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Abstract

Background: Recently, activation-dependant structural brain plasticity in humans has been demonstrated in adults after
three months of training a visio-motor skill. Learning three-ball cascade juggling was associated with a transient and highly
selective increase in brain gray matter in the occipito-temporal cortex comprising the motion sensitive area hMT/V5
bilaterally. However, the exact time-scale of usage-dependant structural changes occur is still unknown. A better
understanding of the temporal parameters may help to elucidate to what extent this type of cortical plasticity contributes
to fast adapting cortical processes that may be relevant to learning.

Principal Findings: Using a 3 Tesla scanner and monitoring whole brain structure we repeated and extended our original
study in 20 healthy adult volunteers, focussing on the temporal aspects of the structural changes and investigated whether
these changes are performance or exercise dependant. The data confirmed our earlier observation using a mean effects
analysis and in addition showed that learning to juggle can alter gray matter in the occipito-temporal cortex as early as after
7 days of training. Neither performance nor exercise alone could explain these changes.

Conclusion: We suggest that the qualitative change (i.e. learning of a new task) is more critical for the brain to change its
structure than continued training of an already-learned task.
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Introduction

While traditional research has focussed on functional forms of

neuroplasticity, current theoretically based concepts suggest that

structural cortical plasticity in adult brains plays a crucial role in

adaptation to environmental changes and disease. Support for this

hypothesis comes from studies demonstrating activity-dependent

selective changes in gray matter induced in human adults [1–4].

However, these studies either used skill as a parameter and did not

include a time pattern at all [3; 4] or, in the case of longitudinal

studies [1], investigated the exercise dependant changes only in 3

month intervals without controlling for how long or how intensely

the volunteers practiced. Therfore, the exact time-scale at which

such usage-dependant structural changes occur is still unknown [5].

We were therefore interested in the temporal details of

structural neuroplasticity, as this knowledge may help to elucidate

to what extent this type of cortical plasticity is involved in

mediating short- and long-term clinical effects. Focussing on this

issue, we replicated the previously used longitudinal study design

[1] in 20 healthy young volunteers. Volunteers were investigated

before and after 1, 2 and 5 weeks after beginning to juggle,

controlling the amount of daily practice. It needs to be mentioned

that we were not able to control against or quantify mental

rehearsal (conscious or unconscious), which may have just as much

impact on cortical reorganization as the actual juggling. We then

asked the volunteers to stop exercising and scanned again after 2

and after 4 months. We predicted that learning three-ball cascade

juggling will induce a transient and highly selective change in

occipito-temporal areas as early as within the first two weeks.

Materials and Methods

Volunteers
We studied 20 healthy volunteers (11 female, 9 male; mean age

26.5 yrs). None of the volunteers was able to juggle before entering

the experiment and none suffered from any diseases. Volunteers

were recruited locally and they were informed that the purpose of

the current study was to investigate the central nervous system’s

adaptive behavior to learning to juggle. The study was given

ethical approval by the local Ethics committee (Ärztekammer

Hamburg) and written informed consent was obtained from all

study participants prior to examination.

VBM-data acquisition
All volunteers received six T1-weighted MRI scans. The first

scan was performed at the start of the study. Then all volunteers

received 3 juggling balls and were instructed on how to learn a 3

ball cascade. The second scan was performed after 7 days, when

volunteers demonstrated skilled performance (at least 60 seconds

of endurance juggling), tested by one of the authors. A third and

fourth scan were carried out another 7 and 28 days later, when the

volunteers were asked to demonstrate at least 120 seconds and 180

seconds respectively, of endurance juggling. After the fourth scan,

none of the ‘‘jugglers’’ was allowed to practice their juggling skills
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further. For most ‘‘jugglers’’ the three-ball cascade juggling at the

time of the last two scans (scan 5 after two and scan 6 after four

months) was still fluent, however significantly less than at time

points 2–4 (again tested by one of the authors).

Magnetic resonance imaging (MRI) was performed on a 3T

MRI system (Siemens Trio) with a standard headcoil. For each

time point, a T1 weighted structural MRI was acquired for each

subject using a 3D-FLASH sequence (TR 15 ms, TE 4.9 ms, flip

angle 25u, 1 mm slices, FOV 2566256). T1 MR-imaging showed

no morphological abnormalities or artefacts.

VBM protocol
Data pre-processing and analysis were performed with SPM2

(Welcome Department of Cognitive Neurology, London, UK)

running under Matlab (Mathworks, Sherborn, MA, USA) and

described in detail elsewhere [1; 6]. In short, pre-processing

involved coregistration, spatial normalization, gray matter seg-

mentation and 10 mm spatial smoothing with a Gaussian kernel.

For the pre-processing steps, we registered all scans of each subject

to the first scan to remove positional differences between the scans

of each individual. The parameters for the following spatial

normalization to the template were estimated using the first scan of

each individual and were applied to the scans from all time-points.

To facilitate an optimal segmentation, we estimated normalization

parameters while removing non-brain voxels (skull, sinus) using a

previously described optimized protocol [7] and a scanner- and

study-specific gray matter template. The optimized parameters,

estimated while normalizing extracted GM images to the

customized GM template, were reapplied to the original whole

brain images. The images aligned with the stereotactic space

defined by the Montreal Neurological Institute (MNI) [8], were

corrected for non-uniformities in signal intensity and partitioned

into gray (GM) and white matter (WM) and cerebrospinal fluid

and background (CSF) using a modified mixture model cluster

analysis. Subsequently, all segmented unmodulated images were

smoothed by convolving them with an isotropic Gaussian kernel of

10 mm full-width at half maximum (FWHM).

Statistical analysis
The first analysis was a longitudinal analysis using a voxel by

voxel paired t-statistic in order to detect regional differences in

gray matter over all six time points. To confirm the findings of our

previously data set, we tested for any regions that showed a

transient increase of gray matter values during the training period.

In fact, we tested whether the values of time point 2–4 (training

period) were larger compared to the first time point (before the

learning period) and to the time points five and six (after training

had stopped). Additionally, we tested also for an increase at the

second time point (after one week training) compared to the first

time point (before training) to explore whether we are able to find

a learning effect even after one week training. No other time

courses were tested. Because we had a strong a priori hypothesis

(hMT/V5 [1]), we applied a threshold of p,0.001 (uncorrected)

across the whole brain.

The second analysis was a mean effect analysis (allowing us to

combine data from different scanners [6]) of all data sets from our

previously published cohort (n = 12, 3 time points, 1.5T Siemens

scanner) [1] and the present data set (n = 20, 3 time points, 3T

Siemens scanner). As the previous data set tested for an increase

between the first two time-points (before the learning period in

relation to the time of skilled performance) followed by a decrease

to the last time-point (after training had stopped), we chose time

point 1, 4 and 6 of our present study to test for medium effects in

both groups (no conjunction.) We applied a threshold of p,0.001

(uncorrected) across the whole brain.

Additionally, we performed a regression analyses using

performance and exercise (hours per day) as covariates to test

for possible correlations. Again, we applied a threshold of p,0.001

(uncorrected).

Table 1. Significant changes of gray matter

Transient increase in gray matter during exercise (n = 20)

Region Brodman areas Talairach coordinates Z score of peak activation

x y z

hMT/V5 R 18 33 287 0 Z = 4.56

hMT/V5 L 18 229 289 2 Z = 3.25

Inferior parietal lobule 40 0 245 40 Z = 4.64

Superior frontal gyrus R 10 25 52 22 Z = 4.06

Superior frontal gyrus L 10 223 54 1 Z = 5.09

Medial temporal gyrus R 21 57 233 24 Z = 4.55

Medial temporal gyrus L 21 256 240 0 Z = 4.22

Cingulate cortex R 24 17 39 10 Z = 4.46

Cingulate cortex L 24 25 35 21 Z = 4.28

Mean effect analysis (n = 32)

hMT/V5 L 18 238 282 4 Z = 3.12

hMT/V5 R 18 41 280 2 Z = 4.06

Significant changes (increase of cerebral gray matter) during the time of skilled performance (scans 2) compared to time point one (before juggling). This pattern
reversed when study participants were examined at time points 5 and 6 (following the weeks of exercise). The changes are tabulated in terms of the brain region and
the corresponding Brodmann’s area (BA). The x, y, z co-ordinates are according to the MNI atlas. Each location is the peak within a cluster (defined as the voxel with the
highest Z-score).
L = left, R = right,
doi:10.1371/journal.pone.0002669.t001
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Results

Longitudinal analysis
Including all time points, we found an increase in the middle

temporal area of the visual cortex (hMT/V5) on the right (x = 33,

y = 287, z = 0; Z = 4.56; p,0.001 uncorrected) and the left side

(x = 229, y = 289, z = 2; Z = 3.25; p,0.001 uncorrected) for the

time-points of skilled performance (scans 2–4) compared to time

point one (scan 1). This pattern reversed when study participants

were examined at time points 4 and 5 (scans 4 & 5 following the

weeks of exercise).

Additionally, we found a significant change (p,0.001, uncor-

rected) of brain gray matter which followed the same time pattern

(increase during exercise which receded when exercise stopped)

bilaterally in the frontal and temporal lobes and the cingulate

cortex (Table 1 and Figure 1). The changes in the occipital area

were already detectable after one week of exercise. (Figure 2)

Mean effect analysis
The mean effect analysis of the previous data set of 12

volunteers [1] and the present data set of 20 volunteers showed

that both cohorts exhibit transient gray matter increase in the V5/

hMT bilaterally (right: x = 41, y = 282, z = 4; Z = 4.06; left:

x = 238, y = 280, z = 2; Z = 3.12) (Figure 3).

Regression analysis
Testing for a correlation between exercise or performance and

changes in gray matter produced no significant results.

Discussion

Using the same paradigm, we are able to confirm and extend

our previous finding of transient training-induced gray matter

changes in the adult human brain. Our results show that dynamic

Figure 1. Transient structural changes superimposed on a
normalized T1-image. Gray matter increase is shown superimposed
on a normalized T1-image. The left side of the picture is the left side of
the brain. a.u. = arbitrary units. Figure 1 top: Statistical parametric
maps demonstrating the transient structural changes during the time of
skilled performance (scans 2–4) compared to time point 1. A significant
gray matter increase was found in the midtemporal area (hMT/V5) and
in the frontal and temporal lobes and the cingulate cortex bilaterally.
This pattern reversed when study participants were examined at time
points 5 and 6 (following the weeks of exercise). Figure 1 bottom:
mean and 90% confidence interval of the voxels of maximum intensity
(right hMT) representing the gray matter expansion over time. Each box
represents one scan (scan 1 = before training, scans 2–4 = 7, 14 and 21
days after scan one and during the exercise period; scan 5 after two and
scan 6 after four months (after training had stopped.)
doi:10.1371/journal.pone.0002669.g001

Figure 2. Statistical parametric maps demonstrating structural
changes after 7 days. Figure 2 top: Statistical parametric maps
demonstrating the transient structural changes after 7 days compared
to time point one. A gray matter expansion between the first and the
second scan was found in the midtemporal area (hMT/V5) on the right
side, demonstrating that learning to juggle can change the gray matter
in hMT/V5 as early as after 7 days of training. Note, that this change is a
trend only (p,0.005, uncorrected). Figure 2 bottom: Box plot of the
voxels of maximum intensity (right hMT/V5) representing the gray
matter expansion over time.
doi:10.1371/journal.pone.0002669.g002
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alterations in gray matter structure can occur very rapidly within a

time range of a single week (Figue 2).

This time-course favours fast adjusting neuronal systems, such

as spine and synapse turnover [9] as the underlying factor for gray

matter increase, rather than such slow evolving mechanisms as

neuronal or glial cell genesis [10]. It is important to mention, that

gray matter does not necessarily mean that we are measuring

neurons or even cells as such. It is possible that other factors could

subtly alter voxel values resulting in tissue being ‘‘misclassified’’ as

gray matter. In general, an increase in gray matter could be due to

an increase in cell size, neural or glial cell genesis, spine density or

even changes in blood flow or interstitial fluid [11]. A strong

argument against the assumption that MRI signal changes capture

cortical neurogenesis comes from a recent post mortem study

measuring the integration of (14)C, generated by nuclear bomb

tests during the Cold War with DNA. This was used to establish

the age of neurons in the major areas of the human cerebral

neocortex and provided evidence, that neocortical neurogenesis

may be restricted to the developmental period [12]. However, the

contra argument is supported by the assumption that newly

generated cells can migrate to distant anatomical sites [13].

Finally, a recent study by Pereira et al. demonstrating in vivo

correlates of exercise-induced neurogenesis in the hippocampus

confirms the theoretical possibility of angiogenesis underlying

plasticity processes [14]. Further work is needed to clarify whether

vascular changes due to increased cerebral blood volume and/or

cerebral blood flow may have additional effects to the observed

changes [15].

Independent of the precise histological nature of these structural

alterations, our results support structural forms of neuroplasticity

to be important in processing the information in dynamic

networks according to novel informational demands [16].

Interestingly, neither performance (minutes endurance juggling)

nor exercise (hours per day) was able to predict structural changes

in the occipito-temporal cortex.

Importantly, the ability to initially learn a three-ball cascade

juggling task is correlated with an increase in gray matter, whereas

further improvement of the skill over time due to training does not

seem to alter brain structure. Animal experiments suggest that

learning is associated with synaptogenesis and glial hypertrophy,

whereas a simple increase in motor activity is ‘‘only’’ related to

angiogenesis [17; 18].

As a general pattern, the increase in gray matter in all regions

(Figure 1) is only detectable during constant training of the visual-

motor skill and recedes when exercise is stopped, although the

participants were still able to juggle. We suggest that the

qualitative change (i.e. learning of a new task) is more critical for

the brain to change its structure than simple training of this task

once learned; however, when we detect such a change in brain

structure, it may well be a combination of both. In the process of

learning, it is a normative characteristic of the nervous system to

change to be able to encode and appropriately implement new

knowledge [19]. Further studies need to address the question

whether the skill as such or whether exercising this skill is more

important for functional and structural adaptations of the brain.

In addition to the gray matter change in the temporal area of

the visual cortex, we found a change of brain gray matter which

followed the same time pattern (increase during exercise and

receding when exercise stopped) bilaterally in the frontal and

temporal lobes and the cingulate cortex. Because this finding was

not reported in our previous study [1] and because this finding did

not survive the correction for multiple comparisons, these data

have to be viewed with caution and may be unspecific. One

possible reason why we detected these areas in the present study as

compared to the study in 2004 may be the higher sensitivity of a

higher field strength (3 Tesla vs. 1.5 Tesla) and/or of a larger

group size in the present study (n = 20 vs. n = 12 in the former

study) and an improved estimation of the mean and variance due

to a higher number of repeated measures.

One of the unsolved obstacles of voxel based morphometry is

the fact, that MR morphometry studies done at different research

centers are almost impossible to compare due to scanner- and site-

specific properties [5]. Therefore, multicenter studies are currently

only feasible with significant limitations. The present study is the

first to include data from two different cohorts scanned on two

different scanners and even different field strengths.

It is an intriguing question why our brains do not expand over

time, if we assume that that there is an increase in gray matter that

is sustained with learning and/or practicing a skill. The most

intuitive answer is, that the alterations are not sustained but that,

once the learning process is over and the functional networks

Figure 3. Mean effects analysis. Figure 3 top: The mean effect
analysis of the previous data set (1.5 Tesla) of 12 volunteers [1] and the
present data set (3 Tesla) of 20 volunteers showed that both cohorts
exhibit transient gray matter increase in the hMT/V5 bilaterally (right:
x = 41, y = 282, z = 4; Z = 4.06; left: x = 238, y = 280, z = 2; Z = 3.12).
Figure 3 bottom: Box plot of the parameter estimates for both
samples in the MT-area (right hMT/V5) using the contrasts described in
the text to test for medium effects in both groups (no conjunction). The
cluster is displayed with p,0.001 (uncorr.) and all parameter estimates
(betas) in this cluster were averaged.
doi:10.1371/journal.pone.0002669.g003
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sufficient for the new task, the gray-matter changes reverse to their

original size. However, given that such changes may last for at

least 3 months without further exercising [19], we suggest that

these regionally restricted changes are rather sublte and will not

change the net-size or weight of the brain. It has also to be pointed

out, that an increase in gray matter volume (i.e. a change of the

classification of individual voxels from white to gray matter) will

prompt an inverse effect (i.e. regionally loss in white matter

volume) in adjacent white matter. The major future challenge is to

understand the behavioural consequences and cellular mecha-

nisms underlying training-induced neuroanatomic plasticity.
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