by

MassArray for methylation (9 genes), by qChIP for H3K9

acetylation (10 genes), or qRT-PCR for gene expression (15 genes),

demonstrating that each microarray platform was highly accurate in

predicting the actual abundance of mRNA, DNA methylation and

histone acetylation of each gene (Figures S2A, S2B and S2C).

Taken together, these data indicate that multi-array analysis is

robust and feasible in frozen leukemia patient samples.

ALL and AML have distinct DNA methylation profiles
Although aberrant DNA methylation is known to occur in

human leukemias,[24] it is not known whether (as has been shown

for gene expression profiling) different types of leukemia have

specific and distinct profiles of promoter DNA methylation. All

five leukemia samples presented a bimodal distribution of DNA

methylation, with approximately two-thirds of HpaII fragments

detected as methylated and one-third as hypomethylated. In order

to determine whether AML and ALL samples display distinct

DNA methylation signatures, we performed unsupervised cluster-

ing of HELP array data. The DNA methylation profiles from

leukemia samples were submitted to three different unsupervised

clustering algorithms including hierarchical clustering (HC),

principal component analysis (PCA) and correspondence analysis

Table 1. Patients’ characteristics

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

Age (yrs) 54 82 25 44 53

Gender Female Female Male Female Female

Diagnosis ALL ALL AML AML AML

Karyotype t(9;22)(q34;q11) t(9;22)(q34;q11.2),
add(16)(q21), 220, +mar

46,XY, t(5;21;8)(q15;q22;q22) NA t(10;11)(q22;q23)

Immunophenotype Early Pre-B ALL with
co-expression of
CD33 and CD13

Early Pre-B ALL with
co-expression of CD33
and CD13

Undifferentiated AML CD65
negative, CD19 positive,
CD11a negative

CD11b Positive, co-
expression of CD7

Undifferentiated AML,
CD65 negative

Molecular
characterization

BCR-ABL p190 (e1a2) BCR-ABL p190 (e1a2) AML1/ETO positive negative by RT-PCR for
BCR/ABL, AML1/ETO,
CBFbeta/MYH11, MLL-TD
and FLT3-ITD

negative by RT-PCR for
BCR/ABL, AML1/ETO,
CBFbeta/MYH11, MLL-TD
and FLT3-ITD

doi:10.1371/journal.pone.0001882.t001
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(COA). Each of these methods detects global differences between

samples as distances and represents them in different ways. HC of

HELP profiles separated the cases into two separate nodes

containing either the ALLs or the AMLs. (Figure 1A). Similar

to HC, PCA yielded a clear difference between AML and ALL

(Figure S3A). COA revealed an identical node structure as HC

and allowed us to generate a list of genes differentially methylated

between AML and ALL (Figure 1B). All three of these clustering

methods demonstrated that promoter methylation signatures

could accurately segregate the samples into the AML and ALL

categories. Since there are 10 distinct ways in which 5 samples can

be divided into two groups of 2 and 3 samples each, it was

calculated that there was a 1 in 10 chance that this separation of

the samples by lineage was due to chance.

Histone 3 lysine 9 acetylation profiles distinguish ALL
from AML cell types

In contrast to DNA methylation, acetylation of histone H3 on

lysine 9 has been associated with genes that are transcriptionally

active[3,4]. We predicted that the epigenetic information contained

in the H3K9 acetylation status of genes would be informative

regarding the biological phenotype of AML and ALL. H3K9 acetyl

ChIP-chip performed robustly using patient samples and revealed a

bimodal distribution in which approximately one-third of all gene

promoters represented displayed H3K9 acetylation. In order to

determine whether H3K9 acetylation status could distinguish AML

from ALL cells, unsupervised clustering (HC, PCA and COA) was

again performed (Figures 1C & 1D and Figure S3B). All three

methods yielded a similar segregation of the cases into two classes

consistent with their biological lineages. Taken together, these data

indicate that AML and ALL are epigenetically distinct cell types

that can be classified through genome-wide analysis of DNA

methylation and H3K9 acetylation.

DNA methylation, histone acetylation and gene
expression profiling identify distinct cohorts of genes in
AML and ALL cells

We next asked whether genes detected as robustly differentially

methylated, H3K9 acetylated and expressed by microarray

Figure 1. Epigenomic platforms readily classify leukemia samples according to lineage. Unsupervised clustering of DNA methylation by
HELP and H3K9 acetylation ChIP-chip data succeeded in accurately segregating the samples according to their lineage. Panel A: Dendrogram
representing the result of hierarchical clustering of leukemia samples using DNA methylation data. The scale on the left represents the correlation
distance metric. Panel B: Heatmap of top 150 genes from the first principal component of correspondence analysis, which separated ALL samples
from AML. Genes are shown on the rows and samples on the columns, and data were row-centered. Low values corresponding to greater
methylation are represented in blue and high values corresponding to less methylation are in red. Panel C: Hierarchical clustering of leukemia
samples using H3K9 acetylation ChIP-chip. Panel D: Heatmap of top 100 genes from the first principal component of correspondence analysis, which
separated ALL samples from AML. Low values corresponding to less H3K9 acetylation are represented in blue and high values corresponding to
greater H3K9 acetylation are in red.
doi:10.1371/journal.pone.0001882.g001
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analysis would be overlapping or complementary. In order to

identify the genes that most significantly distinguish AML from

ALL cells in terms of gene expression, H3K9 acetylation and DNA

methylation, we performed a supervised analysis using a T-test,

with lineage as the dichotomous variable. For DNA methylation

data, a second condition requiring a minimum difference of 1.5

between the two sample means was implemented in order to

maximize the capture of biologically significant changes in

methylation (Figure 2A). Analysis was restricted to the 17,180

genes that are represented on all three microarrays platforms used.

Using this common denominator, 1,359 genes were identified as

differentially expressed between the two types of leukemia at a

significance level of p,0.02. Histone H3 lysine 9 acetylation, on

the other hand, identified 374 genes at the same level of

significance, while 190 genes were classified as differentially

methylated (Figures 2B, 2C and 2D). Overlap between gene

expression and H3K9 acetylation signatures included 45 genes,

overlap between DNA methylation and gene expression included

13 genes, while DNA methylation and H3K9 acetylation

overlapped on 3 genes. All three platforms overlapped on only 1

gene: the metallopeptidase LMLN. These partially overlapping

signals probably result from both the distinct biological nature of

the parameters being measured by each different platform as well

as from unique technical limitations that affect each one. Thus,

gene signatures obtained using epigenomic and gene expression

profiling can provide complementary sets of genes (Figure 2E),

resulting in a greater set of unique biological features being

captured, which would otherwise be missed by any single platform.

H3K9 acetylation widely correlates with gene expression
Acetylation of lysine 9 on histone H3 has been associated with

actively transcribed genes [3,4], but the degree of association is

unknown at the genome-wide level in leukemia patients. In order

to define with greater precision the quantitative relation between

variation in histone acetylation and gene expression, we studied

the correlation between promoter H3K9 acetylation and gene

transcript abundance. Since correlations between variables are

degraded rapidly by increasing noise levels, we selected genes with

a SNR.2.5. The median correlation between H3K9 acetylation

and gene expression over 393 genes with a SNR.2.5 in both

measures was 0.86 (Figure 3A). In order to test whether these

findings could be simply due to an artifact of the small sample size,

we developed a statistical model in which we selected genes that

were as much as possible statistically independent and then re-

calculated the correlations after several sample-label permutations.

This analysis showed that the probability of obtaining the observed

correlations by chance was astronomically small (p,1 in 108) (see
supplementary methods). Therefore, the degrees of H3K9

acetylation and gene transcript level are quantitatively tightly

linked in these leukemic cells.

Since microarray measures are inherently corrupted by noise,

we hypothesized that the true underlying biological correlations

between gene expression and H3K9 acetylation were much

greater than captured through a simple correlation of high SNR

genes. In other words, that this epigenetic modification could

detect differences in gene expression missed by expression arrays.

In order to test this hypothesis, we randomly selected a group of

five genes (FER, HOXA1, DOCK5, LT4R1 and PAX5) among those

that presented differential H3K9 acetylation with an SNR.2.5,

but that were not detected as differentially expressed by

microarray analysis. A more precise measurement of transcript

abundance of these genes was performed by qRT-PCR, which

revealed that differential expression was significantly greater than

had been detected by microarray: the range of fold difference

Figure 2. Gene expression, DNA methylation and H3K9 acetylation identify partially overlapping genes signatures. Supervised
analysis of the three datasets using a T-test and leukemic lineage as the dichotomous variable identified partially overlapping gene signatures
distinguishing between ALL and AML. Panel A: Plot of differences between sample means (x axis) vs. 2log10 p values (y axis), illustrating the two
criteria required for significance in HELP data. Blue dots represent genes with p,0.02 and a difference in sample means.1.5. Panel B: Heatmap of
gene signature identified using gene expression arrays. Genes are shown on the rows and samples on the columns, and data were row-centered. Low
values of gene expression are represented in blue and high values are in red. Panel C: Heatmap of gene signature identified using H3K9 acetylation
arrays, constructed as described for Panel A. Low values corresponding to less H3K9 acetylation are represented in blue and high values
corresponding to greater H3K9 acetylation are in red. Panel D: Heatmap of gene signature identified using DNA methylation (HELP) arrays,
constructed as described for Panel A. Low values corresponding to greater methylation are represented in blue and high values corresponding to less
methylation are in red. Panel E: Venn diagram illustrating overlap between the three gene signatures.
doi:10.1371/journal.pone.0001882.g002
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between ALL and AML by gene expression array was 1.0–2.8 and

by qRT-PCR 2.3–45.6 (Figure 3B). Furthermore, the correlation

between H3K9 acetylation and gene expression measured by

qRT-PCR was considerably higher than between H3K9 acetyla-

tion and array gene expression (r = 0.74 vs. 0.42, respectively)

(Figures 3C and 3D). The data suggest that significant

differential gene expression can be missed by expression micro-

array analysis but recaptured by integrating functionally relevant

epigenetic modifications such as H3K9 acetylation. These data

also confirm the close association between transcriptional

activation and histone acetylation at the genome-wide level.

Genome-wide promoter methylation status shows an
overall inverse correlation with gene expression and
H3K9 levels

Promoter DNA methylation is generally believed to be

associated with gene silencing, although it is not clear whether

this can be generalized in a whole genome analysis. Therefore, we

determined the relationship between gene expression and DNA

methylation in our set of leukemia patient samples. As before, high

SNR genes (.2.5) were selected for this analysis. Correlation of

expression and DNA methylation among these genes revealed a

bimodal distribution where two-thirds of genes displayed a strong

positive correlation between expression and the log HpaII/MspI

ratio (which translates biologically into an inverse correlation

between gene expression and DNA methylation levels) where the

peak value was r = 1.0. The remaining one-third of genes showed a

weak negative correlation (peak at r = 20.5) (Figure 4A). The

presence of a strong correlation between gene expression and log

HpaII/MspI ratio was still clearly detected even at SNR cutoffs of

1.3. These data indicate that for a majority of promoters, DNA

methylation is strongly associated with gene silencing. A similar

bimodal distribution was detected for the correlations between

DNA methylation and H3K9 acetylation. The largest peak of

the correlations was found at r = 1.0. A second and less defined

peak that represented a smaller population of genes was

found with a slightly negative correlation (around r = 20.5)

(Figure 4B). While the first peak is to be expected, representing

silenced genes with methylated promoters lacking the H3K9ac

mark associated with active chromatin, the second peak may be

Figure 3. H3K9 acetylation correlates with active gene expression and can help rescue genes from within the noise level of gene
expression arrays. Panel A: Smoothed histogram of gene-by-gene correlation between gene expression and H3K9acetyl ChIP-chip for genes
displaying a high SNR on both platforms. Median correlation was r = 0.84. Panel B: Comparative fold difference in mRNA levels (y axis) as detected by
gene expression arrays and qRT-PCR for five genes that displayed differential H3K9 acetylation but had not been detected as differentially expressed
on the microarrays. Panels C and D: Correlation for those same 5 genes between H3K9 acetylation levels (y axis) and gene expression levels (x axis)
measured by either gene expression arrays (panel C) or qRT-PCR (panel D). Correlation between H3K9 acetylation and gene expression was
significantly higher when the latter was measured by qRT-PCR, indicating that H3K9 acetyl ChIP-chip could predict genuine differences in gene
expression levels that were missed by gene expression arrays, probably due to relative compression of the signal on the gene expression arrays as
demonstrated in panel B.
doi:10.1371/journal.pone.0001882.g003
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Figure 4. Promoter DNA methylation shows genome-wide inverse correlation with gene expression and H3K9 acetylation: Panel A:
Smoothed histogram of gene-by-gene correlations between log(HpaII/MspI) values and gene expression, showing a positive correlation between the
two measures for the majority of genes, which translates into a negative biological correlation (i.e. higher promoter methylation correlates with lower
gene expression). Panel B: Smoothed histogram of gene-by-gene correlations between log(HpaII/MspI) values and H3K9 acetylation, showing a
positive correlation between the two measures for many of the genes, which translates into a negative biological correlation (i.e. higher promoter
methylation correlates with lower promoter H3K9 acetylation). Panel C: Graphical representation of the data from all three platforms for one of the
cases (AML.2) as custom tracks in the UCSC genome browser[40]. Four representative genes are shown here to illustrate the correlation between the
three platforms. H3K9 acetylation data (in blue) is represented as the ratio of the signal between the H3K9 acetyl channel and the input channel; DNA
methylation (in red) is represented as log(HpaII/MspI), so that a negative deflection corresponds to a methylated HpaII fragment while a positive one
corresponds to a hypomethylated fragment; finally, gene expression data (in green) is represented as median-centered log2 of RMA-normalized
intensities.
doi:10.1371/journal.pone.0001882.g004
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explained by a number of different factors (see discussion). Overall,

the results demonstrate that for most genes, the presence of high

levels of methylation corresponds with repression, while high levels

of acetylation correspond to activation, as exemplified in

Figure 4C.

Integration of histone acetylation and gene expression
profiling synergistically enhances the detection of
differentially regulated genes between AML and ALL
samples

Taken together with the fact that H3K9 acetylation and gene

expression capture different cohorts of genes, the above findings

led us to predict that integrating the measurement of individual

gene variation captured by H3K9 acetylation and gene expression

profiles would recover biologically significant differences missed by

both platforms when considered independently of each other. In

order to determine if this was the case, we tested whether

integration of gene expression and H3K9 acetylation could

enhance the discovery of genes that discriminate between AML

and ALL cells. As mentioned above, a T-test analysis (p,0.02

(absolute t score.4.5)) identified 1,359 differentially expressed

genes and 374 differentially acetylated, with an overlap of 45 genes

(Figure 2D). We next looked for genes that did not meet these

criteria for significance on either platform, but that were

marginally significant for both of them (p.0.02 and ,0.14;

absolute t score,4.5 and .2 with both t scores displaying the

same direction). Applying these criteria allowed identification of an

additional 382 genes that are likely to be discriminative between

ALL and AML (Figures 5A and 5B). Since the noise in each

platform is expected to be random, genes that in both platforms

manage to reach a borderline level of significance are unlikely to

be due to random chance. Based on the integration of their

individual t-scores, the probability that such genes are differen-

tially regulated is increased to p,0.01 (p,(0.142)/2). Nine genes

(6 test and 3 negative controls) were chosen for validation by single

locus quantitative ChIP (qChIP) and qRT-PCR. All six test genes

were found to be both differentially H3K9 acetylated (Figure 5C)

and differentially expressed (Figure 5D), while none of the

negative controls were found to show any significant difference by

either qChIP or qRT-PCR. Due to the limiting amount of sample

available we were unable to perform replicate PCR runs, but each

qPCR experiment was itself ran in triplicate. The data suggest that

integrated analysis captures biological differences between tumors

otherwise missed by independent analysis of gene expression or

histone acetylation.

Integration of DNA methylation and gene expression
profiling has an additive effect on the detection of
differentially regulated genes between AML and ALL
samples

We next wished to determine if DNA methylation profiles, like

H3K9 acetylation, could enhance the capture of differentially-

regulated genes. The same analytical approach to the integration

of gene expression and DNA methylation was used to quantify to

what extent these two platforms reinforced each other in the

discrimination of leukemic lineage of our samples. An initial

significance level of p,0.02 (absolute t score.4.5) was once again

chosen, but an additional requirement of a difference between the

two means greater than 1.5 was applied to the methylation data as

described above. In this way, 1,359 genes were differentially

expressed and 190 were differentially methylated between ALL

and AML cells with an overlap of 13 genes. In order to test

whether the two platforms reinforced each other, we examined

how many genes were consistently marginally significant on both

platforms (p.0.02 and ,0.14; absolute t score,4.5 and .2).

However, in order to ensure a potentially biologically relevant

difference in methylation, we once more had an additional

criterion of a minimum difference between the sample means.1.5

for the methylation data. When these criteria were applied to the

integration of gene expression and DNA methylation we did not

find a significant number of additional genes. However, when

qRT-PCR was performed on a subset of genes (eight genes) that

were identified as differentially methylated but that were not

predicted as differentially expressed on the arrays, significant

actual differences in mRNA levels between ALL and AML cells

were found for all of these genes. This level of differential gene

expression by qRT-PCR was comparable to that measured for

genes that had been successfully identified as differentially

expressed by the expression arrays (Figure 6A and 6B). These

results suggest that the HELP platform is capable of rescuing

differentially expressed genes. However, it does so in an additive

fashion with gene expression arrays as opposed to the synergistic

results obtained with the integration of gene expression and H3K9

acetylation.

Integration of platforms improves identification of
biological pathways that are differentially regulated in
AML versus ALL cells

Our next goal was to determine whether over-representation of

particular gene networks and canonical pathways could be found

among the genes identified by the different platforms. For this

purpose we used the Ingenuity Pathway Analysis software

(Redwood City, CA). We compared and contrasted the biological

gene networks captured as being differentially regulated in AML

versus ALL cells by the three different platforms compared with

those captured by integrated analysis. We found that the top

networks captured by each of the three individual platforms

yielded smaller and less directly affected networks centered in part

around HoxA9 and APP in H3K9 acetylation, TNF and NFkB in

cytosine methylation, and TERT and NFkB in gene expression

(Figure S4A). In contrast, the integrated analysis captured gene

networks which were clearly centered around TNF and TP53,

including multiple directly involved genes associated with the

central node (Figure S4B). In addition, networks of likely

pathological importance (such as the one centering around

MYC) were completely missed by the single platforms but were

rescued when the data for the three platforms were integrated

(Figure S4C). This result demonstrates that the integration of

data from gene expression and epigenetic platforms not only

rescues genes that are missed by either platform alone, but may

also enhance their power to more accurately define the most

highly affected biological pathways.

Likewise, the integrated analysis provided a more statis-

tically significant capture of canonical pathways (e.g.

p = 9.56e210 for the TP53 signaling pathway, p = 2.336e29 for

the protein ubiquitylation pathway and p = 4.036e29 for the

WNT-b catenin signaling pathway) than any single platform

(Figure 7A and Table 2), and rescued to the analysis another

group of pathways that would otherwise have been missed (e.g. the

PI3K/AKT signaling pathway (p = 3.276e27) and the chemokine

signaling pathway (p = 1.066e23)) (Figure 7B, Table 3 and
Table S1). These data suggest that integrative analysis provides a

superior platform for hypothesis-generating experiments and

potentially greater accuracy in detecting the most relevant

biological processes that distinguish different tumors from each

other.
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Discussion

Histone modifications and DNA methylation play a critical role

in regulating gene expression by modifying the chromatin

structure of genes and recruiting additional regulatory factors.

Our work is based on the hypothesis that a truly integrated

epigenomic analysis could yield superior insight into the

transcriptional programming of cancer cells beyond that obtained

by simply measuring abundance of mRNAs through expression

microarrays, since epigenetic modifications will capture informa-

tion not only from genes being actively transcribed, but they will

also reflect the availability for transcription by informing on the

chromatin structure at specific loci. As proof of principle, we

selected two functionally validated epigenetic marks–cytosine

methylation and histone 3 lysine 9 acetylation–in addition to

standard gene expression arrays and tested their ability to identify

gene regulatory differences between the AML and ALL cell types.

First, we demonstrate that such multiplatform epigenomic studies

can be readily performed in enriched leukemia cells from standard

clinical trial patient specimens. Second, using a novel approach for

integrated analysis, we demonstrate that not only is there a

functional relationship between gene expression and epigenetic

marks but, more importantly, that these platforms synergize to

provide a more complete and comprehensive analysis of

transcriptional programming in human cells. Some of the

strengths of this study include the rigorous quality control steps,

the use of a powerful DNA methylation platform on specially

designed high density oligonucleotide microarrays, the use of

primary patient materials, the performance of the three different

assays using the same type of 50-mer high density oligonucleotide

arrays in multiple replicates and the extensive single locus

validation.

Recently DNA methylation microarrays have been used to

study acute leukemias as well as other malignancies. Groups of

hypermethylated genes have been identified by such studies in

AML cell lines [25] as well as in ALL patient samples [26]. Thus,

Figure 5. Gene expression and H3K9 acetylation synergize to increase the number of differentially expressed genes identified.
Panel A: Dot plot of t scores from T-test for gene expression (x axis) and H3K9 acetylation (y axis). 1,359 genes were identified as differentially
expressed and 374 as differentially H3K9 acetylated, with absolute t scores.4.5 (p,0.02). 44 genes crossed the threshold for both assays (upper
right). 83 genes that passed H3K9 acetylation threshold displayed marginal t scores (.2 and ,4.5) for expression, while 154 genes that passed
expression threshold displayed marginal t scores (.2 and ,4.5) for H3K9 acetylation. Differential expression of the former genes was validated as in
Fig 4. Combining genes with marginal t scores (.2 and ,4.5) for both platforms simultaneously yielded an additional 382 genes with positive
correlation that would have been missed by both platforms (central square, red). For illustrating purposes, points corresponding to gene expression t
scores.8 or H3K9 acetylation t scores.7 were excluded from the figure. Panel B: Bar graph illustrating synergism between the gene expression and
H3K9 acetylation analyses. 1314 genes were identified only by gene expression, 329 by H3K9 acetylation alone, and 44 genes were captured by both
platforms. After the integrated analysis, an additional 382 genes were identified. Panels C and D: Validation of fold enrichment for H3K9 acetylation
by qChIP (panel C) and fold difference in expression by qRT-PCR (panel D) of 9 genes (6 test and 3 negative controls) identified by the integrated
analysis that had been previously missed by both.
doi:10.1371/journal.pone.0001882.g005
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the integration of genetic and epigenetic platforms seems only

natural, since individually both types of platforms have proven to

capture biologically relevant information. Along these lines, some

groups have begun to investigate the potential to be found in the

combination of information from different microarray platforms.

Shi et. al. used a CpG island microarray containing 1507

expressed CpG island sequence tags to carry out a triple analysis

of histone acetylation, DNA methylation and gene expression in

an ovarian cancer cell line treated with trichostatin A and 59-

deoxyazacytidine. While they were able to detect a functional

interaction between histone acetylation and DNA methylation,

they could not demonstrate an overall correlation between

changes in epigenetic modifications and changes in expression

levels [27]. Wu et. al. used a combination of ChIP-chip for H3K9

modifications and Differential Methylation Hybridization (DMH)

on a 9.2 K mouse promoter array and showed an inverse

correlation between H3K9 acetylation and DNA methylation,

while no significant correlation could be found between DNA

methylation and H3 dimethyl-K9 at the promoter level[28]. In

our study, however, we propose the use of a combination of three

different high-density genomic and epigenomic platforms for the

in-depth analysis of their relationship in the context of human

cancer specimens.

Posing a simple biological question–that is the differentiation

between cell types in a sample set–we determined first by carrying

out a systematic unsupervised clustering analysis that epigenomic

platforms can be readily used for profiling and classification of

leukemia clinical samples. Moreover, the combination of DNA

methylation and H3K9 acetylation to gene expression data

resulted in a significantly larger number of genes being identified

that distinguished ALL from AML samples. Since each one of

these platforms is affected by unique technical limitations, it is not

surprising that they would result in the detection of only partially

overlapping cohorts of genes. The existence of such limitations was

confirmed by the fact that restricting the analysis to the subset of

genes that displayed high signal to noise ratios on any two

platforms (i.e. those genes that we can be certain were accurately

measured by both platforms) resulted in a high degree of

correlation between the different measures.

Furthermore, we hypothesized that this technical limitation due

to the presence of noise in gene expression arrays was significantly

affecting our ability to detect genuine differences in mRNA levels.

By looking at a group of genes that displayed a significant

difference between ALL and AML in either H3K9 acetylation or

DNA methylation levels but did not display significant differences

on gene expression arrays we found that when the mRNA levels of

these genes were measured by qRT-PCR, an underlying

difference in gene expression could be readily detected. Thus,

we were able to confirm that there is an important degree of loss of

information when carrying out genome-wide studies by gene

expression microarrays alone, and that this information can be

recovered by the integration of epigenetic data, reflecting the

additive benefit obtained from such an integrated approach.

However, our main goal was to investigate whether gene

expression and epigenomic microarrays were capable of reinforc-

ing each other. Our data show that it is possible to further harness

the power of integrated epigenomics to identify differentially

regulated genes, since genes missed by both gene expression and

epigenetic profiling could be recovered for analysis by taking

advantage of the tendency of gene expression profiling to correlate

positively or negatively with epigenetic marks. For this we looked

for genes that were marginally below the significance threshold on

gene expression and H3K9 acetylation and for which both

measures behaved concordantly. Using these new criteria, an

additional 382 genes were identified that had been missed by

both platforms. Careful single locus validation of randomly

selected genes from this cohort confirmed such genes to be

genuinely differentially acetylated and expressed, thus demon-

strating the synergistic power of this integrative analysis.

We propose that the additive and/or synergistic ability of

integrative genomics and epigenomics to capture differentially-

regulated genes in human clinical samples will enhance under-

standing of disease pathogenesis when carried out in an adequately

designed study. The current study used the extreme comparison of

ALL with AML clinical samples to demonstrate proof of principle

of the approach. However, even with limited numbers of samples,

the integrated analysis captures gene networks missed by single

platforms, improves the level of confidence in gene networks which

were only partially recognized by single platforms, and may center

networks more completely around critical mediators of tumori-

genesis so that subsequent functional studies could focus on gene

products most likely to occupy central roles in the biology of the

specific tumors.

Figure 6. DNA methylation identifies differentially expressed
genes missed by gene expression arrays. Panel A: Fold difference
in gene expression by qRT-PCR between ALL and AML in a subset of
genes identified as differentially methylated but not as differentially
expressed (left), a group of genes that had been identified as
differentially expressed but not differentially methylated (center), and
in a group of genes that had not been identified as either differentially
expressed nor differentially methylated. Panel B: Table showing the
median, maximum and minimum values in fold difference for the three
groups, reflecting how a subgroup of genes that is missed by gene
expression arrays but identified by DNA methylation display compara-
ble differences in gene expression levels when using a more sensitive
technique such as qRT-PCR.
doi:10.1371/journal.pone.0001882.g006
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In summary, our simple approach for integrated analysis shows

a functional relationship between gene expression and epigenetic

marks and, more importantly, demonstrates that these platforms

synergize to provide a more complete and comprehensive analysis

of transcriptional programming. We predict that when applied to

large cohorts of patients enrolled in clinical trials, this integrated

epigenomics approach will provide more accurate disease

classification and more powerful prognostic information, which

could be then used to design improved risk adapted and targeted

therapy clinical trials.

Figure 7. Integration of data from all three platforms enhances the biological information captured. Panel A: Bar graph comparing the
significance level of enrichment (y axis: 2log(p-value)) for genes within specific canonical pathways for the integrated analysis and the individual
platforms. Panel B: Bar graph showing a subset of canonical pathways that were detected as significant by the integrated analysis, but that had
been missed by the individual platforms.
doi:10.1371/journal.pone.0001882.g007

Table 2. Enrichment of specific canonical pathways by the integrated analysis and the individual platforms

Pathway
Integrated analysis
(p value)

Gene expression
(p value)

H3K9 acetylation
(p value)

DNA methylation
(p value)

TP53 signaling 9.526e210 2.76e26 4.96e22 1.36e22

Protein ubiquitylation 2.336e29 2.086e26 1.86e21 3.16e21

WNT-b catenin signaling 4.036e29 1.56e23 4.86e21 4.26e23

G1/S checkpoint regulation 5.86e29 1.26e25 – 1.16e21

TGFb signaling 6.996e29 6.36e23 7.776e24 1.86e21

doi:10.1371/journal.pone.0001882.t002
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Materials and Methods

Leukemia samples
Specimens were obtained from 5 patients diagnosed with ALL

(2 cases) or AML (3 cases). All patients had signed informed

consent. Use of the ALL samples was approved through the

Institutional Review Board (IRB) of Our Lady Of Mercy Cancer

Center and use of the AML samples was approved through the

Eastern Cooperative Oncology Group IRB for the E1900 clinical

trial. Furthermore, the study was also approved by the Albert

Einstein College of Medicine’s Institutional Review Board.

Mononuclear cells were isolated from heparinized bone marrow

or peripheral blood specimens by ficoll-hypaque density centrifu-

gation. The cells were washed twice in phosphate-buffered saline

and subsequently frozen at a concentration of 40 million cells/mL

in 90% fetal bovine serum and 10% dimethylsulfoxide. Charac-

terization of antigen profiles by multiparameter flow cytometry

was performed on mononuclear cells prior to freezing. Antibody

binding was evaluated on a FACSCalibur using the CellQuest

software program (Becton-Dickinson, Mountainview, CA). The

patient characteristics are summarized in Table 1.

Genomic DNA extraction
Genomic DNA was extracted from 5–106106 cells following a

standard phenol-chloroform protocol followed by an ethanol

precipitation and resuspension in 10 mM Tris-HCl pH 8.0.

Total RNA extraction
Total RNA was extracted from 206106 using an RNeasy Mini

kit from Qiagen (Valencia, CA), eluting twice in 30 mL of RNAse-

free water.

Chromatin Immunoprecipitation Assay (ChIP)
106106 bone marrow cells were resuspended in 10 mL of

DMEM and fixed with 1% formaldehyde at room temperature for

10 minutes. Reactions were quenched with 0.125 M glycine for

5 min, and the cells washed twice in cold PBS. Cells were lysed in

1.3 mL of lysis buffer (1% SDS+50 mM Tris-HCl

pH 8.1+10 mM EDTA pH 8.0+protease inhibitors) on ice for

10 minutes and sonicated using a Branson microtip sonicator at

45% amplitude (Fisher scientific, Pittsburgh, PA) in order to

achieve chromatin fragmentation to an average of 500 bp.

Chromatin was pre-cleared with 100 mL of Protein A agarose

beads (Roche, Indianapolis, IN) for 2 hours at 4uC, and then

diluted 10-fold in dilution buffer (1.1% Triton X-100+0.01%

SDS+167 mM NaCl+16.7 mM Tris-HCl pH 8.1+1.2 mM ED-

TA+protease inhibitors). One hundred microliters were set apart

for the input sample. Immunoprecipitation (IP) reactions in

chromatin from 16106 cells were carried overnight at 4uC with

either 2.5 mg of anti-acetylated histone H3 lysine 9 antibody

(Upstate, Catalog #: 07-352, lot: 31388) or an equal amount of

IgG isotype control (Jackson ImmunoResearch). On the following

day immune complexes were recovered by adding 25 mL of

protein A agarose beads to each reaction, incubating at 4uC for

45 minutes and then spinning down at 3000 rpm. Each sample

was washed 5 times, 10 minutes each time, as follows: 16 low salt

wash (0.1% SDS+1% Triton X-100+2 mM EDTA+20 mM Tris-

HCl pH 8.1+150 mM NaCl), 16 high-salt wash (0.1% SDS+1%

Triton X-100+2 mM EDTA+20 mM Tris-HCl pH 8.1+500 mM

NaCl), 16 LiCl wash (0.25 M LiCl+1% NP-40+1% deoxychola-

te+1 mM EDTA+10 mM Tris-HCl pH 8.1) and 26 TE pH 8.0

washes (10 mM Tris-HCl+1 mM EDTA). DNA from each of the

IPs and the input sample was eluted twice for 20 minutes at room

temperature in 100 mL of elution buffer (1% SDS+0.1 M

NaHCO3) followed by an overnight incubation at 65uC to reverse

the cross-linking. DNA samples were cleaned using a QIAquick

PCR purification kit (QIAGEN, Valencia, CA) using the

manufacturer’s protocol, but using 30 mL of elution buffer for

the final elution from the column. Enrichment was calculated by

quantitative real-time PCR in a DNA Engine Opticon 2 real-time

thermocycler from Biorad (Hercules, CA) using primers directed

against the promoter regions of the CD10, CD20, CD33 or MPO

genes (for primer sequences see Table S2). Specific enrichment

for H3K9ac was determined using the DDC(t) method as

previously described[29]. Samples were amplified using a

ligation-mediated PCR protocol as previously described[30] and

maintenance of enrichment was verified by quantitative PCR prior

to submission for labeling and hybridization onto the NimbleGen

human HG17 promoter tiling oligonucleotide microarray (2005-

04-18_HGS17_min_promoter_set; design ID: 1871) containing

385,000 probes covering 24,134 promoters (1 kb and +500 bp

around the transcription start-site, on average). ChIP-chip

microarray data has been submitted to the GEO database for

public access (accession number pending)

DNA methylation analysis by HELP
The HELP assay was carried out as previously published[23]

with slight modifications. One microgram of genomic DNA was

digested overnight with either HpaII or MspI (NEB, Ipswich,

MA). On the following day the reactions were extracted once with

phenol-chloroform and resuspended in 11 mL of 10 mM Tris-HCl

pH 8.0 and the digested DNA was used to set up an overnight

ligation of the JHpaII adapter using T4 DNA ligase. The adapter-

ligated DNA was used to carry out the PCR amplification of the

HpaII and MspI-digested DNA as previously described[23]. Both

amplified fractions were submitted to Roche NimbleGen, Inc.

(Madison, WI) for labeling and hybridization onto a human HG17

custom-designed oligonucleotide array (50-mers) covering 25,626

HpaII amplifiable fragments (HAF) located at gene promoters and

imprinted regions. HpaII amplifiable fragments are defined as

genomic sequences contained between two flanking HpaII sites

found within 200–2,000 bp from each other. Each HAF on the

array is represent by 15 individual probes, randomly distributed

across the microarray slide. HELP microarray data has been

submitted to the GEO database for public access (accession

number pending)

Quantitative DNA methylation analysis by MassArray
Epityping

Validation of HELP microarray findings was carried out by

MALDI-TOF mass spectrometry using EpiTyper by MassArray

(Sequenom, CA) on bisulfite-converted DNA as previously

described[31]. MassArray primers were designed to cover the

Table 3. Canonical pathways rescued by the integrated
analysis

Pathway Integrated analysis (p value)

PI3K/AKT signaling 3.276e27

Chemokine signaling 1.066e23

Fc signaling 1.266e23

IL10 signaling 1.836e23

Nucleotide acid excision repair 7.46e23

doi:10.1371/journal.pone.0001882.t003
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flanking HpaII sites for a given HAF, as well as any other HpaII

sites found up to 2,000 bp upstream of the downstream site and up

to 2,000 bp downstream of the upstream site, in order to cover all

possible alternative sites of digestion (primer sequences available

on Table S2).

cDNA synthesis for Gene expression assays
Ten micrograms of total RNA were used to synthesize cDNA

using Superscript III (Invitrogen, Carlsbad, California) using the

manufacturer’s protocol for qRT-PCR. Double-stranded cDNA

synthesis for gene expression arrays was likewise carried out using

Invitrogen’s Superscript III, but a modified oligo-d(T) primer

(59GGCCAGTGAATTGTAATACGACTCACTATAGGGAGG

CGGTTTTTTTTTTTTTTTTTTTTTTTT-39) was used in lieu

of the kit’s oligo-d(T) primer. The second strand was synthesized for

2 hours at 16uC in a reaction containing 30 mL of 56second strand

buffer (Invitrogen), 90 mL of RNAse-free water, 3 mL dNTP

10 mM, 1 mL of BSA 1 mg/mL, 1 ul of E. coli DNA ligase 10 U/

mL (Invitrogen), 4 mL E. coli DNA polymerase I 10 U/mL

(Invitrogen) and 1 mL of RNase H 2 U/mL (Invitrogen). Finally,

2 mL of T4 DNA Polymerase 5 U/mL (Invitrogen) were added

and the reaction incubated at 16uC for another 10 minutes.

Reactions were cleaned with Qiagen’s Qiaquick PCR puri-

fication kit and submitted for labeling and hybridization onto

the NimbleGen standard human HG17 60mer 385,000 probe

gene expression array (2005-04-20_Human_60mer_1in2; design

ID: 1877). Gene expression microarray data has been sub-

mitted to the GEO database for public access (accession number

pending)

Quantitative real time PCR
The expression values of fifteen genes were validated by

quantitative RT-PCR (qRT-PCR). cDNA was synthesized using

the Superscript III First Strand kit from Invitrogen (Invitrogen’s

Superscript III) as per manufacturer’s protocol. The DDC(t)

method was used to determine relative gene expression levels [32]

using Power SYBRGreen from Applied Biosystems (Foster City,

CA) and a DNA Engine Opticon 2 real-time thermocycler from

Biorad (Hercules, CA). All primer sequences are available as

supplementary data (Table S2).

Sample labeling and Microarray hybridizations
All samples for microarray hybridization were processed at the

Roche NimbleGen Service Laboratory. Samples were labeled

using Cy-labeled random primers (9mers) and then hybridized

onto the corresponding microarray platform and scanned using a

GenePix 4000B scanner (Axon Instruments) as previously

described[33].

Microarray quality control
All microarray hybridizations were subjected to extensive

quality control using the following strategies. First, uniformity of

hybridization was evaluated using a modified version of a

previously published algorithm[34] adapted for the NimbleGen

platform, and any hybridization with strong regional artifacts was

repeated. Second, normalized signal intensities from each array

were compared against a 20% trimmed mean of signal intensities

across all arrays in that experiment, and any arrays displaying a

significant intensity bias that could not be explained by the biology

of the sample were excluded. Finally, replicate reproducibility was

estimated by using scatter plots and a Pearson correlation matrix,

and any clear outliers were excluded from further analysis

(Figures S1A, S1B and S1C).

Acetyl histone H3 lysine 9 ChIP-chip analysis
The H3K9 acetylation status at each promoter was computed

by taking the log-ratio between the probe intensities of the ChIP

product and input chromatin, which were co-hybridized on the

same assay. For each of the 24,134 promoter regions, we

computed the moving average of the log-ratio along its 15 probes

with a window size of 3 probes, and found the maximum value of

the moving averages of over each region covered by 15 probes.

The maximum values served as the summary of histone H3 lysine

9 acetylation of the promoter regions and were used to correlate

with gene expression profiles. All chips that passed primary quality

control showed a bimodal distribution with a distinct lower mode.

We took these lower modes to indicate non-enriched fragments,

and normalized across arrays by lining up these modes.

HELP data processing and analysis
Signal intensities at each HpaII amplifiable fragment were

calculated as a robust (25% trimmed) mean of their component

probe-level signal intensities. Any fragments found within the level

of background MspI signal intensity, measured as 2.5 mean-

absolute-differences (MAD) above the median of random probe

signals, were categorized as ‘‘failed.’’ These ‘‘failed’’ loci therefore

represent the population of fragments that did not amplify by

PCR, whatever the biological (e.g. genomic deletions and other

sequence errors) or experimental cause. On the other hand,

‘‘Methylated’’ loci were so designated when the level of HpaII

signal intensity was similarly indistinguishable from background.

PCR-amplifying fragments (those not flagged as either ‘‘methyl-

ated’’ or ‘‘failed’’) were normalized using an intra-array quantile

approach wherein HpaII/MspI ratios are aligned across density-

dependent sliding windows of fragment size-sorted data. Analysis

of normalized data revealed the presence of a bimodal

distribution. For each sample a cutoff was selected at the point

that more clearly separated these two populations and the data

were centered around this point. Each fragment was then

categorized as either methylated, if the centered log HpaII/MspI

ratio was less than zero, or hypomethylated if on the other hand

the log ratio was greater than zero.

Gene expression data processing and analysis
Raw data (.pair files) from the scanner were processed with

Roche NimbleGen’s version of the RMA algorithm (without

background correction) in NimbleScan 2.3 software. Gene

expression microarray assays were performed in quadruplicate

for each patient and 16 out of the 20 chips were selected on the

basis of standard quality metrics and uniformity of hybridization.

Next we selected 10 chips with the least evidence of technical

artifact compared with the median across all chips, and

constructed expression profiles for each of the five samples by

averaging each pair of replicate chips among these 10.

Descriptive statistics
Noise in gene expression and other microarray measures was

estimated as the standard error of the averages of the measures

across technical replicates. For the ChIP-chip arrays the average

standard error was 0.58. Gene expression values were processed

by NimbleScan 2.3 software using a quantile normalization, which

depresses estimates of variance at either end of the intensity

distribution relative to the middle. Most of our measures of interest

came from the middle range of intensities and their average

estimated standard error was 0.30. For HELP, the average

standard error of the quantile-normalized ratio estimates was 0.21.

For between-measures correlation analysis we selected genes

Integrative Epigenomic Study

PLoS ONE | www.plosone.org 12 March 2008 | Volume 3 | Issue 3 | e1882



whose measured standard deviation was at least 2.5 times the

standard error of the averages of replicates. Signal to noise ratio

(SNR) for all the platforms was defined as the ratio of variation

across samples compared to the variation between replicates of the

same sample

Clustering analysis
Unsupervised clustering of HELP and ChIP-chip data using

hierarchical clustering (correlation distance and complete linkage)

[35], correspondence analysis [36] and principal component

analysis [37] were performed using the open-source statistical

software R [38] and the BioConductor package MADE4 [39].

Since there are 10 distinct ways in which 5 samples can be divided

into two groups of 2 and 3 samples each, it was calculated that

there was a probability of 1 in 10 that this analysis would achieve

accurate separation of samples by lineage due to chance.

Supervised analysis was done using a standard T-test with

leukemic lineage (AML or ALL) as the dichotomous variable. A

significance level of p,0.02 was chosen for all three platforms. In

the case of the methylation data, a second criterion of a

difference.1.5 between the mean of the two populations was

added in order to increase the likelihood of detection of

biologically significant changes in methylation levels.

Pathway analysis
Using the Ingenuity Pathway Analysis software (IPA) (Redwood

City, CA) we carried out an analysis of the biological information

retrieved by each of the individual platforms alone, and compared

it to the information obtained by the integrated analysis of all three

platforms. Enrichment of genes associated with specific canonical

pathways was determined relative to the Ingenuity knowledge

database for each of the individual platforms and the integrated

analysis at a significance level of p,0.01. Biological networks

captured by the different microarray platforms were generated

using IPA and scored based on the relationship between the total

number of genes in the specific network and the total number of

genes identified by the microarray analysis.

Supporting Information

Text S1 Supplementary methods: Model for testing likelihood of

correlations between measures

Found at: doi:10.1371/journal.pone.0001882.s001 (0.06 MB

DOC)

Figure S1 Correlation matrix between replicate arrays and

different biological samples for each platform. Panel A: Correla-

tion matrix for all normalized HELP microarrays that passed

hybridization quality control. Panel B: Correlation matrix for

H3K9-acetyl ChIP-chip arrays that passed initial quality control.

Panel C: Correlation matrix for the ten gene expression arrays

selected for analysis after quality control assessment of all

hybridizations.

Found at: doi:10.1371/journal.pone.0001882.s002 (3.52 MB TIF)

Figure S2 Technical validations by single locus studies for each

microarray platform. Panel A: Correlation between qRT-PCR

findings (x axis: Delta C(t) to GAPDH) and gene expression arrays

(y axis: log2 intensity). The overall negative correlation (r = 20.72)

confirms the good quality of the gene expression array data. Panel

B: Correlation between H3K9-acetyl ChIP-chip (x axis: log

H3K9ac/Input) and fold enrichment over non-specific IgG by

qChIP (y axis). Since H3K9ac ChIP-chip data display a bimodal

distribution, the lowest point between the two peaks (log

H3K9acetyl = 2.5) was selected as a cutoff for comparison with

qChIP. While most points below this cutoff point show minimal

enrichment by qChIP, points to the right of this cutoff clearly show

increasing amounts of enrichment with increasing log H3k9ac/

input values. Panel C: Relationship between DNA methylation by

HELP (x axis: log HpaII/MspI) and percent cytosine methylation

measured by MALDI-TOF mass spectrometry.

Found at: doi:10.1371/journal.pone.0001882.s003 (0.86 MB TIF)

Figure S3 Unsupervised clustering using of epigenomic data

principal component analysis (PCA). Unsupervised clustering of

DNA methylation and H3K9 acetylation data using PCA separated

the leukemia samples according to lineage along the first principal

component. Panel A: Two-dimensional representation of PCA of

DNA methylation data. ALL samples (in red) readily cluster apart

from AML samples (in blue) along the first principal component (x

axis) (left); and heatmap of top 100 genes from the first principal

component (right). Genes are shown on the rows and samples on the

columns, and data were row-centered. Low values represented in

blue and high values in red. Panel B: Two-dimensional represen-

tation of PCA of H3K9-acetyl ChIP-chip data. ALL samples (in red)

and AML samples (in blue) readily segregated along the first

principal component (x axis) (left); and heatmap of top 100 genes

from the first principal component (right). Genes are shown on the

rows and samples on the columns, and data were row-centered.

Low values represented in blue and high values in red.

Found at: doi:10.1371/journal.pone.0001882.s004 (1.57 MB TIF)

Figure S4 Highest scoring networks from Ingenuity Pathway

Analysis comparing the individual platforms and the integrated

analysis. Biological gene networks identified as differentially

regulated in ALL versus AML. Networks were generated using

the genes identified through the analysis of the individual

platforms or from the genes identified when information from all

three platforms was integrated. Panel A: The top two scoring

networks identified using H3K9 acetylation data centered around

HoxA9 and APP. Genes that were present in the analysis gene list

appear colored in grey while genes identified indirectly appear in

white. Panel B: The top two scoring networks identified using

DNA methylation data centered around TNF and NFkB. Panel C:

The top two scoring networks identified using gene expression

data centered around TERT and NFkB. Panel D: The top two

scoring networks identified using data from the integration of all

three platforms centered around TNF and TP53. Panel E: The

biological network centering around MYC was among the highest

scoring networks (network #6) when using the integrated data,

while none of the individual platforms succeeded in identifying the

MYC network directly.

Found at: doi:10.1371/journal.pone.0001882.s005 (2.90 MB TIF)

Table S1 Canonical pathway analysis

Found at: doi:10.1371/journal.pone.0001882.s006 (0.03 MB XLS)

Table S2 Primer sequences

Found at: doi:10.1371/journal.pone.0001882.s007 (0.05 MB

XLS)
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significance of O6-methylguanine-DNA methyltransferase determined by

promoter hypermethylation and immunohistochemical expression in anaplastic

gliomas. Clin Cancer Res 11: 5167–5174.

22. Paz MF, Yaya-Tur R, Rojas-Marcos I, Reynes G, Pollan M, et al. (2004) CpG
island hypermethylation of the DNA repair enzyme methyltransferase predicts

response to temozolomide in primary gliomas. Clin Cancer Res 10: 4933–4938.

23. Khulan B, Thompson R, Ye K, Fazzari Mj, Suzuki M, et al. (2006) Comparative

isoschizomer profiling of cytosine methylation: the HELP assay. Genome

Research 16: 1046–1055.

24. Melki JR, Clark SJ (2002) DNA methylation changes in leukaemia. Semin

Cancer Biol 12: 347–357.

25. Gebhard C, Schwarzfischer L, Pham TH, Schilling E, Klug M, et al. (2006)

Genome-wide profiling of CpG methylation identifies novel targets of aberrant
hypermethylation in myeloid leukemia. Cancer Res 66: 6118–6128.

26. Taylor KH, Pena-Hernandez KE, Davis JW, Arthur GL, Duff DJ, et al. (2007)

Large-scale CpG methylation analysis identifies novel candidate genes and

reveals methylation hotspots in acute lymphoblastic leukemia. Cancer Res 67:

2617–2625.

27. Shi H, Wei SH, Leu YW, Rahmatpanah F, Liu JC, et al. (2003) Triple analysis

of the cancer epigenome: an integrated microarray system for assessing gene

expression, DNA methylation, and histone acetylation. Cancer Res 63:

2164–2171.

28. Wu J, Wang SH, Potter D, Liu JC, Smith LT, et al. (2007) Diverse histone

modifications on histone 3 lysine 9 and their relation to DNA methylation in

specifying gene silencing. BMC Genomics 8: 131.

29. Chakrabarti SK, James JC, Mirmira RG (2002) Quantitative assessment of gene
targeting in vitro and in vivo by the pancreatic transcription factor, Pdx1.

Importance of chromatin structure in directing promoter binding. J Biol Chem

277: 13286–13293.

30. Oberley MJ, Tsao J, Yau P, Farnham PJ (2004) High-throughput screening of

chromatin immunoprecipitates using CpG-island microarrays. Methods En-
zymol 376: 315–334.

31. Ehrich M, Nelson MR, Stanssens P, Zabeau M, Liloglou T, et al. (2005)

Quantitative high-throughput analysis of DNA methylation patterns by base-

specific cleavage and mass spectrometry. Proc Natl Acad Sci U S A 102:

15785–15790.

32. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using

real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:

402–408.

33. Selzer RR, Richmond TA, Pofahl NJ, Green RD, Eis PS, et al. (2005) Analysis

of chromosome breakpoints in neuroblastoma at sub-kilobase resolution using

fine-tiling oligonucleotide array CGH. Genes Chromosomes Cancer 44:

305–319.

34. Reimers M, Weinstein JN (2005) Quality assessment of microarrays:
visualization of spatial artifacts and quantitation of regional biases. BMC

Bioinformatics 6: 166.

35. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and

display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95:

14863–14868.

36. Fellenberg K, Hauser NC, Brors B, Neutzner A, Hoheisel JD, et al. (2001)

Correspondence analysis applied to microarray data. Proc Natl Acad Sci U S A

98: 10781–10786.

37. Misra J, Schmitt W, Hwang D, Hsiao LL, Gullans S, et al. (2002) Interactive
exploration of microarray gene expression patterns in a reduced dimensional

space. Genome Res 12: 1112–1120.

38. Team RDC (2007) R: A language and environment for statistical computing.

2.5.1 ed. Vienna: R Foundation for Statistical Computing.

39. Culhane AC, Thioulouse J, Perriere G, Higgins DG (2005) MADE4: an R

package for multivariate analysis of gene expression data. Bioinformatics 21:

2789–2790.

40. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, et al. (2002) The
human genome browser at UCSC. Genome Res 12: 996–1006.

Integrative Epigenomic Study

PLoS ONE | www.plosone.org 14 March 2008 | Volume 3 | Issue 3 | e1882


