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Abstract

Lyme disease is the most common tick-borne human illness in North America. In order to understand the molecular
pathogenesis, natural diversity, population structure and epizootic spread of the North American Lyme agent, Borrelia
burgdorferi sensu stricto, a much better understanding of the natural diversity of its genome will be required. Towards this
end we present a comparative analysis of the nucleotide sequences of the numerous plasmids of B. burgdorferi isolates B31,
N40, JD1 and 297. These strains were chosen because they include the three most commonly studied laboratory strains, and
because they represent different major genetic lineages and so are informative regarding the genetic diversity and
evolution of this organism. A unique feature of Borrelia genomes is that they carry a large number of linear and circular
plasmids, and this work shows that strains N40, JD1, 297 and B31 carry related but non-identical sets of 16, 20, 19 and 21
plasmids, respectively, that comprise 33–40% of their genomes. We deduce that there are at least 28 plasmid compatibility
types among the four strains. The B. burgdorferi ,900 Kbp linear chromosomes are evolutionarily exceptionally stable,
except for a short #20 Kbp plasmid-like section at the right end. A few of the plasmids, including the linear lp54 and circular
cp26, are also very stable. We show here that the other plasmids, especially the linear ones, are considerably more variable.
Nearly all of the linear plasmids have undergone one or more substantial inter-plasmid rearrangements since their last
common ancestor. In spite of these rearrangements and differences in plasmid contents, the overall gene complement of
the different isolates has remained relatively constant.
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Introduction

Bacteria in the spirochete genus Borrelia cause arthropod-borne

human diseases such as Lyme disease and relapsing fever, as well

as a number of diseases of veterinary importance [1–6]. They are

obligate parasites that are only found in their vertebrate or

arthropod hosts and are rather difficult to study in the laboratory.

Only quite recently have their biology, genetics and molecular

pathogenesis begun to become accessible to experimentation [7–

9]. The determination and analysis of the first Borrelia genome

sequence, that of the Borrelia burgdorferi type strain B31, stimulated

significant progress in this arena. Its unusual genome was found to

comprise a 910 Kbp linear chromosome and twenty-one (twelve

linear and nine circular) plasmids that contain over 600 Kbp of

DNA [10,11] (two additional plasmids are now thought to have

been lost between the isolation of strain B31 and its genome

sequence determination [12,13]). This work confirmed Barbour’s

[14] original observations, and many other studies have shown

that Borrelia isolates universally harbor numerous linear and

circular plasmids (e. g., [15–27]). The B31 chromosome carries 815

predicted genes (our re-annotation, below) that encode largely

housekeeping functions. These functions include a minimal

metabolic capability that cannot synthesize amino acids, nucleo-

tides or lipids de novo [11].

One circular plasmid, cp26, carries genes that encode several

nucleotide metabolism enzymes [28], small molecule transporters

[29,30] and the enzyme that creates the unique closed hairpin

telomeres present on the Borrelia linear replicons [31–34]. The
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other plasmids have very few metabolic or housekeeping genes,

but do encode numerous lipoproteins, many of which have been

shown to be present on the cell surface when they are expressed (e.

g., [35–37] and references therein). The plasmids have a number

of interesting features in addition to bearing lipoprotein genes. (i) A

number of the linear plasmids have an unusually low protein

coding density for prokaryotic DNA and carry numerous

pseudogenes that appear to be in a state of genetic decay

[10,38]. (ii) Several of the circular plasmids in strain B31 (the

cp32s) are homologous nearly throughout their lengths [10,12].

(iii) There are unusually large numbers of paralogous genes on the

plasmids. The vast majority of strain B31 plasmid genes have

plasmid-borne paralogs, and in strain B31 107 of the paralogous

gene families (PFams) include mostly plasmid genes. (vi) The

highly paralogous nature of the plasmids, along with the apparent

mutational decay of some members of PFams, suggests a history of

duplicative rearrangements followed by decay of damaged and

redundant genes [10,38]. (v) Up to eleven of the B31 plasmids

appear to be prophages or are prophage-related [39–41]. (vi) Most

of the plasmids, probably all but cp26, can be lost without affecting

growth in culture (e. g., [42,43]). (vii) And finally, several plasmids

have been shown to be required for growth in mice or in Ixodes

ticks, and/or encode proteins that interact with host components

(details below). Thus, the plasmids appear to be largely involved in

the interactions of Borrelia with its hosts.

All members of the Borrelia genus that have been analyzed carry

linear chromosomes that are similar in size to the strain B31

chromosome. These chromosomes appear to be quite evolution-

arily stable, since their sizes do not vary greatly and recent

sequences of the chromosomes of additional Lyme agent B.

burgdorferi sensu stricto species [44] and related species B. garinii, B.

afzelii, B. ‘‘bavariensis’’, B. ‘‘finlandensis’’, B. valaisiana, B. spielmanii

and B. bissettii [45–49], show that they are all essentially co-linear

with the chromosome of B. burgdorferi B31, and that there are only

a very small number of chromosomal gene content differences

among these species (with the exception of B. burgdorferi extreme

right-end differences [50,51] and the larger but still relatively

modest differences between Lyme agent and relapsing fever

Borrelia species [52]). Directed analyses have shown that B.

burgdorferi plasmids cp26 [27], lp54 [20] and the cp32s [12] have

largely conserved structures and are present in all isolates that

have been studied. Other plasmids appear to have conserved

structures but are only present in a subset of strains (e. g., B31-like

cp9 [10,53,54] and lp38 [21]), while still others such as lp5, lp21,

lp36, and lp56 are less frequently present and/or have highly

variable sizes and presumably variable structures [19,21,55,56].

The similar sizes of different plasmids (which are not separable in

electrophoresis gels) and the highly paralogous nature of the

plasmids has made unambiguous assembly and analysis of plasmid

sequences complex and difficult [10,47]. Thus, studies of bacteria

in the Borrelia genus are in an unenviable position in which

determination of all the plasmids present in any new isolate

requires that a complete (non-draft) genome sequence be

determined.

Comparison of whole genome nucleotide sequences both within

and between species is a powerful and critical part of gaining a

true understanding of the organization, diversity and evolution of

bacterial genomes. This strategy reveals the invariant features of

the compared genomes and allows discovery of more variable

sequences that (i) correlate with specific host disease features, (ii)

permit tracking of sub-types within species, and (iii) give critical

insight into evolutionary mechanisms. In addition, comparison of

closely related genomes can often illuminate inaccuracies in the

prediction of genes and other features in genomes. In this report

we discuss the plasmids present in the B. burgdorferi genomes of

isolates N40, JD1 and 297 and compare their genetic contents and

organizations with the previously known strain B31 genome. More

global and less gene oriented comparisons of the twenty-two B.

burgdorferi sensu lato genomes that we have sequenced [10,11,44–

46,49] will be presented in subsequent publications.

Results and Discussion

B. burgdorferi whole genome sequence determination
In order to begin to address questions about B. burgdorferi and

population structure, the genetic basis of virulence, possible

exchange of genetic information among individual bacteria in

the wild, as well as natural diversity and evolutionary mechanisms

of the Lyme disease Borrelia species, we determined and annotated

the complete sequences of the whole genomes of B. burgdorferi

strains N40 and JD1 and of the plasmids of strain 297 [44]. These

strains and strain B31 were chosen for the analysis presented here

because (i) space prevents such a detailed analysis of many more

isolates, (ii) they include the three most commonly used laboratory

strains (B31, N40 and 297), (iii) they represent four different

lineages by rRNA spacer sequence [57–60], pulsed-field gel DNA

pattern [16,17,61], OspC (outer surface protein C) [62–65] and

multilocus sequence type [66–69] (Table 1), and, importantly, (iv)

the accuracy of the computer assembly of the plasmid sequences

has only been confirmed experimentally for only these four

Table 1. B. burgdorferi isolates in this study.

Isolate PFGE typea rRNA IGS1 lineageb OspC typec MLST typed Number of plasmids Biological source Ref.

Lineare Circulare

B31 B 1 A 1 12 11f Ixodes tick/NY [70]

N40 E 9 E 19 9f 8 Ixodes tick/NY [71]

JD1 C 5 C 11 11 9 Ixodes tick/MA [72]

297 A 2 K 3 10f 10 Human/CT [73]

aNumerous B. burgdorferi chromosomal pulsed-field gel electrophoresis (PFGE) types have been identified (e. g., [16,17,61].
bAt least nine B. burgdorferi rRNA intragenic spacer (IGS) lineages have been defined [57,58,74].
cOver 20 B. burgdorferi sensu stricto OspC types have been identified [57,62].
dMultilocus sequence typing (MLST) of Margos et al. [67].
eNumber of plasmids present (the values for N40, JD1 and 297 were determined in this study and for B31 by Casjens et al. [10]).
fIncludes the following plasmids known to have lost from the cultures whose genomes were sequenced: B31, cp9-2 and cp32-5; 297, lp25; and N40, lp28-3 (see also text
and footnote c of table 2).
doi:10.1371/journal.pone.0033280.t001
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isolates. Strain 297 was isolated from a human with Lyme disease

in CT, while JD1, N40 and B31 are Ixodes scapularis tick isolates

from MA, NY and NY, respectively. All four come from the

northeastern part of United States of America, a region with a

high frequency of human Lyme disease.

Whole genomic DNAs from B. burgdorferi strains N40 and JD1

and isolated plasmid DNA from strain 297 were sequenced by

previously described Sanger sequencing random shotgun and

closure methods (Materials and Methods). In each genome, DNA

library ‘‘shotgun’’ sequencing followed by closure of sequence gaps

by sequencing PCR amplicons or additional DNA clones resulted

in the accumulation of multiple, unconnected sequence contigs.

Our previous experience with the B. burgdorferi B31 genome

suggested that such contigs most likely represent the large

chromosome and the multiple plasmids that all Borrelia cells carry,

and that repeated sequences on plasmids can cause incorrect

sequence assembly. To confirm that the shorter contigs are

plasmid-derived and to check the correctness of the assembly of

the sequencing runs into contigs, whole cell DNAs, uncleaved and

cleaved with strategically chosen restriction enzymes, were

displayed in pulsed-field electrophoresis agarose gels and analyzed

by Southern hybridization using unique probes prepared by PCR

amplification from each of the putative plasmids contigs in N40,

JD1 and 297 (data not shown). This restriction mapping ensured

that improper assemblies were corrected, that the linear or circular

nature of each plasmid was independently determined, and that

the plasmid sequences accurately reflect the true in vivo situation.

Since the covalently closed, hairpin-ended terminal fragments

from the Borrelia linear replicons do not ligate into the vectors used

to make circular plasmid sequencing libraries [10,11], sequence

determined in this way is expected to be missing some bp from

each end of the linear replicons. In the process of confirming the

sequence assembly, the native plasmid sizes and sizes of terminal

restriction fragments from most linear plasmid ends were

measured, and the approximate number of unsequenced bp at

the DNA ends were estimated; these values are given in table S1.

The nucleotide sequence currently determined for the plasmids of

B. burgdorferi strains B31, N40, 297 and JD1 are 612108, 437361,

508697 and 608486 bp, and represent about 40%, 33%, 40% and

37% of these total genome sequences, respectively. The accession

numbers of the chromosome and plasmids of these four strains

were reported previously [10,11,44](and are also listed in table S1).

Some preliminary and/or specific gene findings regarding these

genome sequences at their incomplete ‘‘draft’’ stages have been

reported elsewhere [66,75–79].

During this work we found that the strain ‘‘N40’’ ospC gene

sequence deposited in GenBank under accession number

AF416430 is in fact not from the authentic N40 which was

originally isolated and described by Barthold et al. [71] and whose

genome we sequenced (the correct N40 ospC sequence has been

previously deposited in GenBank three times under the accession

Nos. U04240, DQ437463 and AY275221). We have confirmed

that the ‘‘AF416430 strain’’, which we call strain ‘‘M’’ in this

report (see below), is still masquerading as ‘‘N40’’ in some

laboratories (see [80] for additional details), and caution is

recommended in assuming that the N40 genome sequence

discussed here is from the same isolate as all strains previously

reported under ‘‘N40’’ name.

The B. burgdorferi sensu stricto chromosome
The chromosome ‘‘constant portion’’. Restriction

mapping, anecdotal sequencing, and DNA array analysis have

indicated that the chromosomes of different isolates of B. burgdorferi

sensu stricto are quite similar (e. g., [17,61,66,67]). The genome

sequences show that the B31, N40 and JD1 chromosomes are

indeed essentially completely syntenic, with the only major length

variation among B. burgdorferi sensu stricto chromosomes being

different amounts of plasmid-like DNA attached at their right ends

(see below). The ‘‘constant region’’ includes the left 903 Kbp that

carries strain B31 genes b31_0001 through b31_0843 (see

Materials and Methods for gene nomenclature). B31-JD1, B31-

N40 and JD1-N40 pair wise comparisons show that the constant

regions of the chromosomes are 99.5%, 99.4% and 99.4%

identical, respectively.

In an effort to improve the accuracy of the annotation of the B.

burgdorferi genes, we annotated the JD1, N40 and 297 genome

sequences in parallel, and updated the B31 genome annotation, as

described in Materials and Methods. ORFs #50 codons were

removed from the prediction, and those in the 51–100 range were

not predicted unless they were intact and had homologs in all four

of the genome sequences discussed here; two putative chromo-

somal genes, b31_0771a and b31_0838a, were identified that were

not recognized in the original annotation of the B31 chromosome.

Many of the short ORFs were previously suspected to be spurious

gene identifications or nonfunctional genes [10], and these are not

included in the present analysis unless they meet the above criteria.

We thus identify 815 putative chromosomal protein-coding genes

which occupy 93.5% of the 903 Kbp constant region in the B31,

N40 and JD1 chromosomes. These genes as well as the tRNA,

tmRNA and rRNA genes are all present and in identical locations

in all three B. burgdorferi chromosomes, and there are no large

indels or rearrangements among the three sequenced chromosome

constant regions. The constant regions of the chromosome will be

compared in detail elsewhere and will not be discussed further in

this report.

The B. burgdorferi chromosomes have significant gene content

differences only in the variable region at their right ends. We

previously identified three different lengths of extensions beyond

the right end of the constant region in a panel of 31 isolates from

North America [17,50,51]. Strain N40 represents a chromosome

that has no long ‘‘extra’’ DNA extension at its right end, and its

rightmost gene (n40_0843, which encodes a probable arginine-

ornithine antiporter) is less than two hundred bp from the right

telomere by our measurement of terminal restriction fragment

lengths (data not shown). B31, 297 and JD1, have additional

sequences that extend about 7, 19 and 20 Kbp beyond the N40

right end position [51]. The B31 extension is ‘‘plasmid-like’’ in

that it contains only genes that are similar to those on B31’s

plasmids [10]. Strain 297’s right end is extremely similar to that of

strain Sh-2-82, and much of the latter’s chromosome extension

was determined to be 99% identical in sequence to the B31 linear

plasmid lp21 [51]. The exact sources of the B31 and JD1

extensions were not known.

The B31 chromosome extension can now be identified as

.98% identical to the version of linear plasmid lp28-1 that is

present in strain 297 (plasmid nomenclature is discussed in the

following section), and three contiguous sections of the JD1

extension are 99.2%, 99.6% and 99.6% identical to sections of 297

lp28-1, B31 lp28-1, and N40 lp28-5 linear plasmids, respectively

(Figures 1 and S1). The extremely high similarity between the

chromosomal extensions and these plasmids strongly supports the

notion that these chromosomal right-end extensions and linear

plasmids have had very recent common ancestors. The mecha-

nism of joining plasmid sequences to the chromosome is not

known. It does not appear to be fusion at the telomeres, since all

the plasmid-like sequences at the chromosome ends are not near

the ends of plasmids except the right chromosomal telomere,

which appears to be the plasmid telomere when there is an

B. burgdorferi Comparative Plasmid Genomics
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extension. We have argued previously that, since (i) closely related

species such as B. bissettii, B. garinii and B. afzelii do not appear to

have such chromosomal extensions, and (ii) genes are not likely to

be rebuilt perfectly by non-homologous recombination events,

these represent accretions of DNA onto the chromosome from

linear plasmids and thus represent a mechanism by which Borrelia

recruits plasmid genes onto the chromosome [10,50,51].

Plasmid types, occurrence and nomenclature
Plasmid content of sequenced genomes. Our results show

that the sequenced cultures of B. burgdorferi strains B31, N40, JD1

and 297 carry 12, 8, 11 and 9 linear plasmids and 9, 8, 9 and 10

circular plasmids, respectively. Thus, these isolates each carry

between 16 and 21 plasmids. Table 2 lists the plasmids present in

each genome, and table S1 gives their experimentally measured

and sequence contig sizes. With the updated re-annotation of the

B31 genome described above, the number of annotated genes on

sequenced plasmids is 706, 463, 677 and 585 in B31, N40, JD1

and 297, respectively. A difficulty in working with Borrelia strains in

the laboratory is that plasmids are often spontaneously lost, and,

although there is evidence that strain 297 carries a homolog of B31

linear plasmid lp25 [81,82] and N40 carries a homolog of lp28-3

[78], these two plasmids were not present in the genome sequences

determined in this study. They must have been lost between the

original isolation and growth of the culture for DNA isolation and

genome sequencing; strain B31 is also known to have lost two or

three plasmids before sequencing [12,13]. The bp position

numbers of the linear plasmids of B31 used in this report are

those of the original GenBank annotations of Casjens et al. [10]

that do not include the more recently determined terminal

sequences reported by Tourand et al. [83].

B. burgdorferi plasmid types and nomenclature. Borrelia

plasmids were originally named according to their DNA topology

(linear ‘‘lp’’ and circular ‘‘cp’’) and approximate size in Kbp.

Strain B31 linear plasmid lp54, for example, is 53678 bp in length.

To continue to name the plasmids in all strains according to their

size, however, has several difficulties: (i) a majority of the linear

plasmids are in the 24 to 30 Kbp size range, so different names

based only on size are limited, (ii) we find numerous significant

organizational and size differences among the strains (e. g., the

‘‘lp36’s’’ present in the four strains considered here range from 23

to 36 Kbp in length; see below), and (iii) such names have no

biological significance. To give plasmids names that correlate with

at least some biological feature, we [75,77] and Stevenson and

Miller [84] have suggested that, when possible, names be given to

Figure 1. Length variation of B. burgdorferi chromosomes. The
relationships among the right end, plasmid-like, chromosomal exten-
sions relative to known plasmids are indicated by gray shading; plasmid
sizes are not drawn exactly to scale. There is a 1053 bp deletion and a
17 bp insertion in the 297 lp28-1 plasmid relative to the B31 extension.
It is assumed that the 297 chromosome is essentially identical to that
strain Sh-2-82 (see text and [51]).
doi:10.1371/journal.pone.0033280.g001

Table 2. B. burgdorferi plasmids present in four isolates.

B31 N40 JD1 297

Linear plasmids 12 8 11 9

Circular plasmids 9 8 9 10

Total plasmids 21 16 20 19

lp5 + 2 2 2

lp17 + + + +

lp21 + 2 2 2

lp25 + + + (+)a

lp28-1 + 2 + +

lp28-2 + + 2 2

lp28-3 + (+)a + +

lp28-4 + + + +

lp28-5 2 + + +

lp28-6 2 2 + +

lp28-7 2 2 + 2

lp36 + + + +

lp38 + + + +

lp54 + + + +

lp56 + 2 2 2

cp9-1 + + 2 2

cp9-2 (+)a 2 2 2

cp26 + + + +

cp32-1 + 2 + (fused)b +

cp32-3 + 2 + +

cp32-4 + + (trunc)b 2 +

cp32-5 (+)a + + (fused)b +

cp32-6 + 2 + +

cp32-7c + + (trunc)b 2 +

cp32-8 + 2 + 2

cp32-9 + + + + (trunc)b

cp32-10 + (int)b + + 2

cp32-11 2 2 + +

cp32-12 2 + + +

aPlasmids known to be in some cultures of the indicated strain, but which were
not present in the sequenced culture. Their sequences remain undetermined.
bStructural differences from otherwise organizationally similar plasmids are
indicated as follows: trunc, truncated compared to other homologous plasmids;
int, B31 cp32-10 is integrated into plasmid lp56; fused, JD1 cp32-1 and cp32-5
are fused into one large circular ‘‘cp32-1+5’’ plasmid.
cIn some B31 cultures the plasmid cp32-7 is replaced by cp32-2 [12]. These two
plasmids have the same apparent compatibility and appear to be prophage
DNAs. Since it seems unlikely that they can exist in the same cell, and they are
expected to be able to move between strains, one of them may have been
inadvertently introduced in the laboratory. We use cp32-7 for this compatibility
type since it is the one that is present in the completely sequenced B31
genome.
doi:10.1371/journal.pone.0033280.t002
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Borrelia plasmids according to their type of partitioning genes, and

in particular the type of paralogous family (PFam) 32 protein that

they encode (PFams defined by Casjens et al. [10]; see also below).

The PFam32 proteins are homologs of the ParA plasmid

partitioning proteins in other better understood systems [85,86],

and experiments in Borrelia indicate that PFam32 protein

‘‘sequence types’’ correlate with plasmid compatibility types (see

references cited in Casjens et al. [75,77]). The PFam32 proteins

encoded by the four genomes fall into twenty-six easily

distinguishable sequence types, fourteen on linear plasmids and

twelve on circular plasmids [75]. Additional compatibilities

include plasmids cp9 and lp5, which carry no PFam32 gene and

so cannot be categorized in this way. The compatibility properties

of lp5 and cp9 are not understood; no lp5-like plasmid is present in

the other isolates analyzed here, and it is not known if the cp9’s in

B31 and N40 are compatible (see below).

In the three new genome sequences three new linear plasmid

PFam32 types are identified that are not present among the

previously known B31 plasmids. These are named ‘‘lp28-5’’

(present in strains N40, JD1 and 297), ‘‘lp28-6’’ (JD1 and 297) and

‘‘lp28-7’’ (JD1) (Table 2). The sizes of these six new ‘‘lp28’’ linear

plasmids range between 27 and 31 Kbp. We chose ‘‘lp28-X’’

names, since they carry genes that are largely from the same set of

PFams as the four ‘‘lp28’’ plasmids present in strain B31. In

addition, two PFam32 types not present in B31 are found among

the circular plasmids of N40, JD1 and 297. Stevenson and Miller

[84] independently discovered both of these types and named

them cp32-11 and cp32-12.

Plasmid variation among B. burgdorferi strains
Plasmid organizational and gene content variation. Com-

parison of strains B31, N40, JD1 and 297 reveals major structural

differences in a number of the plasmid PFam32 types, in addition to

complete plasmid presence-or-absence differences. There appear to

have been numerous rearrangements between and within plasmids

since their last common ancestors. These rearrangements are

largely restricted to the linear plasmids and result in a patchwork or

mosaic relationship when two ‘‘cognate’’ (in same PFam32 group)

plasmids are compared. A given plasmid can have long patches of

very high sequence similarity (often several Kbp .99% identical)

with a plasmid in another strain, and yet have immediately adjacent

sequences that are different in the two plasmids and that are either

(i) nearly identical to part of a different plasmid, (ii) homologous to,

but less highly related to sections of other plasmids, or (iii) not

present in the other three strains analyzed here. Such inter-strain

linear plasmid relationships are reminiscent of the relationships

among the linear plasmids within each individual strain, and we

previously argued from analysis of the strain B31 plasmids that the

intra-strain mosaic relationships were apparently generated by

duplicative rearrangements and perhaps also horizontal transfer

processes [10,38]. The presence of such inter-strain differences

agrees with previous studies which have shown that particular

plasmid sequences (used as hybridization probes) are not present on

identically sized plasmids in all B. burgdorferi isolates (e. g., [19,21]).

Because of these complex relationships, in this report we use a

conservative definition of ‘‘orthologous’’ to mean identical syntenic

positions on plasmids of the same compatibility type, and not for the

most closely related genes when two strains are compared or for

genes that lie in small regions of synteny on different plasmid types.

Figure 2 shows a diagrammatic depiction of the differences in

organization among the linear plasmids of strains B31, N40, JD1

and 297 in which identical colors represent nucleotide sequences

that are .94% identical in the different genomes. (The .94%

cutoff is arbitrary; however, we note that essentially all of the

Figure 2. Linear plasmid contents of B. burgdorferi strains B31, N40, 297 and JD1. The linear plasmids and right end plasmid-like
chromosomal extensions of are shown as horizontal bars with rounded ends. Identical colors indicate regions of nucleotide sequence that is $94%
identical, and white denotes regions that are ,94% identical to other sequences in the diagram. Each of the B31 plasmids was first defined with a
different color and additional colors were added to the other plasmid sets as necessary. Arrows connect plasmids that have identical overall
organization and high sequence similarity (ignoring small polymorphisms and indels ,500 bp). Strain 297 plasmids lp28-3 and lp28-4 have not been
sequenced to their termini (see table S1), so it is not known whether they are organizationally the same as their B31 or JD1 and N40 or JD1 cognates,
respectively.
doi:10.1371/journal.pone.0033280.g002
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locally syntenic and thus orthologous regions are .94% identical

among these strains. If lower cutoffs are used many more regions

that are homologous but not orthologous would be given the same

color in the figure.) It is evident from this overview that although a

few organizationally identical linear plasmids are found in the

different strains, none of the linear plasmid PFam32 types are

organizationally identical across the four strains. Linear plasmids,

lp54, lp28-2 and lp28-3 have relatively small (,1 Kbp or less)

differences among the four strains, but lp17, lp25, lp28-5, lp36 and

lp38 each have three very different versions that have significantly

different gene contents. There is relatively little strain-specific

DNA that is unique to any of the four strains; i.e., only a very small

fraction of any of these genomes’ total linear plasmid sequence is

unrelated to sequence present somewhere in the other three

sequenced B. burgdorferi genomes; we note that nearly all of the

white regions in Figure 2 actually have homology to plasmid

sequences in one of the other strains, but it is less than the 94%

identical cutoff used in the figure. The following sections discuss

the inter-strain relationships of each plasmid type in more detail.

Variation within each plasmid type in different
B. burgdorferi isolates

cp9. B31 cp9 is not required for mouse or tick infection in the

laboratory and is rather easily lost in culture [87–89]. Cp9

plasmids have been previously sequenced from B. burgdorferi strains

B31 [11] and N40 [53] and B. afzelii strain IP21 [54] and found to

be rather similar, but not identical in these three cases (see figure 6

in [77]). Of the new genomes compared here, only N40 carries a

cp9 plasmid, and it is very similar to B31 cp9-1. Our 8722 bp N40

cp9 sequence has seven single bp differences from the previously

reported N40 cp9 sequence [53]. These two plasmids have

identical gene organizations, except that one putative gene

(b31_c10 or revB) and part of another gene (b31_c08) of B31 cp9-

1 are replaced in N40 cp9 by several hundred bp of apparently

non-protein-coding DNA (Figure S2B). The cognate B31 and N40

cp9-1 genes range from 73.8% to 99.1% identical. These plasmids

carry no PFam32 gene, but they do encode PFam57 proteins that

are about 90% identical, and members of this family have been

shown to be required for proper plasmid replication/partitioning

[90]. It is not known if these two plasmids are compatible.

cp26. Circular plasmid cp26 is universally present in B.

burgdorferi isolates (e. g., [27,55]), is required for virulence in mice

[42,91], and is the only plasmid that is known to be essential for

growth in culture [27,91–94]. The B31 cp26 carries genes

involved in GMP synthesis [28], chitobiose import [30], host

integrin binding [95], oligopeptide import [29], and the telomere

hairpin formation [32,33]. It also encodes one of the important

surface antigens expressed in the mammalian host, OspC protein

[57,96–100]. The three additional complete cp26 sequences in the

genomes analyzed here all have identical gene content and

organization to the B31 cp26 reported by Fraser et al. [11] (Figure

S2C). The ospC genes are especially variable and range from

82.6% to 86.5% identical in the four strains. If ospC is removed

from the comparison, the remainder of the plasmids range from

98.4% to 99.2% identical in pair wise comparisons, close to the

average similarity of the chromosomes (,99.4% identity, above).

A more detailed analysis of single-nucleotide polymorphisms in

cp26s will be reported elsewhere (E. Mongodin, W. Qiu, B. Luft,

S. Schutzer, C. Fraser-Liggett and S. Casjens, unpublished).

cp32s. Members of this family of circular plasmids are present

in all B. burgdorferi isolates analyzed to date and are thought to be

prophages [39–41]. In addition to putative phage virion assembly

genes, the cp32s carry genes that encode a number of proteins that

have been studied [35,101]. These phage ‘‘lysogenic conversion’’

(host modification) genes include the rev genes whose surface

lipoprotein products bind fibronectin [102], the mlp encoded

surface lipoproteins [103,104], the bdr (Borrelia direct repeat) genes

whose functions are unknown, and the complex family of the erp

(also called ospEF or elp) genes whose various members have been

shown encode surface lipoproteins that bind to plasminogen [105],

laminin [106] and factor H complement regulatory factor binding

protein [107–109].

The sequenced genomes of B31, N40, JD1 and 297 contain

nine, six, nine and nine members of the cp32 family, respectively.

Like the B31 cp32s, the cp32 plasmids in the other three strains

are homologous throughout nearly their entire lengths, and the 23

new complete cp32 sequences all have gene arrangements that are

very similar to those of the B31 cp32s (ORF maps of these

plasmids are shown in Figure S2D–G). Among the thirteen known

cp32 compatibility types [84], only plasmids with cp32-9 partition

genes are present in all four genomes (if the cp32-5 which was lost

before the B31 genome was sequenced [10,12] is included, then it

too was present in all four isolates).

The variations in overall organization of these cp32s include the

integration of one into a linear plasmid in B31 [10], two are fused

into one large ‘‘cp32-1+5’’ plasmid in JD1 that is made up of two

different full-length cp32s fused together to form a 60.7 Kbp

circular plasmid (this fusion of cp32-1 and cp32-5 plasmids was

confirmed by Southern DNA restriction enzyme cleavage analysis,

data not shown), two in N40 are truncated (cp32-4 and -7, which

have approximately 14 and 13 Kbp deletions, respectively) and

two in 297 are truncated (cp32-7 and -9, which both have ,9 Kbp

deletions) (Figures S2E and G); several of these deletions have been

noted previously, where N40 cp32-7 was called cp18, and 297

cp32-7 and cp32-9 were called cp18-1 and cp18-2, respectively

[84,110,111]. In addition, there is an approximately 5.6 Kbp

inversion in N40 cp32-5 (Figure S2E). The four deletions and the

inversion affect only the putative virion assembly gene region of

these prophage plasmids [40,41], so the plasmid partitioning and

lysogenic conversion genes of these plasmids appear to remain

intact. There are also a small number of other gene content

differences among the cp32s, such as the presence or absence of a

revA gene (e. g., the complement of cp32s in JD1 carries no revA

gene) and several variably present genes immediately transcrip-

tionally downstream of the erp gene region. Only two putative gene

types are present in the newly sequenced cp32s that do not have

homologues on cp32 plasmids in the B31 genome; these are

297_w45 (a PFam55 gene; members of this family are present on

four linear plasmids and cp9-1 in B31) in 297 cp32-11, and

jd1_q42 and 297_m41 found on JD1 cp32-10 and in 297 cp32-7,

respectively (a fragment of this gene family lies at the same location

in B31 cp32-3). In addition, more than one mlp gene is present in

JD1 cp32-12 and 297 cp32-4. The erp/elp//ospEF gene group

diversity will be discussed in detail elsewhere (B. Stevenson, B.

Jutras & S. Casjens, unpublished). There appears to have been

considerable homologous recombination among the cp32 plas-

mids, and this is discussed in more detail below.

lp5, lp21 and lp56. The N40, JD1 and 297 genome

sequences do not contain plasmids with partition genes similar

to B31 lp5, lp21 or the non-cp32-like portion of lp56. However, we

have previously found that a 16 Kbp region that is very similar to

B31 lp21 sequences is present at the right end of the strain 297

chromosome [51], and we note below that JD1 lp38 also carries a

section that is very similar to a major part of B31 lp21.

lp17. Lp17’s roles in pathogenesis are unclear, but it encodes

protein D18 that regulates OspC expression from cp26 (above)

[112]. There are three organizationally different versions of lp17

in the four genomes, the previously characterized 17 Kbp B31
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plasmid, a 21 Kbp N40 plasmid, and 19 Kbp plasmids in JD1 and

297 (Figure 3). The rightmost ,13 Kbp regions of these four

plasmids are .97% identical; however, they have three very

different left ends as follows: (i) N40 lp17 carries four apparently

intact genes that are .98% identical to B31 lp36 genes b31_k45,

b31_k46, b31_k47 and b31_k50; orthologs of these four genes are

not present in the JD1 or 297 plasmid sequences, although other

members of their paralogous families are present. Fikrig et al. [113]

showed that the n40_d02 (the b31_k50 homolog on lp17) protein

elicits protective immunity in mice. N40 does not contain

orthologs of b31_k48 and b31_k49, and it seems likely that the

b31_k48 and b31_k49-like genes were removed from the N40 lp17

by a homologous recombination event between b31_k47 and

b31_k49-like genes in a progenitor in which this region resembled

B31 lp36 in organization. Xu et al.’s [114] PCR amplifications

suggested that their set of OspC type E strains all have a similar

lp17 arrangement to that of N40. (ii) To the left of their homology

with B31 lp17, the very similar JD1 and 297 lp17s have a short

200 bp sequence that is about 84% identical to a fragment the

PFam145 genes of the cp32 plasmids, about 900 bp that are not

similar to any other sequence in these four genomes, and about

3.7 Kbp that are 94% identical to genes b31_k13, b31_k15 and

b31_k17 (adeC) of B31 lp36. The b31_k15 and b31_k17 homologs

in JD1 and 297 have frame-disrupting mutations, but there are

intact versions of both on lp36 in JD1 and in 297. (iii) Finally, the

left end of B31 lp17 has 1496 bp that is unique to B31 and

contains no gene of known function.

The 2–3% difference between the orthologous sequences on

these plasmids (Figure 3) does not affect the reading frames of any

of the putative lp17 genes; however, there have been a few small

rearrangements in the different lineages. As an example of the

types of such differences that are present between orthologous

plasmid sequences in strains B31, N40, JD1 and 297 in general,

these are indicated in Figure 3. They include deletions (identical

241 bp deletions relative to the other two at about bp 11100 in

JD1 and 9100 in 297), inversions (of 259 bp at bp ,8000 in N40

and of 101 bp in the d20 pseudogene in JD1), and differing

numbers of the tandem 21 bp repeats present in b31_d20 and its

orthologs (8, 18, 8 and 13 copies in B31, N40, JD1 and 297,

respectively). All of the repeats in N40 lp17 have the same two

single bp differences relative to the other lp17 plasmids, perhaps

implying substantial contraction and expansion of the array since

the N40 sequence has been evolutionarily separated from the

others.

lp25. This linear plasmid in strain B31 has been shown to be

essential for infection of mice and ticks [81,89,115,116], and it

harbors several important genes, pncA (b31_e22), which encodes a

nicotinamidase [117], bptA (b31_e16, a surface lipoprotein that is

required for persistence of strain 297 in the tick vector [82]), and

b31_e02, a member of PFam01 that encodes a DNA restriction/

Figure 3. Organizational and open reading frame relationships among four lp17 plasmids. The four lp17s are aligned vertically, and
identical colored background rectangles indicate very similar sequence (the 297 plasmid is the same size as JD1 lp17 but is missing several Kbp of
sequence from its termini; see text and table S1). Rectangles of the same color denote homologous sequences, and the percentage nucleotide
sequence identity of parallel yellow sections are shown between the maps. The arrows denote annotated predicted genes, where red arrows have a
predicted function, black have unknown function, orange are known antigens, and white is a pseudogene not annotated except in the B31 plasmid;
alternate gene names or predicted function are noted in red text in figure. An ‘‘X’’ indicates that a gene is truncated or has a frame disruption relative
to a known homolog. The blue ‘‘D’’ indicates a short deletion relative to orthologous sequence in another lp17 plasmid(s); blue numbers indicate the
number of short tandem repeats present at that location; an asterisk (*) notes that the repeat sequence is not identical to that of the other lp17s; an
(I) marks the locations of short inversions relative to the other lp17s.
doi:10.1371/journal.pone.0033280.g003
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modification protein whose presence lowers the efficiency of

genetic transformation of B31 cells [118–120]. N40 and JD1 lp25s

each carry genes that are orthologs of pncA and bptA, and a

homolog of b31_e02. Although infectious strain 297 carries an

lp25-like plasmid [81,82], it was unfortunately lost from the

culture whose genome was sequenced.

Figure 4 shows that the N40 lp25 is very similar to B31 lp25

with only a small number of short indel differences in regions that

are not predicted to affect intact genes. The rightmost 18 Kbp

regions of the two plasmids are over 98% identical, while the

leftmost approximately 6 Kbp is about 91% identical, and a few

hundred bp at the extreme left ends are unrelated in the B31 and

N40 lp25 plasmids. JD1 lp25 represents a different subtype of this

plasmid. The central 9 Kbp of JD1 lp25 is more divergent, with

about 94% identity and two several hundred bp indels relative to

the B31 and N40 lp25s. JD1’s intact bptA and pncA genes lie in this

region, and it also has a PFam01 restriction/modification gene at

its left end and a PFam60 putative lipoprotein gene in the right

central region that are about 90% identical to the orthologous

genes in this position in B31 and N40 lp25. Finally, JD1 lp25 has

several sections that are not present in the B31/N40 type lp25s;

these ‘‘mosaic’’ patches have 98.6% and 98.8% identity to parts of

297 lp28-5 and B31 lp28-2, respectively, as well as weaker

similarities to other B. burgdorferi plasmids (Figures 4 and S2H).

These latter differences mean that JD1 carries no true ortholog to

the antigenic B31 E09 (PFam44) putative lipoprotein, and carries

only members of PFam52 (jd1_e04) and PFam102 (jd1_e27) that

are rather divergent from their B31 counterparts.

lp28-1. The B31 plasmid lp28-1 has received considerable

attention because it carries two genes, arp (b31_f01) and vlsE (near

the left and right ends, respectively), that are important in the

mouse model of Lyme borreliosis. Loss of lp28-1 severely reduces

strain B31 infectivity in mice but not in ticks [81,89,115,116,121–

124], and antibodies against the B31 Arp protein cause resolution

of B. burgdorferi induced arthritis in mice [125–127]. N40 does not

carry a plasmid with an lp28-1 PFam32 gene, and the JD1 and

297 lp28-1 plasmids are very similar to each other (99.5% identical

over the nearly 15 Kbp), but are quite different from B31 lp28-1.

These two lp28-1 types only have the partition genes and vls/vlsE

region in common (Figures 5 and S2I). Between these two regions

of the JD1 and 297 plasmids lies about 2.6 Kbp of DNA that

contains a PFam106 gene (jd1_f23 and 297_f25) that is

homologous to B31 lp38 genes b31_j23 and b31_j24. This JD1

protein is only about 40% identical to B31_J23 protein. At their

left ends JD1 and 297 lp28-1s have about 6 Kbp that is about 99%

identical to the right end extension of the B31 chromosome

(above) and which contains an apparently intact PFam138 gene

(b31_0852 in B31) and about 2.7 Kbp that has no ortholog in B31

and no convincing intact genes. The arp gene is not present on

lp28-1 in the three new genomes discussed here. In N40 it is near

the right end of lp28-5 (gene n40_y16), and in JD1 it is near the left

end of lp28-4 (jd1_i37; and perhaps also in 297, although the

sequence of the parallel region of its lp28-4 was not determined).

The B31 and N40 Arp proteins are identical, and the JD1

homolog is 99.1% identical to them, so this movement of the arp

gene among these different plasmids happened quite recently.

The vlsE gene at the right end of B31 lp28-1 encodes a major

outer surface protein and is unique in Borrelia in that during a

mouse infection genetic information from fifteen tandem,

unexpressed vls cassettes can be copied into the vlsE expression

locus, presumably to present the host immune system with a

‘‘moving target’’ which can in theory have millions of different

amino acid sequences [124,128–132]. The vlsE gene was not

present in the DNA libraries used in the original sequencing of the

strain B31 genome, and similarly was not present in any of the

libraries used in sequencing the three genomes presented here.

Zhang et al. [128] cloned the B31 vlsE expression locus and showed

that it lies very close to the right telomere of lp28-1 in strain B31.

More recently, Hudson et al. [133] and Bykowski et al. [134] have

shown that there are seven bp (59-TTCTCTC; see accession

No. DQ275473) between the bulk of the lp28-1 sequence

(accession No. AE000794) and the vlsE expression locus sequence

(accession No. BBU76405). Possible vlsE expression loci sequences

for strains 297 and N40 have been PCR amplified (297, accession

Nos. U76405 and AB011063; N40, X. Wang and J. Weis,

personal communication), but attempts at PCR amplification

between these sequences and the N40 and 297 cassette regions

from N40 or 297 DNA were unsuccessful. However, similar PCR

amplification using primers designed from the right end of the JD1

lp28-1 sequence cassette region and the reported 297 expression

locus allowed extension of the JD1 lp28-1 sequence to include

most of its vlsE locus. The sequence of the vls-vlsE region will be

examined in more detail elsewhere (S. Norris, D. Edmundson, T.

Lin, G. Chaconas and S. Casjens, unpublished).

The vls cassette region is also present on plasmids with lp28-1

compatibility in B31, JD1 and 297, but in N40 they reside on the

plasmid that has an lp36 type PFam32 gene. In the N40 plasmid,

the joint between B31 lp28-1 and B31 lp36-like sequences is close

to the left end of the cassettes, so little other B31, JD1 or 297 lp28-

1-like genetic material is present on N40 lp36. Like the parallel

region in B31, the vls cassette region of N40, JD1 and 297 all have

extremely high (for Borrelia) G+C contents of about 50% (Figure 5),

and B31, JD1 and N40 each have a dip to a much lower and more

nearly normal Borrelia G+C content between the cassettes and the

vlsE expression site near the right end of the plasmid (the 297

sequence does not extend this close the plasmid’s right end). The

presence of this G+C dip and a lack of similarity with the vlsE gene

near the right end of the N40 lp36 sequence suggest that all of the

N40 cassettes are likely represented in the reported sequence.

Although the cassette regions are similar in size (about 8, 7.2 and

8 Kbp, respectively, in B31, N40 and JD1), there are significant

differences between these cassette regions. B31 has 15 cassettes,

JD1 has 14 and N40 has 19. The B31 and JD1 cassettes are quite

constant in size (about 570 bp with a few that are up to 90 bp

shorter; Figure S3). The N40 cassettes are somewhat more

variable in size and range from about 200 to over 600 bp in length

(average is 395 bp; Figure S3). The cassette sequences are much

more divergent than all other clearly orthologous sequences in

these isolates. The 6 Kbp of the JD1 and 297 cassette regions that

are sequenced in both genomes contains eleven cassettes that are

up to 93% identical, but numerous less similar sections make the

whole region only about 81% identical between the two strains. All

the other pair wise comparisons of the four cassette regions are less

similar (e. g., about 65% between B31 and JD1, based on

alignments created by DNA Strider [135] and by inspection of

diagonal matrix similarity plots, but it is difficult to obtain accurate

sequence alignments). Thus the vls cassettes are present in these

four strains in three approximately equidistantly related versions

represented by B31, N40 and JD1/297.

lp28-3. Plasmids with lp28-3 type PFam32 genes are present

in B31, JD1 and 297. N40 has been reported to carry such a

plasmid [78], but it was absent from the N40 culture whose DNA

was sequenced. These three plasmids are very similar (over 99%

identical in pair wise comparisons; Figure S2J), except in JD1

where about 1.2 Kbp at the right end contains a PFam52 gene

(jd1_h47) that is not homologous to the parallel region of B31 lp28-

3 (where a PFam48 gene lies in this region); the 297 lp28-3

sequence does not extend near enough to the right end, so it is not
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known if it is similar to JD1 or B31 in this regard. The JD1

1.2 Kbp right end (above) is 99.5% identical to sequence at the

right end of B31 lp36. The only B31 lp28-3 gene that has been

studied, the cspZ gene (b31_h06) encodes the human factor H

complement regulatory factor binding protein CRASP-2 [78,136]

and lies in the common region of the three lp28-3s.

lp28-4. The B31 lp28-4 is required for the ability to infect the

tick gut [116], and it carries several genes of current interest

including b31_i06 which encodes a surface localized nucleotidase

[137], b31_i16 (vraA; variable strain-associated repetitive antigen

A) which confers partial protection as a vaccine [138], b31_i26

which encodes a possible multidrug efflux protein, and b31_i38

and b31_i39 which encode PFam54 surface proteins [37,139]. The

four lp28-4s are very similar (99.2 to 99.9% identical in pair wise

comparisons) over most of their lengths, but the B31 plasmid has

several Kbp of different, non-homologous DNA at both ends

(Figure S2K). The right terminal 2 Kbp of the N40 and JD1

plasmids are nearly identical to each other and are 99.3% identical

the left terminus of B31 lp36; this region harbors a PFam12

(jd1_i36) gene and a PFam01 fragment (jd1_i47) that are not

present on B31 lp28-4. The leftmost 1.4 Kbp of B31 lp28-4 is

replaced in the JD1 and N40 plasmids by different B31 lp28-1-like

sequences; in the JD1 plasmid this DNA contains the arp gene (see

above).

Although the central orthologous regions of the four lp28-4s are

very similar, there are a few differences that could have significant

effects on the function of possibly important genes on these

plasmids. The jd1_i19 (putative multidrug efflux pump) has an in-

frame stop codon relative to the other three strains, and B31 and

JD1 PFam60 orthologs b31_i28 and jd1_i22 have different single

frameshifts relative to the cognate N40 and 297 genes. Finally, B31

lp28-4 has a set of three tandem paralogous PFam54 genes

(b31_i36, b31_i38 and b31_i39), while the other three lp28-4s have

two such genes in this position. Since the B31 genes b31_i36 and

b31_i38 are 99.4% identical, it seems likely that these are the result

of a recent gene duplication in the B31 lp28-4 lineage. Thus,

although the orthologous lp28-4 regions are over 99% identical,

several mutational changes have occurred in them that could have

functional importance.

lp28-5. N40, JD1 and 297 each carry a plasmid with a

previously unknown type of PFam32 gene that has been named

lp28-5 (Figure 6). These represent a new Borrelia plasmid PFam32

compatibility type (see PFam32 tree in figure 3 of [75]). A

substantial fraction of N40 lp28-5 is not closely related to any of the

previously characterized B31 B. burgdorferi plasmids; nonetheless, it

largely encodes more distant homologs of known B31 genes. The

JD1 and 297 lp28-5 partition proteins are 94% identical to their

N40 orthologs. Like most of the other linear plasmids, the three

lp28-5s also have significant differences. The JD1 and 297 lp28-5

plasmids are quite similar to one another and carry genes that are

mostly homologs of the B31 paralogous families (e. g., PFams01,

12, 54, 60; Figure 6); however, they have only the partition gene

cluster and one additional 3.4 Kbp section in common with N40

lp28-5. The common 3.4 Kbp regions (.97% identical) contain a

PFam44 gene (jd1_y11, 297_y02 and n40_y03) and a fragment of a

PFam01 gene. Each of the three lp28-5 plasmids also carries

between 6 and 26 tandem repeats of a 133 bp sequence of

unknown function (see below).

There appear to have been a number of recent inter-plasmid

DNA transfer events that involved the lp28-5s. The rightmost

2.1 Kbp of N40 lp28-5 is 99.6% identical to the left end of B31

lp28-1 (and contains an arp gene; above), while the right ends of

JD1 and 297 lp28-5s are different from that of N40 and one

another; N40 lp28-5’s best matches are 98.5% identical to the left

end of B31 lp21. The JD1 lp28-5 leftmost 4.4 Kbp is 99.5%

identical to a portion of the lp36 found in strain WI91-23 [44].

Figure 4. Comparison of three lp25 plasmids. Matrix plots with a 19 identities/23 bp window were created by DNA Strider [135]. Percent
identities of nucleotide sequences are indicated near the diagonal identity line for most orthologous regions. The predicted genes for B31 lp25 are
shown between the two plots (open arrows with ‘‘X’’s are putative pseudogenes), and regions of high similarity to other plasmids are noted on the
right.
doi:10.1371/journal.pone.0033280.g004

Figure 5. Comparison of lp28-1 plasmids and the vls cassette and vlsE loci. Percent G+C plots for the plasmids were created by DNA Strider
[135]. Different background color indicates very different sequence in the different plasmids (note that the partition gene regions in the two lp28-1
plasmids are homologous, but moderately divergent from those of lp36; see text).
doi:10.1371/journal.pone.0033280.g005
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N40 lp28-5’s leftmost 10.5 Kbp is 99.6% identical to the right end

of the JD1 chromosome (above), but the left ends the JD1 and 297

lp28-5s are not highly similar to any sequences in the other

genomes compared here. The 297 lp28-5 left end contains a short

,200 bp section that is 86% identical to part of the blyB (b31_r24)

gene of B31 cp32-4. Sequences that appear to have been

transferred between Borrelia’s circular and linear plasmids are not

common, but in addition to this instance, we find that JD1 lp28-7

(below) carries two bapA/eppA family (PFam95) genes that are

typically found in some cp32s and cp9-1s.

N40 lp28-5 also carries the following predicted genes which have

no B31, JD1 or 297 plasmid homologs: (i) n40_y02 which encodes a

novel putative lipoprotein, (ii) n40_y05 which is predicted to encode

a cyclic-di-GMP-binding protein [140,141] and is a homolog of a

chromosomal gene that is present in all sequenced chromosomes (e.

g., b31_b0733/plzA), (iii) n40_y14 which is a putative helicase, (iv)

n40_y06 which has no known homologs, and (v) n40_y07 whose

predicted protein product is 48% identical in amino acid sequence

to HhaI cytosine DNA methyltransferase encoded by Haemophilus

haemolyticus ([142] and references therein). To test the predicted in

vivo HhaI-like DNA methyltransferase activity of the N40_Y07

protein, we treated B. burgdorferi DNAs with restriction endonucle-

ases SfoI and HhaI (New England Biolabs, Ipswich, MA), since

HhaI cytosine methyltransferase methylates GCGC to create

GCmeGC, and DNA cleavage by both SfoI and HhaI are blocked

by this methylation [143]. Endonuclease cleavage was monitored by

CHEF pulsed field gel electrophoresis display of the resulting

fragments. Figure 7 shows that SfoI fails to cleave N40 DNA, while it

does cleave the DNA of strains M (above), B31, JD1 and 297 (data

not shown for the last three). The same is true for restriction

endonuclease HhaI (data not shown), suggesting that the n40_y07

encodes an active cytosine DNA methyltransferase with the above

specificity.

lp28-2, lp28-6 and lp28-7. Plasmids of these three

compatibility types are considered together because, although

they comprise three different PFam32 types, they are otherwise

quite similar (Figure S2L). Near the left end of all five of these

plasmids are partition gene clusters whose PFam32 proteins are

of three different types (see tree of PFam32 proteins in figure 3 of

[75]). We named these two new types lp28-6 and lp28-7. All five of

these plasmids have long central syntenic regions that include

several genes with homology to bacteriophage virion assembly

genes (typified by b31_g21, terminase; b31_g20, portal protein;

b31_g10 tail tape measure protein), suggesting that this region may

be the virion assembly operon of a prophage [40,144]. B31 and

N40 carry mostly syntenic lp28-2 plasmids that are 96.1%

identical in their homologous regions but carry a few hundred

bp of non-homologous sequences at their extreme left ends. The

central 12 Kbp regions in the other three plasmids have .99%

identity punctuated with shorter stretches of less similar but still

homologous sequences. For example, JD1 and 297 lp28-6 central

regions are perfectly syntenic and 99.5% identical except for a

1.8 Kbp patch of homology with about 60% identity (Figure S2L).

At the right ends of these five plasmids are 7 to 8 Kbp that are

homologous, but are less similar than the central region; here the

lp28-6s of JD1 and 297 are over 99% identical, but they are only

75–85% identical (with several indels) to the parallel portion of

JD1 lp28-7 and the two lp28-2s in Figure S2L. These five plasmids

carry three different types of lipoprotein genes at their extreme left

ends; (i) B31 and N40 lp28-2 have PFam12 (e. g., b31_g01) and

PFam102 (b31_g02) putative lipoprotein genes whose roles are not

known. (ii) JD1 lp28-7 encodes two bapA (PFam95) proteins AA37

and AA38 that are about 50% identical to previously known

members of this family [87,145,146]. (iii) The leftmost gene on

JD1 lp28-6, jd1_z01, is a rather distantly related homolog of the

B31 vlsE gene. It is less similar to the JD1 lp28-1 vls cassettes than

is the JD1 vlsE gene, so it seems that it has not recently procured

genetic information from the vls cassettes (which are present on

lp28-1 in JD1, above); it is about the same length as vlsE and

appears to have an intact lipidation amino acid sequence

Figure 6. Organizational and open reading frame relationships among three lp28-5 plasmids. Maps are labeled as in Figure 3. Yellow
background between maps joins regions of homologous sequence in adjacent maps; paralogous family numbers (table S2) are indicated in black
boxes above each putative gene; red boxes marked ‘‘new’’ indicate genes for which there is no homolog in the strain B31 genome; green bars mark
the 133 bp repeat regions (see text); CdGMPBP, cyclic-di-GMP binding protein. Blue background marks regions of high similarity to regions in other
B. burgdorferi genomes.
doi:10.1371/journal.pone.0033280.g006
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consensus. The other three B. burgdorferi sequences do not contain

an intact gene of this type (B31 and N40 have related b31_j51 and

n40_j34 pseudogenes at their lp38 right termini); the terminal

portion of the possibly syntenic lp28-6 plasmid in 297 was not

sequenced.

A surprising feature of the JD1 genome sequence determination

is that its lp28-6 was very highly represented in the DNA libraries

used for sequencing. While the remainder of the genome coverage

was in the 9- to 30-fold range (including the other plasmids), lp28-

6 sequence coverage was 180-fold, indicating an approximately

10-fold higher copy number than the other Borrelia plasmids,

which are present in the 1 to 3 per chromosome range when it has

been measured [147,148]. This feature is not a general property of

the lp28-6 type plasmids, since the very closely related 297 lp28-6

was not over-represented. Interestingly, the JD1 and 297 lp28-6s

have extremely similar partition gene clusters; there are only three

differences between the nucleotide sequences of this region, single

bp differences just upstream of the PFam62 gene (jd1_z06) and in

the PFam50 gene (jd1_z05) that do not change the amino acid

sequence of the encoded proteins, and a different number of

AAAGAA repeats within the PFam49 gene (Figure S4). There are

six tandem copies of this sequence in the JD1 gene (jd1_z03) and

eight in the 297 ortholog (297_z01). It is possible that the upstream

mutations affect expression levels or that the altered number of

repeats (each of which encodes Lys-Glu) affects the function of the

PFam49 protein to increase the copy number.

lp36. B31 lp36 carries two genes whose products have been

studied, an adenine deaminase encoded by b31_k17 (adeC) that is

important in mouse infectivity [149] and a fibronectin binding

protein encoded by b31_k32 [150–154]; both of these are present

on the lp36 plasmids of all four strains compared here. In addition,

lp36 encoded lipoprotein K07 is an immunodominant antigen in

human infection [155–157], and its gene is also present in all four

lp36s; however, the N40 ortholog (n40_k04) has a frame disrupting

mutation. B31 lp36 was previously known to be unusual in that

DNA probes from it hybridize with plasmids that are particularly

variable in size in different strains [21]. The lp36 plasmid

sequences from B31, N40, JD1 and 297 were measured in

agarose gels to be 36, 31.5, 24 and 24 Kbp long, respectively

(Table S1; data not shown). The JD1 and 297 lp36’s are 99.5%

identical, with only one indel where 234 bp are missing at bp

16524 of the JD1 plasmid; no long ORF is affected by this indel

(Figure 8). These two plasmids are shorter versions of B31 lp36 in

which about 4 Kbp of the B31 plasmid’s left end is replaced by

about 1 Kbp of sequence that is 87% identical to the B31 lp28-4

left end, and sections of about 2 and 12.5 Kbp of B31 lp36 are not

present in the JD1 and 297 plasmids (Figure 8); in the latter two,

the 12.5 Kbp region is replaced by about 4.5 Kbp of which 3 Kbp

is closely related to part of B31 lp28-1. N40 lp36 also has left end

differences from the other three lp36 plasmids, and as discussed

above, the N40 lp36 carries the vls cassette region (on lp28-1

plasmids in the other three strains) at its right end (Figure 8). Thus,

the lp36 plasmids appear to have undergone several major

rearrangements since their last common ancestor and are present

as three quite different organizational subtypes in the four strains

analyzed here.

lp38. Highly related linear plasmids in the 37 to 39 Kbp size

range are present in 25 of the 56 B. burgdorferi sensu stricto isolates

that have been examined [19,21,158,159], but it is not required

for the tick-mouse infectious cycle in the laboratory [160]. Where

it has been studied these ,38 Kbp plasmids carry parallel sets of

genes (which include the outer surface protein OspD gene,

b31_j09 [21,158,159,161,162]). This suggested a potentially

invariant organization for these plasmids [21]. B31 and N40 are

among the strains previously known to carry a plasmid in this size

range, and 297 and JD1 are among those known not have one

[17,21,159], and the sequences reported here confirms those

findings. The N40 genome contains a linear plasmid (37903

sequenced bp) that is very similar to B31 lp38 (Figure 9). The B31

and N40 lp38 plasmids are about 99% identical in nucleotide

sequence, with only three indels larger than 25 bp as follows: (i)

B31 is missing 351 bp at its bp 9571 within a PFam115

pseudogene (b31_j15.1), (ii) at bp 10293 of B31 lp38 there are

12 tandem repeats of the heptamer AATAGTT (between genes

b31_j15.1 and b31_j16), whereas in the N40 sequence it is repeated

119 times, and (iii) N40 is missing 1093 B31 bp at its bp 30326

that includes most of genes b31_j41 and b31_j42 (b31_j41 is a

PFam54 gene that has been shown to encode a membrane protein

[37]).

Plasmids that carry lp38-related PFam32 partition genes are

nonetheless present in the JD1 and 297 genomes, but these

plasmids are quite different from those in B31 and N40 (Figure 9).

Although the N40/B31 and JD1/297 lp38 type PFam32 protein

sequences are robustly clustered, they form two distinct subgroups

within this branch of the PFam32 tree (see figure 3 in [75]), and it

is not known if these differences could give rise to compatibility

differences. JD1 and 297 lp38’s were measured by Southern

Figure 7. N40 DNA is not cut by restriction endonuclease SfoI.
DNAs were prepared in agarose blocks, cleaved with the indicated
restriction endonuclease, and subjected to agarose gel pulsed-field
agarose electrophoresis and stained with ethidium bromide as
previously described [17,147]. Strain M is described in the text. Identical
results to those with strain M were obtained with strains B31, JD1 and
297 (data not shown).
doi:10.1371/journal.pone.0033280.g007
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Figure 8. Organizational and open reading frame relationships among four lp36 plasmids. Maps of the four lp36s are labeled as
described in Figure 6; green genes encode predicted and proven surface lipoproteins; red, plasmid partitioning and other DNA and nucleotide
metabolism proteins; magenta, and vls cassette region (see text). Yellow shading between maps marks regions of nucleotide sequence similarity
(percent identity values in black text).
doi:10.1371/journal.pone.0033280.g008

Figure 9. Organizational and open reading frame relationships among four lp38 plasmids. Maps of the four lp38s are labeled as
described in Figure 8. Yellow shading between maps marks regions of high nucleotide sequence similarity (percent identity values in black text). The
pink horizontal bar indicates the region of 63 bp repeats in JD1 lp38; and blue arrows represent predicted transporter genes.
doi:10.1371/journal.pone.0033280.g009
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pulsed-field gel analysis to be about 29 and 31 Kbp in length,

respectively (data not shown), and both have rather complex

relationships to other known Borrelia plasmids. In addition to

nearly identical 3 Kbp regions that contain the four gene

partitioning cluster, 297 and JD1 lp38s contain about 8 Kbp of

common sequence; of this 8 Kbp about one third is 97% identical

to the left end of B31 lp25 (Figure 9), and the remaining part has

no very closely related homolog present elsewhere in these four

genomes. The latter region contains (i) genes (297_j06 and jd1_j05)

that encode closely related PFam60 putative lipoproteins that are

only ,55% identical to their closest relative in B31, Q05 protein,

and (ii) genes jd1_j07 and 297_j07 which have no B31 homolog

and encode closely related putative lipoproteins that are ,75%

identical to plasmid-encoded proteins PGP088 and BAPKO_6042

of B. garinii PBi and B. afzelii PKo, respectively [46–48]. In

addition, JD1 lp38 contains about 13 Kbp at its left end that is

.99% identical to the right half of B31 lp21 (including 7.8 Kbp of

the lp21 63 bp tandem repeat tract). The 297 lp38 carries

,9 Kbp of DNA (in three patches) that has no very closely related

sequence elsewhere in the four strains (Figure 9); however, it

encodes, for example, a 71% identical homolog of the PFam92

b31_j27. Neither JD1 nor 297 carries (on lp38 or elsewhere in the

genome) a homolog of the B31 ospD gene.

lp54. Previous studies have shown that plasmids similar in size

and gene content to B31 lp54 are universally present in B.

burgdorferi sensu lato isolates (e. g., [17,19–22,55,92]). The B31, N40

and 297 lp54s are known to encode the well-studied outer surface

proteins OspA and OspB, as well as decorin binding proteins, a

thymidylate synthase, the complement factor H binding protein

CRASP-1, and a number of less well-characterized surface and

antigenic proteins (e. g., [163–169]). Some of these have been

found to be important in the tick-mouse infectious cycle [169–

182]. The three new lp54 sequences all have gene contents that

are nearly identical to B31 lp54 (Figure S2M), and have overall

sequence identities between 98.9% and 99.4% (excluding the few

differences discussed below). The only translational reading frame-

breaking difference found among the genes of the four lp54s is a

stop at codon 207 of the ospB gene in strain 297 (297_a16).

Curiously, Probert et al. [183] found a stop codon in the 297 ospB

at codon 199. Apparently these two subcultures of 297 have

suffered independent ospB mutations. These may have been

selected in different laboratory mouse passages, since OspB loss

has been reported to be involved in interaction with host immunity

[184].

Analysis of the lp54 sequences indicated that the homologs of

b31_a24 and the b31_a68-b31_a70 cluster are the most variable

parts of this plasmid [66] (in the lp54s of the four strains

considered here, orthologous genes have identical locus_tag

numbers). B31 lp54 carries a cluster of nine tandemly arranged

PFam54 genes of which b31_a64, b31_a65, b31_a66, b31_a68,

b31_a69, b31_a70 and b31_a73 are apparently intact, and b31_a71

and b31_a72 are truncated. Among these genes only the function

of B31_A24 and B31_A68 (CRASP-1) proteins have been studied,

and they are required during tick-to-mouse transmission [171,175]

and bind human complement factor H [166], respectively. N40

and 297 lp54s are missing the b31_a70 ortholog and have a novel

member of the family (called n40_a67.5 and 297_a67.5, respec-

tively) inserted into the cluster. JD1 is also missing a b31_a70

ortholog but has no additional gene. These relationships and their

evolutionary significance were discussed in more detail in Wywial

et al. [76]. The putative deletion that removed the b31_a70

ortholog in JD1 has different endpoints from the one that removed

it in N40 (which is identical to that of 297), suggesting that

independent deletions occurred in these strains. The N40 deletion

appears to have been generated by a homologous recombination

event between similar paralogous sequences but, curiously, the

JD1 deletion appears to have been a non-homologous event (see

below). The other highly sequence-variable location on the lp54s

includes the region orthologous to the 39-terminal portion of

b31_a24 (which encodes decorin binding protein B [185,186]) and

the b31_a23-b31_a24 intergenic region, where B31, JD1 and N40

have quite different sequences, but JD1 and 297 have more closely

related sequences. This latter relationship is similar to the larger

picture in which the 297 and JD1 linear plasmids are

organizationally the most closely related strain pair (summarized

in Figure 2); however, the close relationship between N40 and 297

in the n40_a68-n40_a73 region does not agree with this history,

and suggests that this rearrangement (if it happened only once in

this exact fashion, which seems likely) has moved horizontally

relative to other parts of lp54.

Plasmid genes and paralog families
Paralogous protein families. The sequence of the strain

B31 genome indicated that its genome contains a large number of

paralogous gene families that lie largely on the plasmids [10], and

this is also true of strains 297, N40 and JD1. Our analysis of the

PFams in each strain and, where possible, the orthology

relationships among the strains within PFams are presented in

table S2 (see Materials and Methods and legend of table S2 for

methods used). This analysis points out that divergence and

rearrangements can make the true inter-strain orthology

relationships of genes on the Borrelia plasmids difficult to discern

(e. g., PFam01 example below).

This analysis found 160 paralogous families in the four genomes

analyzed here (note that the PFam numbers go higher than 160

because some originally defined PFams have subsequently been

merged under one number). The large majority of these PFams

have members in all four strains. Of the 109 plasmid gene-

containing PFams, only seventeen do not have representatives

present in all of the four genome sequences compared here; and

five of these (PFam65, 76, 78, 102 and 192) are likely explained by

the missing lp25 sequence and terminal plasmid sequences in stain

297 (above), two (PFam72 and 175) are represented only by

putative pseudogenes in B31, and PFam137 has its 297 member

near the right end of the chromosome [51]. Thus representatives

of only nine intact gene-containing families (PFam63, 68, 70, 71,

76, 88, 90, 193 and 194) appear to legitimately be missing from

one or more of the four genomes, and these are largely the result of

the failure of B31 to carry an lp28-5 plasmid and the large

differences among the lp28-1s and lp36s of the different strains

(Figures S2I and 8). Thus, JD1 carries no PFam63 gene (revA,

normally on a cp32 plasmid in the other strains) and no PFam90

(on lp38 in the other strains) genes, and B31 has no PFam193 or

194 genes (on lp28-5 in other strains). These four PFams contain

relatively large and so likely genuine genes; however, their roles

have not been studied, except for PFam63 [102]. Thus, in spite of

the plasmid content differences and numerous plasmid rearrange-

ments discussed above, there are relatively few examples of PFams

that are not present in all four strains, and the genome contents

are in fact rather constant.

The number of paralogs present in individual PFams are,

however, often variable (table S2); for example PFam01 contains

restriction proteins and several related pseudogenes, and B31, 297,

JD1 and N40 harbor at least 2, 2, 4 and 2 apparently intact

members (297 and N40 might each have an additional intact

member on their unsequenced lp25 and lp28-3, respectively).

These proteins form two major sequence types (JD1_Y04/

JD1_0905 and the other eight) that are about 18% different. In
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the larger group, B31_E02, B31_H09 (and very similar JD1_H09

and 297_H03), 297_Y09, JD1_E01, JD1_Y16, and N40_E01

proteins all differ from one another by 1162%. It is not known if

such sequence differences could cause restriction target specificity

differences. The proteins B31_H09, JD1_H09 and 297_H03,

which are encoded at identical positions on lp28-3s, are nearly

identical; however, members within the two other syntenic groups

B31_E02, JD1_E01 and N40_E01 on lp25 (Figure S2H) and

JD1_Y16 and 297_Y09 on lp28-5 (Figures 6, S2H and S2J) differ

by about 10%. These differences among syntenic orthologs suggest

that there has been (presumably homologous) recombinational

‘‘shuffling’’ of sequences among the PFam01 paralogs.

Another family of note is PFam82, a putative IS605 type

transposase [10,187]. There are numerous PFam82 fragments in

all four of the genomes compared here. In B31, 297 and JD1 no

PFam82 member appears to be intact, but the N40 genome

contains several apparently intact transposase genes (n40_g05,

n40_y12 and n40_y15). Of these, n40_g05 is an ortholog of the

frameshifted b31_g05 gene, and n40_y12 appears to have recently

hopped into the partition gene cluster since the separation of the

N40 lp28-5 from its common ancestor with JD1 and 297 (Figure 6).

Novel plasmid-encoded proteins. Only a few percent of

the plasmid sequences of B31, 297, N40 and JD1 have no

recognizable homologs in the other three strains, and as noted

above only very few previously unknown B. burgdorferi plasmid gene

types were identified in the three new sequences. This small

number of ‘‘new’’ genes that encode previously unknown proteins

are (i) n40_y07 which encodes a DNA restriction methylase

(above), (ii) homologs n40_y02, jd1_y10 and jd1_0909 that encode

PFam194 putative lipoproteins, (iii) n40_y06 with no predicted

function, (iv) orthologs 297_j07 and jd1_j07 that encode a putative

lipoprotein of unknown function that have plasmid-borne

homologs in the B. afzelii and B. garinii genomes (above), and (v)

jd1_z02 which encodes a putative PFam68 lipoprotein which has

only apparently disrupted homologs in B31 and 297 and no

homolog in N40.

Plasmid DNA rearrangements
Clearly the patchwork of sequences with near identity to other

sequences in the B. burgdorferi linear plasmids (Figures 2 and S2)

indicates that there have been rearrangements sufficiently recently

that there has been little time for extensive divergence of the

sequences involved. Non-homologous rearrangements create

novel sequence joints and thus novel juxtapositions of genes, and

new combinations of such novel sequence joints can be created by

homologous recombination among plasmid patches with similar

sequence.

Non-homologous recombination. When mosaic sequences

were analyzed within strain B31, we concluded that those

rearrangements were most likely generated by non-homologous

recombination [10,38]. This conclusion is strongly reinforced by

comparison of the plasmids in the four strains in this study. For

example, near its right end JD1 lp28-3 has a novel sequence joint

compared to B31 lp28-3. It joins sequences that are 99.6%

identical to B31 lp28-3 and 99.5% identical to B31 lp36 (Figure 8).

If it is assumed that the direction of this rearrangement is the

formation of JD1 lp28-3 by a recombination between parents

similar to these two B31 plasmids, the recombination point can be

deduced to be at an exact bp in both putative parents, and there is

no sequence similarity at all at this location in the putative parental

plasmids (Figure S5A); also shown in Figures S5B–D are three

other typical examples of such apparently non-homologous

recombination events, an inversion in N40 cp32-5, the creation

of a novel joint in N40 lp17 by recombination between B31 lp17-

like and lp36-like plasmids, and the putative deletion that removed

the putative B31_a70 ortholog from JD1 lp54 (above). Thus, many

of the rearrangements that gave rise to the organizational

differences among the plasmids of the four strains appear to be

the consequence of such non-homologous recombination.

Homologous recombination. Homologous recombination

could occur between any highly similar plasmid sequences, and

the event that likely deleted the n40_a70 gene from the N40 lp54 is

shown in Figure S5E. But in most cases homologous

recombination can only be recognized by reassortment of

outside markers. The group of lp28-2, -6 and -7 linear plasmids

shows a particularly clear example of such reassortment of outside

markers. B31 lp28-2, N40 lp28-2 and JD1 lp28-6, have PFam101

b31_g10 and cognate homologs that are locally syntenic and

.98% identical, and plasmids 297 lp28-6 and JD1 lp28-7 have

parallel PFam101 genes (297_z06 and jd1_aa10) that are 99.8%

identical. However, the first three genes contain nearly identical

internal 1300 bp patches that are only ,60% identical to the

second two (which are also nearly identical). Figure 10 shows this

relationship (within gene jd1_aa10) between JD1 lp28-6 and lp28-

7. The most likely explanation for the existence of such abrupt

changes in relatedness within similar sequences is recombination

between two homologous but diverged sequences. Thus, the five

parallel PFam101 genes are present as two ‘‘sequence types’’,

called A and B, in the five related plasmids (Figure S2L). Another

example of such a relationship on these same plasmids is the

99.5% identical right end regions of JD1 lp28-6 and 297 lp28-6

(jd1_z24-jd1_z28 and parallel 297 region) that are only about 75%

identical to a homologous but divergent version on the other three

plasmids (the two versions are called C and D in Figure S2L). N40

lp28-2, 297 lp28-6, JD1 lp28-6 and JD1 lp28-7 carry all four of the

possible combinations of these sequence type alleles, AC, BD, AD,

and BC, respectively. (Other, probably non-homologous,

recombination events have occurred nearer to the left ends of

these plasmids, but this does not impact these conclusions). It is

extremely unlikely that localized mutational divergence can

account for such patches of different but uniform relatedness, so

two A alleles, for example, cannot be similar by virtue of separate

but parallel divergence from a B ancestor. The presence of all four

allele combinations in such a situation cannot arise through simple

linear evolutionary descent [188], and at least one of them must

have arisen by a recombination event between the other

combinations. This event was almost certainly homologous

recombination within the 12 Kbp of very highly similar (all

$98.7% identical in pair wise comparisons) sequence between the

A/B and C/D loci.

Homologous recombination has also occurred among the

circular plasmids, and the cp32s are a robust example of such

reassortment. Comparison of their sequences indicates that the

most variable genes on the largely homologous cp32 plasmids lie in

four regions as follows (see Figures S6A and S6B): region 1,

b31_s27, rev, mlp and bdr genes [110,189–195]; region 2, the

partition genes including the PFam32 genes (e. g., [75]); region 3,

the erp/elp/ospEF/p21 type surface protein genes [84]; and region

4, several alternative genes of unknown function immediately to

the right of region 3 [145,146,196]. Each region’s contents can be

parsed into a small number of robust sequence types (alleles) by

neighbor-joining tree analysis, and trees of each of the encoded

homologous proteins are shown in Figure S6C–F. In most cases

these sequence types are unambiguously very different from one

another, for example the three Mlp protein types are more than

50% different from each other on branches with very high

bootstrap support, as are the three PFam114 types (Figure S6C

and F, and see figure 4 of Casjens et al. [75] for the PFam32
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partition protein tree). Although it does not impact the conclusions

drawn here, the evolution of the erp genes is oversimplified in this

type of analysis, and will be discussed in more detail in a future

publication (B. Stevenson, B. Jutras and S. Casjens, unpublished).

For each gene in the cp32 variable regions, the sequence types

thus determined were assigned arbitrary numbers (see Figure

S6C–F), and the findings are summarized in table 3, which lists the

allele types present at each of the four variable regions on the

thirty-two different cp32 sequences present in the four genomes

(counting the fused ‘‘dimer’’ cp32 in JD1 as two such sequences

arbitrarily divided as shown in Figure S2F). The sequence alleles

present in these four regions of the cp32 plasmids have clearly not

diversified only by linear evolutionary descent, and considerable

reassortment of these different alleles is required to explain their

current distribution. In fact, among these thirty-two cp32s, no two

plasmids have the same constellation of variable region alleles. For

example, the N40, JD1 and 297 cp32-12’s each have the same

region 2 PFam32 compatibility allele (by definition), but carry

three different sets of alleles at each of the other three variable

regions. On the other hand, although movement toward

randomization has occurred, the alleles at these four variable

positions appear not to have been shuffled to the point of complete

loss of linkage in all cases. For example all four cp32-9s have the

same alleles in region 3. In addition, many of the genes within the

variable regions also appear to have been re-assorted, for example,

mlp allele 2 is found in association with all four bdr alleles in region

1. Because the cp32 plasmids retain the same gene order and the

vast majority of their genes have not been broken by non-

homologous recombination events, this reassortment almost

certainly occurred through numerous homologous recombination

events.

Mutational decay and pseudogenes
The constant regions of the Borrelia chromosomes have very few

obvious pseudogenes (unlike the plasmids and plasmid-like right

end chromosomal extensions). However, our previous analysis of

the B31 plasmids identified over 150 pseudogenes as regions of

nucleotide sequence similarity to intact genes but whose reading

frame is disrupted and/or truncated [10]. A large majority of these

pseudogenes reside on the ‘‘rapidly evolving’’/organizationally

variable subset of the linear plasmids (probably all linear plasmids

except lp54), most of which also carry extensive regions that

contain no long open reading frames. The latter appear to

represent decaying, useless DNA [38]. Many of these B31 non-

coding regions are present in extremely similar orthologous

sequences of the plasmids of the other three strains. A typical

example of this resides on the lp28-4 plasmids. Here the three

largest tracts of apparently non-coding DNA (including .6 Kbp

that includes one recognizable ,650 bp degenerate pseudogene

b31_i08.1) are all present in all four strains and more than 99%

identical to one another (Figure S7). Here and elsewhere, the B31,

N40, JD1 and 297 linear plasmids carry many of the same

pseudogenes that have changed little since their last common

ancestor. In addition, the linear plasmid sequences present in N40,

JD1 and 297 that have no clear orthologs in B31 have similar

densities of apparent pseudogenes; for example, Figure 9 shows

that the regions of 297 lp38 that have no B31 orthology harbor a

number of pseudogenes (e. g., 297_j08-j14) which are related to,

but not orthologous to other known Borrelia genes. In a second

example, the JD1 and 297 lp28-5s, which are not present in B31,

carry substantial regions of apparently noncoding DNA, which

include apparently truncated genes (e. g., jd1_y13 and 297_y05) and

regions that have no convincing open reading frames (e. g.,

,1.5 Kbp between jd1_y05 and jd1_y08 and orthologous DNA in

297; Figure 6).

Mutational inactivation of plasmid genes is apparently ongoing,

since among the strains studied here there are a number of

plasmid orthologs in which only a subset is disrupted. Some

examples are as follows:

(i) Mutations in the JD1 lineage. The putative lipoprotein-

encoding gene jd1_h20 in plasmid lp28-3 has a frame-breaking

insertion of a single T at 12731 relative to its orthologs in B31

(b31_h18) and 297 (297_h12); these three orthologs are .99%

identical. Also in JD1, the homologs of b31_i26 and b31_i34 have

an in-frame stop codon and frameshift, respectively, compared to

the orthologous regions of the other three lp28-4s (Figure S7).

Figure 10. Comparison of JD1 and 297 lp28-6 plasmids. The DNAs of JD1 plasmids lp28-6 and lp28-7 were aligned with DNA strider [135], and
the percent identity was computed for sequential 200 bp windows across the region shown in the figure. These two plasmids have two regions of
near identity from about 8 to 9 Kbp and 10.5 to 22.5 Kbp, which abut regions with lower similarity. The JD1 lp28-7 open reading frames and their
paralogous family relationships are shown above.
doi:10.1371/journal.pone.0033280.g010
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(ii) Mutations in the B31 lineage. The lp28-2 genes

b31_g03 (PFam48) and b31_g05 (PFam82; putative transposase)

were originally suggested to be pseudogenes that contain single

frameshifting mutations on the basis of comparison with paralogs

in strain B31 and/or genes in other bacteria [10,38]. The reading

frames of orthologs of both of these genes (n40_g03 and n40_g05)

appear to be intact in N40, confirming this interpretation. The

nucleotide changes that shifted the frames in these two genes in

B31 are a tandem duplication of a TGGAG (N40 bp 2327-2331)

and run of 4 T’s in N40 is lengthened to 5 T’s in B31 (B31 bp

3675), respectively.

(iii) Mutations in the N40 lineage. The lp28-2 genes

n40_g17 and n40_g22 have frameshifting mutations relative to

their B31 orthologs (Figure S2L). The fact that paralogous

sequence on JD1 lp28-6, 297 lp28-6, and parallel B. garinii PBi

(accession No. AY722917), and B. bissettii DN127 (accession

No. CP002760) plasmids carry the longer form of both genes

strongly suggests that these N40 genes are inactivated by mutation.

Here a run of 8 T’s in B31 (B31 bp 15923-30) is shortened to 7 in

N40 and a run of 4 C’s in B31 (B31 bp 20677-80) is lengthened to

5 in N40, respectively.

(iv) Mutations in the JD1 and 297 lineages. JD1 and 297

carry a version of lp17 that has sequences similar to B31 lp36 at

one end (above). This region carries adeC (b31_k17) and b31_k15

homologs that contain frameshift mutations relative to the lp36

homologs that are present in all four genomes. The JD1 and 297

lp17 adeC genes (jd1_d02 and 297_d01) are 99.3% identical to one

another, and their sets of disrupting mutations are overlapping but

not identical, suggesting that their decay began before the

separation of the lp17 plasmids in the JD1 and 297 lineages and

has continued since than time. In these lp17 adeC pseudogenes, a

run of six A’s is extended to seven at position 1111 of JD1 lp17, a

run of nine T’s in the intact genes is shortened to eight in both

genes (at 2163 in JD1), and a run of two C’s in the intact genes is

three and four long in 297 and JD1, respectively (at 3049 in JD1).

Many of the recent, frame-disrupting changes in plasmid genes

appear to be slippage mutations where runs of a single nucleotide

are shortened or lengthened.

Tandem direct repeat sequences
Since they can expand and contract relatively rapidly on an

evolutionary scale, the number of repeats in ‘‘variable number

tandem repeat’’ (VNTR) tracts is often used for separation and

identification of closely related lineages of any organism, and

bacteria are no exception [197]. Such methods have been applied

to other Borrelia species [198,199] and such repeat tracts have been

previously noted on lp21 (63 bp repeat) [10], lp38 (17 bp repeat)

[158,159] and lp28-4 (27 bp repeat in vraA gene) [138]. In

addition, members of the bdr gene family (PFam80) contain more

complex imperfect direct repeats [191,200]). Although Zuckert

and Barbour [192] did not observe changes in the number of

repeats in the bdrT (b31_g33 on lp28-2) gene they examined during

growth in culture, we find, for example, that the bdrT gene

contains about 9 repeats in B31 and its otherwise 99.4% identical

ortholog in N40 has about 6 repeats (imprecision is due to the

presence of partial and overlapping repeats). So strains from

different rRNA [57–60] or OspC [62–65] lineages can have

different numbers of bdr gene repeats.

Tandem Repeats Finder ([201] and http://tandem.bu.edu/trf/

trf.html) was used to identify tandem repeats of short sequences in

B31, N40, JD1 and 297, and table S3 lists twelve such tracts that

show substantial variation among these four strains. These include

repeat tracts within three chromosomal genes, b31_0210,

b31_0546 and b31_0801 and their orthologs in the other strains,

as well as tracts on lp17, lp28-4 and lp54, all of which are present

in essentially all B. burgdorferi strains tested and so could be useful in

tracking closely related members of this species. Of these

chromosomal genes, b31_0210 (lmp1) is required for persistence

in murine tissues [202], and b31_0801 is predicted to encode a

Table 3. Homologous recombination among cp32 plasmids.

Region 1a
Region
2a

Region
3a Region 4a

strain S27 Rev Bdr Mlp cp32 A B bapA PF114 other

297 – – 1 1 1 4 1 – 1 –

297 1 – 3 2 3 2 – – 3 –

297 – 1 – 1+2 4 3 – – – 1

297 – – 3 2 5 4 1 – 1 –

297 – – 3 1 6 2 – 1 – 4

297 – – 1 2 7 3 – – – 5

297 – – 2 1 9 4 1 – – –

297 – – 1 1 11 2 – – – 3

297 – 1 – 2 12 4 1 – 1 –

JD1 1 – 1 2 1 2 – – – 3

JD1 – – 3 2 3 2 – – 3 –

JD1 – – 1 2 5 1 – – 1 –

JD1 – – 3 2 6 4 2 – 3 –

JD1 – – 3 2 8 4 1 – 3 –

JD1 – – 2 2 9 4 1 – 3 –

JD1 – – 3 2 10 2 – 1 – 4

JD1 – – 1 1 11 2 – – 3 –

JD1 – – 1 2 12 3 – – – 1

B31 – 1 – 2 1 4 1 – 1 –

B31 1 – 1 2 3 2 – 1 – –

B31 – – 4 2 4 4 2 – 3 –

B31 – 1 – 2 6 2 – – – 2

B31 – – 1 2 7 2 1 – 3 –

B31 – – 1 2 8 4 1 – 1 –

B31 – – 2 2 9 4 1 – 2 –

B31 – – 3 1 10 1 – – 1 –

N40 – – 1 1 4 2 1 – – –

N40 – – 1 2 5 2 – – – 2

N40 – – 1 2 7 4 2 – 3 –

N40 – – 4 1 9 4 1 – 1 –

N40 – 1 – 1 10 1 – – 3 –

N40 – – – – 12 2 – – – –

aClustalX2 0.3 [214] was used to create a neighbor-joining tree for proteins
encoded in the genes the four cp32 ‘‘variable regions’’. The variable regions
were identified by inspection of matrix comparison plots (Figure S6A), and their
positions are shown in Figure S6B. Robust branches (amino acid ‘‘sequence
types’’) were identified for the proteins encoded by the genes in each region,
and these different protein types were given arbitrary numbers. The trees and
definitions of sequence types are shown in figures S6C–F. Where a region 3 has
two genes, the left (transcriptionally upstream) gene is in column ‘‘a’’ and the
right gene is in column ‘‘b’’. A dash ‘‘–’’ indicates no gene is present; PF,
paralogous family. The genes in the rightmost region 4 ‘‘other’’ position are as
follows: 1, mlp type 3 gene; 2, homolog of b31_m39; 3, homologs of 297_w43
(very weak similarity to b31_m39) and 297_w44 (PFam55); 4, homolog of
297_m41; 5, unique 297_o29. The different B31_S27, Rev and BapA proteins are
all so similar that subtypes were not evident.
doi:10.1371/journal.pone.0033280.t003
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translational initiation factor. The B31 vraA (b31_i16) lp28-4 gene

encodes a surface lipoprotein [138] that contains 21 perfect

repeats of the highly charged nine amino acid sequence

KKKQQEEEL; the vraA gene is a member of PFam60, but the

other members of this family do not contain this nine amino acid

sequence. The N40, JD1 and 297 vraA orthologs have 31, 24 and

35 repeats, respectively. These strains belong to different rRNA

and OspC lineages of B. burgdorferi; however, the vraA genes in two

other strains from the B31 rRNA lineage 1 (ZS7 and Bol26) and

one from its sister rRNA lineage 3 (strain 64a) contain 3, 1 and 11

repeats, respectively [44], showing that the length of at least this

VNTR can apparently change quite rapidly.

Measurement of precise lengths of very long VNTRs is not

simple, so they are likely to be less useful in lineage tracking, but

strain B31 plasmid lp21, the homologous chromosome region in

strain 297, and JD1 lp38 carry about 11, 11 and 8 Kbp of

imperfect 63 bp tandem repeats [10,51]. The lp28-5 plasmids

carry between 5 and 26 imperfect repeats of an unrelated 133 bp

sequence. All six translational reading frames are blocked in each

of the 133 bp repeats. Since accurate assembly of sequencing runs

in such regions is difficult, we experimentally confirmed the

approximate length of the block of tandem 133 bp direct repeats

to about 1.8 Kbp in N40 lp28-5 by measuring the size of DNA

restriction fragments that contain mostly the repeat region (data

not shown). The roles of such long repeat tracts are unknown, and

they are quite unusual in prokaryote genomes.

Conclusions
Overall genome relationships. The B. burgdorferi genome

contains an approximately 903 Kbp chromosome ‘‘constant

region’’ and plasmids cp26 and lp54, which are quite

evolutionarily stable. Comparisons among the four genome

sequences analyzed in this study show that these three replicons

are nearly completely syntenic and more than 98% identical in

nucleotide sequence among strains from different rRNA/OspC

lineages. In addition to these highly conserved regions, the

genomes of this species also contain a large number of much more

variable plasmids, and the majority of B. burgdorferi isolates carry 7–

20 Kbp of variable, plasmid-like sequences at the right end of the

otherwise genetically stable chromosome. Much of this more

variable portion of the genome is also very highly related in

sequence among strains, but it has suffered numerous

rearrangements. For example, the orthologous parts of variable

plasmids lp28-3, 1p28-4 and lp36 (which constitute the majority of

the sequence of each of these plasmids) are each $99% identical

among the cognate plasmids in the four strains. In most of the

rearrangements found in the plasmids, non-homologous DNA has

apparently replaced previously existing sequences. The very high

identity (.99%) of the sequences in two or more related but

rearranged plasmid versions indicates that these rearrangements

happened rather recently on an evolutionary time scale.

Some of the variable regions appear to have suffered multiple

sequential or parallel replacements by different non-homologous

plasmid sequences. For example, (i) three lp17s have three

different left ends but have the same right end; (ii) three lp28-4s

have two different right ends and three different left ends; (iii) the

three chromosomes with right end extensions have three largely

non-homologous extensions; and (iv) the arp gene and vls cassette

region each lie on several different plasmid types in the different

genomes. These and other observations strongly indicate that the

linear plasmid rearrangement process is ongoing, and that such

events have happened independently in different B. burgdorferi

lineages. Yet, in spite of the many organizational and plasmid

content differences, the gene content of the four strains remains

relatively constant. Although there is some variation in the number

of members of the different paralogous gene families each strain

carries, a large majority of such families are represented in all four

strains. In addition, only a few ‘‘new’’ previously unknown B.

burgdorferi gene types were identified in the three new genome

sequences.

Rates of horizontal exchange?. The presence of such a

large number of plasmids, some of which appear to be prophages,

suggests that horizontal exchange of these DNAs could be frequent

[10,40,144,203]. Indeed, previous analysis of several plasmid

genes has suggested that there has been ‘‘extensive’’ horizontal

exchange among B. burgdorferi lineages (e. g., [66,79,84,158,204–

206]), and Eggers and Samuels [39] have demonstrated that in the

laboratory cp32 plasmids can transfer between strains as phage

virions.

Among of the forty sequenced linear plasmids in the four

strains, there are only four pairs of cognate linear plasmids in

which we found no organizational differences between strains.

These are lp17, lp28-1 and lp36 in 297 and JD1, and lp54 in 297

and N40 (noted by arrows in Figure 2; because of undetermined

sequence at the ends of 297 lp28-3 and lp28-4, it is not known

whether they might be organizationally the same as their B31 or

JD1 and N40 or JD1 cognates, respectively). In addition, the

cognate plasmid pairs of lp28-5, lp28-6 and lp38 are more similar

to each other in JD1 and 297 than to the cognate plasmids in the

other two strains. Although there are some substantial differences

between the JD1 and 297 plasmids, these two linear plasmid sets

appear to be more like one another than the other pair wise

combinations. Although the JD1 and 297 rRNA IGS/chromo-

somal MLST/OspC lineages do not appear to be particularly

closely related [57,58,67], the similarity of their plasmid contents

might indicate that they are in fact more closely related than

previously suspected, and the very different plasmids that are

present in JD1 and 297 (e. g., their lp38s) could be examples of

horizontal transfer of plasmids, but study of more isolates will be

required to determine if this is true.

Previous work and the sequences analyzed here show that the

cp32 plasmids in different rRNA/OspC B. burgdorferi lineages are

similar in overall structure, but can have considerable differences

at the four variable positions discussed above. On the other hand

B. Stevenson and co-workers (personal communication) have

shown, by sequencing several of the variable regions, that strains

B31 and BL206 (both rRNA IGS lineage 1, OspC type A [58,62])

appear have very similar cp32 complements, as do strains 297 and

Sh-2-82 which are both rRNA lineage 2, OspC type K (Sh-2-82

our unpublished results). Thus, although the complete BL206 and

Sh-2-82 genome sequences have not been determined, it appears

that different members of the same rRNA/OspC lineages can

have highly similar cp32 contents, implying that transfer between

these lineages may not be so rapid in the wild that plasmid

contents are randomized. None of the completely sequenced cp32

sets present presented here (from members of four different rRNA

lineages) are as highly related as the above strain pairs (table 3), but

they will provide a robust basis for the future determination of

whether the cp32 contents of all or most isolates within rRNA/

OspC lineages are indeed similar. This is especially intriguing

because the cp32 plasmid prophages could be prone to particularly

rapid horizontal transfer [10,40,144,203].

Plasmid types. Have all extant B. burgdorferi sensu stricto

plasmid ‘‘compatibility types’’ been identified? In addition to the

26 PFam32 types mentioned above that are present in the four

strains, a 27th PFam32 type has been reported for ‘‘cp32-13’’ in

California isolate CA15 ([84] and our unpublished results for other

strains). In addition, strain B31 linear plasmid lp28-1 carries two
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apparently intact PFam32 genes. One of them, b31_f13, represents

a novel PFam32 type that lies in a partition gene cluster that is

missing its PFam57/62 member gene and so was ignored in

previous analyses. It seems quite possible that plasmids of this

compatibility type (a 28th type) will be found in other strains. If

PFam32 types are distributed randomly in natural isolates,

saturation has probably not been reached by analyzing only four

strains, although the number of undiscovered compatibility types is

likely not large since the N40, JD1 and 297 plasmid sequences add

only five ‘‘new’’ types (lp28-5, lp28-6, lp28-7, cp32-11 and cp32-

12) to the 21 types previously known in strain B31. We note that

the four sequenced isolates are all from a geographically rather

restricted region (southern New England and New York), and it

will be interesting to determine whether B. burgdorferi isolates from

other locations have different plasmid types.

The organizational variation within each PFam32 type in the

four strains studied here suggests that the overall number of B.

burgdorferi linear plasmid ‘‘organizational types’’ may not be small.

Nonetheless, the facts that (i) some pairs of organizationally

identical cognate plasmids exist among these four strains, and that

(ii) there are numerous novel sequence joints that are present in

more than one strain, suggest that a limited number of such

variants exists for each plasmid compatibility type in nature. Our

analyses also indicate that a many of the rearrangements that

formed the different organizational types occurred so recently that

the sequences involved have diverged substantially less than one

percent since the rearrangement, yet the process is not so fast that

every B. burgdorferi isolate has a completely different set of plasmid

organizations. Since no such rearrangement has been observed in

the laboratory, such events are in fact quite rare, at least under

laboratory conditions.

Future directions. Many important unanswered questions

regarding Lyme Borrelia genomics and population structure

remain, including the following: Do other B. burgdorferi isolates

harbor additional plasmid compatibility types? How many

organizational subtypes within each plasmid compatibility type

exist in B. burgdorferi in nature? Are any plasmids or plasmid

subtypes restricted to particular B. burgdorferi chromosomal lineages

or geographic areas? What are the relationships among plasmids

of different B. burgdorferi sensu lato species? Are plasmids

transferred between strains as whole entities or as fragments,

and what are the rates of transfer in nature? Are plasmids

transferred only within species or between closely related Borrelia

species in nature? What gene set constitutes the B. burgdorferi

pangenome? We have recently sequenced nine additional B.

burgdorferi sensu stricto genomes [44] and eight genomes of related

species [45,46,49] in order to begin to extend our knowledge in all

of these areas.

Materials and Methods

Strains and DNA preparation
Low passage cultures of B. burgdorferi isolates B31, N40, JD1 and

297 were the kind gifts of Drs. Alan Barbour, Martin Schriefer,

Tom Schwan and Justin Radolf, respectively. In this study, low

passage cultures of N40, JD1 and 297 were propagated in

complete BSK-II medium (Sigma, St. Louis, MO) at 34uC without

isolation through a single colony or passage through a mouse in

order to minimize loss of plasmids. For isolation of whole genomic

DNA, 1 liter of log-phase bacteria (,46107 bacteria/ml) were

harvested by centrifugation at 10,000 rpm for 30 min at 4uC. The

bacterial pellet was washed twice with 10 mM Tris pH 7.5,

100 mM NaCl buffer, and resuspended in 430 ml TES (10 mM

Tris pH 7.5, 100 mM NaCl, 10 mM EDTA). Subsequently, 10 ml

of freshly prepared lysozyme (50 mg/ml), 50 ml Sarkosyl (10%),

and 10 ml proteinase K (10 mg/ml; Sigma, St. Louis, MO) were

added, and the mixture was incubated at 50uC overnight prior to

RNase treatment. DNA was then extracted with phenol/

chloroform and chloroform, precipitated with ethanol, and finally

resuspended in TE buffer (1 mM Tris pH 7.5, 1 mM EDTA).

Strain 297 plasmids were isolated with a Qiagen (Valencia, CA)

Plasmid Midi-100 Kit according to the manufacturer’s recom-

mendations.

Sequencing and sequence analysis
Sequencing, assembly, and gap closure. Sanger shotgun

sequencing and assembly were performed as described previously

for genomes sequenced at TIGR/JCVI [207]. All three genomes

were sequenced to closure. Briefly, small-insert and medium-insert

plasmid libraries were generated by random nebulization and

cloning of genomic DNA. The following libraries were generated:

N40, one 3–4 kb small-insert and one 6–8 kb medium-insert

libraries; JD1, one 2–3 kb small-insert, one 3–4 kb small-insert and

one 8–12 kb medium-insert libraries; 297, one 3–4 kb small-insert

and one 10–12 kb medium-insert libraries. In the random

sequencing phase, at least a 9-fold coverage across the genome

was achieved from the shotgun sequencing libraries generated for

each strain. More specifically, a total of 19971, 59714 and 11126

Sanger sequencing reads were generated during the random

sequencing phase for N40, JD1 and 297 respectively. The

sequences were assembled using the TIGR Assembler (www.jcvi.

org/cms/research/software/) and the Celera Assembler (http://

sourceforge.net/projects/wgs-assembler), and the scaffolds con-

structed using TIGR BAMBUS [208]. All sequence and physical

gaps were closed by editing the ends of sequence traces, primer

walking or transposon-primed sequencing on plasmid clones,

and combinatorial PCR followed by sequencing of the PCR

product.

A number of the termini of bulk-determined sequence contigs

were extended by sequencing DNAs from inverse PCR or by

direct PCR amplification using outside primers designed from

sequence predicted to be orthologous by comparison with

plasmids from one of the other strains. About 8, 19, and 5 Kbp

were determined by these directed methods in the N40, JD1 and

297 plasmid sequences. The lengths of the sequence contigs

and plasmid sizes (determined by pulsed-field electrophoresis and

Southern analysis as in Casjens et al. [17]), as well as lengths of the

‘‘missing’’ unsequenced terminal regions (calculated from the sizes

of terminal restriction fragments) are given in Table S1. The linear

297 plasmid sequence contigs are often missing from 2000 to 2500

terminal bp; this was a poorly understood property of the DNA

libraries, not sequencing depth. The GenBank accession numbers

for the sequences determined in this study were reported in

Schutzer et al. [44] and are included in Table S1.

Sequence annotation. For the N40, 297 and JD1 genomes,

an initial set of ORFs likely to encode proteins was identified by

GLIMMER (http://cbcb.umd.edu/software/glimmer/). This first

set of open reading frames (ORFs) was then manually curated so

that ORFs equal to or less than 50 codons long (not counting the

stop codon) were removed unless they are homologs of a similarly

sized gene of known function, and ORFs in the 51–100 codon

range were only included if their reading frame is intact in cognate

sequence in all of the strains that carry the sequence. ORFs that

overlapped were inspected visually and, in some cases, removed.

ORFs were searched against a nonredundant protein database

as described previously for all TIGR genomes. Frameshifts and

point mutations were detected, checked and corrected where

appropriate. Remaining frameshifts and point mutations are
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considered authentic, and corresponding regions were annotated as

‘‘authentic frameshift’’ or ‘‘authentic point mutation,’’ respec-

tively. Two sets of hidden Markov models (HMMs) were used to

determine ORF membership in families and superfamilies. These

included 10,340 HMMs from PFAM version 23.0 (http://pfam.

sanger.ac.uk/) and 3,603 HMMs from TIGRFam version 8.0 (www.

jcvi.org/cms/research/projects/tigrfams/overview/). TOPPRED

[209] was used to identify membrane-spanning domains in

proteins. For ease of comparison, the genome of strain B31 was

also re-annotated by this pipeline, and this reannotation can be

found in the original accession numbers of the B31 replicons (Table

S1 and [10,11]).

Some of the plasmids carry full-length, degenerate pseudogene

paralogs of other intact plasmid genes. These were not annotated

(as they were in the original B31 annotation). The automated ORF

searches identified some smaller ORFs within these pseudogenes,

and since they could theoretically be expressed they were kept in

the predicted ORF list. Translation frameshift and in-frame stop

differences among the strains sequenced here were compared to

homologs in B. garinii PBi [47], B. afzelii PKo ([48] and our

unpublished results) and B. bissettii DN127 (our unpublished

results) to determine which state is most likely functional.
Open reading frame nomenclature. Borrelia researchers

have usually used the ‘‘locus tags’’ of the strain B31 genome

GenBank annotation [10] as names for genes and their encoded

proteins. Thus, according to bacterial convention, the B31

chromosomal genes have often been named ‘‘bb0xxx’’ (lower case

and italicized) in ascending order from bb0001 upward across the

chromosome. The B31 plasmid locus tag names are similar but

have the form ‘‘bb$xx’’ in which ‘‘$’’ is a letter code denoting

which plasmid type carries the gene (e. g., bba74 encodes protein

B31_A74 and lies on lp54, bbs09 lies on cp32-3, etc.). Increased

genome sequencing forces the use of more complex locus tags such

as, Bbujd1_Axx for strain JD1 plasmid lp54. To avoid very long

gene names now that multiple genomes have been sequenced, we

suggest the use the form ‘‘strain name_locus tag number only’’ for

gene names so that their strain source is included (e. g., b31_0843

for a B31 chromosomal gene, and ‘‘jd1_a34’’ for JD1 plasmid lp54

reading frame 34 with plasmid letter code lower case ‘‘a’’), and we

follow these conventions here. Table S4 lists the locus tag letters

with their corresponding plasmids for all the plasmids in the four

current genome sequences as well as for our additional

unpublished sequences. In the different genomes, the same locus

tag numbers in the B31, N40, 297 and JD1 chromosome, cp26

and lp54 indicate orthology of the corresponding genes; however,

organizational differences in the other plasmids made this system

unworkable, so the same locus tag numbers on these replicons do

not indicate orthology.
Methods of ortholog/paralog analysis. We identified

orthologous plasmids by inspection and by using NUCMER

[210] and BLASTn [211]. For each set of orthologous replicons,

we identified orthologous ORF sets by first finding all homologs of

each ORF using all-against-all BLASTn [211]. Homologous

ORFs were clustered using the MCL algorithm [212]. Within each

homolog cluster, orthologs were distinguished from paralogs by

visual inspection of gene orders displayed by the authors’

unpublished synteny browser and by matrix comparison with

DNA Strider [135]. Percent identity of DNA and protein

sequences was calculated by DNA Strider using alignments

created by that program. Protein multiple sequence alignments

were constructed using ClustalW 1.83 [213] and ClustalX2 0.3

[214]. Codon alignments were derived from protein alignment

templates using PERL scripts.
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