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Abstract

Glycosylation modifies the physicochemical properties and protein binding functions of glycoconjugates. These
modifications are biosynthesized in the endoplasmic reticulum and Golgi apparatus by a series of enzymatic
transformations that are under complex control. As a result, mature glycans on a given site are heterogeneous mixtures
of glycoforms. This gives rise to a spectrum of adhesive properties that strongly influences interactions with binding
partners and resultant biological effects. In order to understand the roles glycosylation plays in normal and disease
processes, efficient structural analysis tools are necessary. In the field of glycomics, liquid chromatography/mass
spectrometry (LC/MS) is used to profile the glycans present in a given sample. This technology enables comparison of
glycan compositions and abundances among different biological samples, i.e. normal versus disease, normal versus mutant,
etc. Manual analysis of the glycan profiling LC/MS data is extremely time-consuming and efficient software tools are needed
to eliminate this bottleneck. In this work, we have developed a tool to computationally model LC/MS data to enable
efficient profiling of glycans. Using LC/MS data deconvoluted by Decon2LS/DeconTools, we built a list of unique neutral
masses corresponding to candidate glycan compositions summarized over their various charge states, adducts and range of
elution times. Our work aims to provide confident identification of true compounds in complex data sets that are not
amenable to manual interpretation. This capability is an essential part of glycomics work flows. We demonstrate this tool,
GlycReSoft, using an LC/MS dataset on tissue derived heparan sulfate oligosaccharides. The software, code and a test data
set are publically archived under an open source license.
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Introduction

The development of technology for characterization of released

glycans is driven by biological relevance with the goal of providing

detailed glycan structure as targets for synthesis, biomarker, and

therapeutic development. Towards these ends, the determination

of glycomics MS profiles is an essential step that enables

investigators to identify glycan compositions and abundances.

With this profiling information, investigators then designate glycan

compositions for further purification and detailed tandem mass

spectrometric analysis. LC/MS is particularly useful for glycomics

profiling because the chromatography dimension enables robust

and sensitive instrument performance. The addition of a

chromatography dimension results in greatly improved ability to

sample the complete set of glycans present. Chromatographic

separation also minimizes the extent of ion suppression and

thereby maximizes dynamic range.

Unfortunately, interpretation of the LC/MS profiling datasets

requires considerably more time than does data acquisition,

severely limiting glycomics workflows. Ions from a given glycan

composition are typically multiply charged and therefore require

deconvolution in order to reduce the redundancy caused by

charge. In addition, glycan ions may be observed in more than one

adducted form in the mass spectra. Therefore, it is necessary to

combine charge states and adducted forms for a given glycan

composition in order to produce definitive neutral masses and the

corresponding accurate abundances. These characteristics of the

LC/MS data render manual interpretation very time consuming.

Over the past decade, bioinformatics software specific to the

needs of glycan and glycoconjugates has been developed. The

Glycomod program [1] determines glycan compositions from mass
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spectral data. This program is available through the ExPASy

portal for assignment of released glycan compositions or glycans

attached to a protein or peptide. The input is a glycan mass list

and the program is not applicable to automated data analysis of

LC/MS datasets. Glycoworkbench is a software tool that contains

features for structure drawing, assignment of glycan compositions

from mass spectra, and assignment of product ions from tandem

mass spectra [2]. This tool is used for piecemeal spectral

interpretation; it is not applicable to automated data analysis.

Cartoonist is a tool for annotating matrix assisted laser desorption/

ionization (MALDI) mass spectral peaks of permethylated N-

glycans [3]. This tool assigns plausible glycan structures to MALDI

ions based on biosynthetic rules. The tool does not deconvolute, is

not automated, and is not amenable to analysis of LC/MS

datasets.

Although glycans may be regarded as metabolites, they are

larger in mass than considered in typical metabolomics analyses, in

which compounds are less than 1000 Da and produce singly

charged ions. As a result, metabolomics algorithms are not

applicable to glycomics. For glycomics LC/MS, high resolution,

high mass accuracy MS is necessary in order to define glycan m/z

values and charge states accurately; thus deconvolution is an

essential data processing step. In addition, glycans as a compound

class range from neutral to acidic, and use of negative polarity MS

is often recommended. Decon2LS is an open-source software

package designed for automated processing of high resolution

mass spectral data [4]. Decon2LS uses a form of the THRASH

(Thorough High Resolution Analysis of Spectra by Horn)

algorithm [5] to de-isotope mass spectra. Although originally

designed for peptides, this tool enables the user to adjust average

residue elemental composition (polyaveragine) to values appropri-

ate for glycomics LC/MS data. It reads native data formats from a

number of mass spectrometer manufacturers, thus eliminating the

need to convert to a public data format. Glycomics LC/MS data

are often acquired using negative polarity, and Decon2LS

processes the negative charge states correctly.

Glycosaminoglycans (GAGs) are a class of polysaccharides that

occur on proteins on all animal cell surfaces and in the

surrounding extracellular matrixes. These linear polysaccharides

mediate binding to many growth factor families and influence

cellular responses to environmental stimuli. Heparan sulfate (HS),

a member of the GAG compound class, is characterized by its

variations in sulfation patterns. Its expression is required for

embryonic development [6] and for normal functioning of every

adult physiological system [7]. The structure of HS depends on

biosynthetic enzymes present in the Golgi apparatus, the levels of

which are under complex regulation [7]. As a result, the structure

of HS in biological systems varies dynamically depending on

spatial and temporal factors. Cells modulate the manner in which

they respond to growth factor stimuli by altering the structure of

HS on their surfaces and in the surrounding extracellular matrices.

Thus, the structure of HS depends on the cell type and the context

in which it is growing.

Methods for structural characterization are essential for

developing an understanding of the mechanisms whereby HS

mediates biological functions and exploiting this information in the

service of human health. A key step in this process is comparative

profiling of HS from different biological sources from LC/MS

data. Methods based on LC/MS have been used for this purpose

[8,9,10,11,12,13,14,15,16,17,18].

In previous work, we developed a software program (Manatee)

that alleviates this bottleneck by extracting lists of targeted

compounds from LC/MS data [19]. While Manatee allows for

rapid extraction of HS compositions and abundances from the raw

data, it does not provide a means of noise reduction or confidence

measurement. Decon2LS produces a list of deconvoluted masses

and abundances for LC/MS datasets. In this work, we describe a

new algorithm (GlycReSoft) that provides both rapid extraction of

glycan compositions (and their abundances) from the Decon2LS

output as well as a means of scoring the results to facilitate

confident use of glycomics LC/MS data. GlycReSoft implements

supervised and unsupervised scoring methods that enable assign-

ment of peaks to both known and unknown glycan compositions.

The capability of GlycReSoft was tested using LC/MS datasets

generated on tissue derived HS.

Materials and Methods

Data Preparation and Preprocessing
LC/MS data were acquired on bovine organ HS samples using

an Agilent Technologies 6520 QTOF mass spectrometer using a

chip interface as described [9,10]. Briefly, HS samples were

digested exhaustively using heparin lyase III. The oligosaccharides

were analyzed using a chromatography chip (Agilent Technolo-

gies, Santa Clara, CA) packed with amide-silica hydrophilic

interaction chromatography (HILIC) stationary phase [10]. The

HS oligosaccharides were analyzed using negative polarity MS

detection. All LC/MS data were processed using the DeconTools

[20] version of the Decon2LS program [4]. The averagine formula

was set to C6 H11.375 N1.125 O9.5S1.5. The DeconTools parameters,

output files, the GlyReSoft compiled software, source code, and

user instructions have been publicly archived (http://code.google.

com/p/glycresoft/downloads/list).

GlycReSoft is in principle applicable to any compound class

from LC/MS data deconvoluted using DeconTools. Users

interested in glycan classes other than heparan sulfate are advised

to estimate the average monosaccharide elemental composition

and use this as the averagine formula with DeconTools.

GlycReSoft Algorithm
GlycReSoft predicts and scores candidate compounds based on

quantitative features derived from calculations made by De-

con2LS/DeconTools for each LC/MS data file. This scoring

provides the ability to rank candidate compounds by perceived

confidence, thereby distinguishing true glycans from noise. The

main steps of GlycReSoft are represented in Figure 1. First, raw

peaks are grouped in the mass dimension (MW grouping) across all

time points (scans) into representative masses based on a user-

defined tolerance range measured in parts per million (ppm),

where 1 ppm =DM/M6106. Second, GlycReSoft allows for

grouping of compounds in multiple adduct forms (adduct

grouping) by identifying representative masses that differ by a

user-provided molecular weight or chemical formula correspond-

ing to a known chemical adduct observed in LC/MS. Third, the

various measurements made by Decon2LS/DeconTools are

accumulated based on the previous grouping steps to yield a

summarized list of unique MWs representing candidate com-

pounds. Finally, the summarized list is scored, using either

supervised or unsupervised learning methods that utilize the

quantitative features of Decon2LS/DeconTools, to produce a

ranking of candidate compounds.

The first grouping over mass and time takes into account the

instrumental noise, often at low abundance, that is observed in the

LC/MS data and deconvoluted by Decon2LS/DeconTools.

GlycReSoft achieves a locally optimal grouping by binning

molecular weights greedily in descending order by peak abun-

dance. Bins are created and centered at the first encountered

molecular weight (MW0) and span the range of

GlycReSoft: Glycan LC/MS
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½MW0{eG,MW0zeG�, where eG is the user-defined grouping

tolerance in ppm (Figure 2). After all of the Decon2LS/DeconTools

output is grouped, the abundance-weighted mean for each bin

becomes the representative MW for that candidate compound

group.

The second grouping over adduct states is implemented as a

log-linear search for pairs of representative masses from the first

grouping that differ by the user-defined molecular weight of the

adduct of interest, denoted here by DMW. In practice, represen-

tative masses are investigated in ascending order where adducted

forms of a candidate compound with molecular weight MW0 are

identified if their molecular weight falls in the range of

½MW0zDMW{eA,MWozDMWzeA�, where eA is the user-

defined adduct tolerance (Figure 2). A series of candidate compound

groups are then collapsed into a single candidate compound

representing multiple adduct forms. For each series of candidate

compounds, the cumulative abundance is summed across all

adduct forms and the form with the largest abundance becomes

the new representative MW for the group.

The two grouping steps result in a list of unique masses

representing candidate compounds. GlycReSoft allows the user to

filter out low quality candidates, if desired, through the use of

optional thresholding parameters, including upper and lower MW

bounds and thresholds for minimum abundance and number of

detected scans. Most LC/MS users have prior knowledge

concerning the compound classes that are of interest in their

sample and can therefore provide elemental compositions whose

theoretical mass can be computed and used to annotate some of

the grouped candidate compounds. To facilitate this process,

GlycReSoft includes an optional Compound List Generator tool

that allows the user to automatically generate a list of elemental

compositions and masses given a set of biomolecular residues

expected in the sample. The generator allows the user to specify

algebraic rules for combining the biomolecular residues. Alterna-

tively, the user may generate a custom compound list using a

spreadsheet program. If a compound list is used, GlycReSoft

performs a compound list matching step in an attempt to annotate

as many candidate compounds as possible. Successful matching

requires agreement between the masses in the theoretical

compound list and the observed representative masses computed

through the combination of LC/MS detection, deconvolution by

Decon2LS/DeconTools, and grouping by GlycReSoft. GlycRe-

Soft matches a candidate compound with observed representative

mass MC to a known compound with theoretical mass Mt if

eM§DMC{MtD , where eM is a user-defined matching tolerance

measured in ppm and should reflect the precision of the mass

spectrometer (Figure 2). Choosing acceptable values for the user-

defined error tolerances eG , eA andeM is a matter of balancing the

sensitivity and specificity of the data and can only be optimized

empirically. With the LC/MS data described in this work, we have

found that values of eG = 80 ppm, eA = 5 ppm and eM = 20 ppm

provide the best balance between true positive and false positive

rates using an Agilent 6520 QTOF mass spectrometer with

precision of ,5 ppm.

The final step in processing by GlycReSoft is to score and rank

the candidate compounds, each of which represents one or more

deconvoluted masses from the Decon2LS/DeconTools output

following the grouping stages. GlycReSoft first summarizes

relevant supporting data reported by Decon2LS/DeconTools for

the grouped peaks. We refer to these peak summary statistics as

features of the candidate compound groups. Features reflect

quantities such as the number of charge states recovered, mean

and range of elution time, absolute number of MS scans, total

volume accumulated, number of adduct forms and presence of

A+2 isotopic peaks. These features, described in the next section,

provide the basis for scoring of candidate compounds. A

compound list, if generated by the user, is used by GlycReSoft

to annotate predicted compounds and to train the scoring function

to recognize known compounds that represent true positives. Thus

GlycReSoft provides a supervised scoring function when the user

generates a compound list hypothesis. However, if no compound

list is present, GlycReSoft scores compounds using an unsuper-

vised framework.

In supervised scoring, the list of candidate compounds is first

matched to the user-generated compound list hypothesis using the

method described above to produce an annotated list. Candidate

compounds that are annotated successfully represent positive

examples and those that are unannotated represent negative

examples. Next, a logistic regression is performed on the list of

compounds to build a linear model, l, based on the weighted

features of each candidate compound, which is mapped onto a

logistic function, L(l)~
1

1ze{l
. Identification of the optimal

model l* entails learning the combination of feature weights that
best separates the positive and negative examples. Annotated
candidates are assigned an expected score of L(l) = 1 and
unannotated candidates are assigned an expected score of
L(l) = 0. The learned regression model l+ approximates l*,
where l+ is defined on the range of (0,1). For each candidate
compound, c, the final score is computed empirically on the
learned model as L(lz

c ).

In unsupervised scoring, the absence of a compound list

hypothesis makes positive and negative examples indistinguishable

and complicates the ability to learn a model. To score compounds

ab initio, we use a method based on the sum of relative ranks. The

relative rank for a candidate compound ci[C about feature fj[F is

Figure 1. GlycReSoft workflow. The LC/MS data consist of three
dimensions (m/z, abundance and time). The data are processed into lists
of neutral masses and abundances using Decon2LS/DeconTools.
GlycResoft combines the raw neutral masses into compounds,
correcting for mass spectrometric adducts. The program scores the
data, generates a list of candidate glycan compositions, and matches
these against the compound list.
doi:10.1371/journal.pone.0045474.g001
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denoted Rij, where C is the set of candidate compounds in the list

and F is the set of features. Rij is defined as the ranking of ci relative

to all other candidate compounds in C when looking at feature fj
independently. Rij values are standard competition rankings (i.e., a

‘‘1, 2, 2, 4’’-style ranking) computed by sorting candidate

compounds by feature fj, in either ascending or descending order

based on feature type. In practice, the user may find it beneficial to

assign a vector of weights v to the features during unsupervised

scoring, where vj is the weight associated with feature j. Thus for a

candidate compound ci, the total score S is defined as:

S(ci)~
XDF D

j~1

vjRij :

Scores are reported as a percentage of the best possible score.

Features
GlycReSoft uses the following features for scoring. Each feature

was designed to assess specific qualitative and quantitative

characteristics of the raw Decon2LS/DeconTools peak groupings

that define the candidate compounds.

A. Number of Scans. A true positive compound elutes from

the LC column at a specific range of time. Therefore,

GlycReSoft computes the number of scans in which a

compound was present as a feature to help distinguish it from

noise.

B. Number of Charge States. Most glycan ions are observed

in multiple charge states. GlycReSoft therefore tracks the

number of charge states observed for a given deconvoluted

mass to provide confidence regarding the validity of a

candidate compound positive identification. For example, in

Figure 3, there are three charge states (z = 2, 3, and 4) for the

candidate compound, some of which are observed for

adducted forms.

C. Scan density. A true positive compound is expected to elute

from the LC column within a time range defined by the

chromatographic peak width. GlycReSoft computes the scan

density:

D~
N

Dt

where N is the number of scans in which a mass was observed

and gt is the amount of time between the first and last time

point reported by this compound (see Figure 4). Thus a

candidate compound that elutes continuously over a specific

time window will have D. = 1, whereas a candidate

compound that elutes sporadically over the entire LC/MS

run will have D,,1.

D. Number of Modification States. In HILIC LC/MS

datasets, it is common for ammonium adducts to be observed

due to the chromatographic mobile phases that contain

ammonium salts [11]. To account for this, GlycReSoft

searches the candidate compounds from the Decon2LS/

DeconTools output in the first grouping step and groups

those masses shifted by equivalents of ammonia (Figure 3).

The presence of such mass shifts between deconvoluted

masses was weighted in favor of a true positive identification

for a given compound.

E. Total Volume. Deconvoluted masses that correspond to

noise peaks in the MS data tend to be of lower abundances

than those of true positive compounds. We computed the

volume (V) of deconvoluted peaks as V~h|fwhm, where h

is the height of the peak and fwhm is the full width at half

Figure 2. Mass tolerances specified in GlycReSoft. Note that in the GlycReSoft GUI eM is referred to as match error, eG as grouping error, and eA

as shift adduct tolerance.
doi:10.1371/journal.pone.0045474.g002
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maximum of the peak. Thus the volume approximates the

area of under the peak clusters shown in Figure 4.

F. Expected A: A+2 Peak Abundance Ratio Error. The

Decon2LS/DeconTools program reports the volumes of the

monoisotopic peak, A, and an accumulated abundance across

the corresponding isotopic cluster. Decon2LS/DeconTools

also reports the abundance of the A+2 isotopic peak. If the

reported mass is a true positive compound, we expect that the

ratio of the abundance of the monoisotopic peak A to the

abundance of the A+2 peak follows a linear distribution with

respect to the MW of the candidate compound. We therefore

fit a line through the distribution of the A:A+2 peak

abundance ratios of the sample using a robust linear

regression (Figure S1) to define the expected value. In

practice, we only fit the ratios of matched compounds (in

supervised learning) or ratios above zero (in unsupervised

learning). We reported the error between the actual value and

the expected value as an additional feature for the compound.

G. Centroid Scan Error. The profile of the abundance of a

true positive compound as a function of time approximates

the chromatographic peak shape. This peak shape was

approximated as a normal distribution and the centroid was

used to represent the elution time of a compound in the LC/

MS data. Generally, the elution time increases with

compound mass. In the data analyzed, the centroid scan

and the molecular weight follow a linear relation (Figure 5).

We therefore reported the centroid scan error between the

actual value and the expected value as an additional feature

for the compound. Expected centroid scan values were

computed via linear regression in the same manner as

described for expected A:A+2 ratios.

Figure 3. GlycReSoft raw data grouping. In this example, rows of raw Decon2LS/DeconTools output are grouped into a unique set of molecular
weights, corresponding to candidate compounds.
doi:10.1371/journal.pone.0045474.g003

Figure 4. Two example candidate compounds representing a densely eluting compound (left) and a sporadically eluting
compound (right).
doi:10.1371/journal.pone.0045474.g004

GlycReSoft: Glycan LC/MS
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H. Average Signal-to-Noise Ratio. For a true positive

compound, the signal-to-noise ratio should be above a

threshold value, and this was used as a standard to measure

the quality of a deconvoluted mass peak. GlycReSoft uses the

average signal-to-noise ratio of the candidate compound

group as a feature.

Compound List Generator
GlycReSoft includes a function that automatically generates a

list of compounds and their theoretical masses, representing a

hypothesis of sample composition, based on algebraic rules defined

by the user. To utilize this function, the user specifies the elemental

composition of the monosaccharide residues, their combination

rules, and allowable adducts. The default settings include the most

common animal monosaccharides (Figure S2). The user can

change these residues as needed. An example of the compound list

generator output is provided in Figure S3. The compound list file

is used by GlycReSoft to produce the learned output. The user

may also generate a compound list file of the same comma

separated format using a spreadsheet program, if desired.

Open Source Public Archive
The GlycReSoft program and source code has been archived

publically under a GNU v. 3.0 general public license. The

program is available at the following web site: Google code

(http://code.google.com/p/glycresoft/downloads/list).

Results

Application of GlycReSoft to Glycomics Profiling of
Heparan Sulfate

The ability to assign glycan profiles with confidence from LC/

MS profiling datasets was a primary goal for the development of

GlycReSoft. For the purpose of this work, glycan profiles refers to

the monosaccharide compositions and abundances determined

using LC/MS data. Each composition is assumed to contain a

mixture of glycan isomers. The analysis of such isomers requires

additional MS and tandem MS experiments that are beyond the

scope of the present version of GlycReSoft.

In earlier work by this group, a program (Manatee) was

developed for extraction of abundances for targeted glycan

compositions from glycomics datasets [19]. Manatee works rapidly

to give users an overview of the dataset, but lacks noise reduction

functions and is susceptible to high false negative and false positive

rates based on the quality of the targeted compound list. False

negatives are produced by an overly exclusive compound list

where true compounds not in the list are ignored; effectively

Figure 5. A linear fit of the centroid scan numbers (average
elution time point).
doi:10.1371/journal.pone.0045474.g005

Figure 6. Comparison of Manatee (A) and GlycReSoft (B) for compositional profiling of HS oligosaccharides. HS oligosaccharides were
prepared as described in the methods section and analyzed using negative polarity HILIC LC/MS. The histograms were normalized relative to the
average of the 10 most abundant compositions. Compound compositions are given as [DHexA, HexA, HexN, SO3, Ac].
doi:10.1371/journal.pone.0045474.g006

GlycReSoft: Glycan LC/MS
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eliminating the ability to identify novel compounds. False positives

are produced by an overly inclusive compound list; Manatee

extracts ion signal for all targeted glycan compositions, and all

have an abundance value .0. This is illustrated in Figure 6A,

showing the abundance profile for degree of polymerization (dp)12

oligosaccharides from a bovine lung sample. At this relatively low

normalized abundance of 0.1, the signal-to-noise ratio of the most

abundant composition is approximately 3 and it is difficult to

determine which compositions are true compounds and which are

noise. Figure 6B shows the abundance profile obtained using

GlycReSoft from the DeconTools output of the data. The signal-

to-noise ratios are improved by more than 10-fold and this enables

confident assignment of glycan compositions including those at a

normalized abundance of 0.01 and below.

By producing candidate compounds empirically and indepen-

dently of a compound list, GlycReSoft does not suffer from the

high false positive and false negative rates inherent to targeted

methods, such as Manatee. GlycReSoft allows the user to

designate a score threshold below which compounds are not

reported, providing a means to manually account for false

positive/negative rates. The method focuses on the fact that a

true positive compound should be distinguishable from noise in the

Figure 7. ROC curves comparing a supervised learning (red), unsupervised learning (blue) and a naı̈ve classifier based on peak
volume (green) for triplicate analysis of lung HS. ROC curves were calculated for triplicate LC/MS runs acquired using lung HS. Area under the
ROC curve (ROC) is indicated in parentheses. (A) Comparison of supervised, unsupervised, and volume sorting-based scoring methods in the absence
of a minimum abundance noise filtering threshold. An expanded range is shown below. (B) Supervised scoring results compared at different levels of
minimum abundance thresholding, where minimum abundance of 1 is identical to (A). (C) Comparison of all scoring methods using minimum
abundance threshold of 400.
doi:10.1371/journal.pone.0045474.g007

GlycReSoft: Glycan LC/MS
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LC/MS data and this separation can be automated with high

precision.

Evaluation of GlycReSoft performance. Figure 7 com-

pares receiver operating characteristic (ROC) plots obtained for

the lung HS data for supervised, unsupervised (with all feature

weights set to one) and a naı̈ve classifier based on peak volume

sorting. Area under the ROC curve (AUC) is reported in the

parentheses in the figure inset. In (A), no abundance threshold is

applied to filter noise from the raw DeconTools output, and it is

clear that supervised learning outperforms unsupervised learning

which in turn outperforms volume sorting. The expanded plot

shows that volume sorting performs well for the most easily

matched compounds, but produces high false positive rates below

a threshold value. Unsupervised learning does not do well with the

most easily matched compounds, likely because the features are

unweighted. The unsupervised learning outperforms volume

sorting over the full data set, indicating that features other than

volume are important. Supervised learning performs equally well

as volume sorting for the most easily matched compounds but

continues to perform well after the volume sorting results

deteriorate.

The similar performance observed between supervised scoring

and volume sorting at the lowest false positive rates indicates that

supervised scoring likely weights volume as the most important

feature. In Figure 7B, the effect of applying GlycReSoft’s

minimum abundance threshold, at values of 1 (no threshold),

400 and 1200, is shown in the context of enhancing the

performance gain by filtering out noisy Decon2LS/DeconTools

rows, which tend to be low in abundance. Removing such noise

greatly improves the regressed model and effectively removes large

amounts of false positives (see below), but also will remove some

true positives of low abundance. Thus finding an abundance

threshold that balances maintaining true positives and removing

false positives is essential. In our data, we found a minimum

abundance of 400 to be a good balance using estimates of false

positive rates (see below), and the predictive performance using

this minimum abundance threshold is displayed in Figure 7C.

Estimation of false positives. In the interpretation of glycan LC/

MS data it is important to consider the limitations of the

informatics approach. First, the solution file may not be inclusive

of all glycans present in the sample. GlycReSoft addresses this

issue by enabling the user to investigate unassigned MS peaks that

receive a score above a threshold value. The user may then

address whether the solution file should be modified in an attempt

to include such peaks. Second, mass spectral peaks derived from

chemical noise may be deconvoluted by Decon2LS/DeconTools

and result in the false assignment of glycan compositions by

GlycReSoft. The use of a target decoy database approach [21] for

false positive (FP) filtering and false discovery rate (FDR)

estimation has been adopted widely in the proteomics field

[22,23,24,25,26,27]. The decoy database consists of reversed or

randomized protein sequences, the number of positive identifica-

tions from which is used to estimate FPs in the target database.

Such decoy databases enable the user to adjust score thresholds to

produce acceptable levels of FPs and FDR. In an analogous

manner, we used the GlycReSoft glycan generator to produce a

solution file in which the elemental compositions of the

monosaccharide residues had been randomized. This randomized

compound list was appended to a list generated using the same

algebraic rules and the correct elemental compositions. Three such

solution files were constructed using the randomized monosac-

charide compositions shown in Figure S4.

Figure 8 shows a set of histograms showing the number of true

and false positive compounds binned as a function of GlycReSoft

score. The plot shown in (A) was produced using a minimum

abundance threshold setting of 1 in the GlycReSoft parameters

window. The masses that matched the true compounds in the

solution were labeled as true positives (TP). Those that matched

the masses of compounds corresponding to randomized glycan

elemental compositions were labeled as false positives (FP). The Y

axis is the total number of compounds detected in 0.05 unit

GlycReSoft score increments. The histogram in (A) shows a large

number of TP and FP compounds detected with GlyReSoft scores

of 0.2 or below. When the GlycReSoft minimum abundance

threshold was increased to 400 (B), the number of TP and FP

compounds decreased approximately 10-fold. Increasing the

Figure 8. Histograms showing number of binned true positive
(TP) and false positive (FP) compounds detected as a function
of GlycReSoft score for three volume thresholds, (A) 1, (B) 400
and (C) 1200.
doi:10.1371/journal.pone.0045474.g008
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minimum abundance threshold to 1200 (C) removed nearly all

compounds below a GlycReSoft score of 0.3. From these data, a

minimum abundance threshold of 400 and a GlycReSoft score of

0.16 were selected as the optimal settings for the data set since

these are the values at which TP exceeds FP by a ratio of 2:1 while

maintaining reasonable sensitivity in the expected TP set.

A key capability of GlycReSoft is to provide the user with

metrics for appropriate choice of analysis parameters. The

histograms for lung HS oligosaccharides identified using a

GlycReSoft minimum abundance of 400 and a score threshold

of 0.16 are shown in Figure 9. Using these values, the GlycReSoft

scores (shown for each composition on the histograms) provide a

confidence metric regarding the assigned oligosaccharide compo-

sitions. Even for the lowest abundance compositions, dp 14, shown

in (E), GlycReSoft scores .0.2 are obtained for most compositions

.0.1 in percent abundance. By comparison, histograms obtained

Figure 9. Histograms showing the compositions and percent abundances for lung HS oligosaccharides. The GlycReSoft score for each
composition is labeled. Compositions were assigned using GlycReSoft minimum abundance setting of 400. Histograms were displayed with a
GlycReSoft score threshold of 0.16. (A) degree of polymerization (dp) 6, (B) dp8, (C) dp 10, (D) dp 12, (E) dp14. The error bars reflect the standard
deviation of the average values obtained from three LC/MS analyses.
doi:10.1371/journal.pone.0045474.g009
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using a minimum abundance value of 1 show considerably more

compositions with abundances .0 for the same dp 14 oligosac-

charides (see Figure S5E). Consistent with the histogram shown in

Figure 8A, this pattern demonstrates unacceptable levels of false

positives when using a minimum abundance value of 1.

Histograms obtained using a minimum abundance value of 1200

showed no compositions with percent abundances ,0.01 (see

Figure S6), consistent with the removal of true positives. This

example demonstrates the use of the GlycReSoft output to

optimize analysis parameters for general application to a larger

dataset.

Discussion

The primary bottleneck for dissemination of LC/MS glycomics

profiling methods is the complexity of the data. Each glycan

composition is present as multiple charge and adduct states. For

the HS datasets described here, the time required for exhaustive

analysis of a single dataset by manual inspection is on the order of

weeks. The previously described Manatee tool allows rapid

analysis of the data but is limited to relatively abundant peaks

and does not provide a confidence measure. It is therefore

desirable to implement a solution that includes noise reduction

and confidence measures for LC/MS glycomics datasets. GlycRe-

Soft takes the output of the publically available Decon2LS/

DeconTools deconvolution program and enables the user to

choose between supervised and unsupervised methods to score the

output peaks. Glycomics data interpretation is driven by the

chemical nature of the glycan compound classes. GlycReSoft

includes a compound list generator, the output of which can be

used to determine a scored output using a machine learning

algorithm. All LC/MS peaks are scored, allowing the user to set

threshold values for analysis. The GlycReSoft output provides

metrics that enable the user to develop analysis parameters that

are appropriate for the analysis of datasets containing multiple

LC/MS runs. The program is open source and has been archived

under a GNU 3.0 general public license.

GlycReSoft utilizes linear learning functions for scoring that

have the advantage of being easily interpreted, but the disadvan-

tage of being limited to linear relationships. Using more complex

non-linear learning functions might provide better performance,

but would also require logical reporting methods. We have shown

that GlycReSoft greatly improves glycan recognition through

automation of LC/MS profiling and by casting it as a machine

learning problem. Future iterations on this theme are planned to

extend GlycReSoft capabilities through the use of additional

features than the ones described here. There is currently no gold

standard of features to be used for scoring, and a more profound

exploration of features, as well as their relationships, would be

beneficial to this problem.

Supporting Information

Figure S1 A linear fit of the A:A+2 abundance ratio.

(TIF)

Figure S2 Screen shot showing the GlycReSoft compo-
sition generator. The parameters entered were used in
the present publication.

(TIF)

Figure S3 An example showing the format for the
compound list. First column is chemical formula.
Second column is molecular weight, Third column is
the mathematical formula representing the composition
of each groups in both main chain (bracket one) and
adducts (bracket two). Compositions in the first bracket
are given as [DHexA, HexA, HexN, SO3, Ac]. The second
bracket shows the number of ammonium adducts.
Although only the first place in the second bracket is
used at present, a total of four places are included to
allow for use of additional adducts in future versions of
GlycResoft.
(TIF)

Figure S4 List of the randomized elemental composi-
tions used to estimate false positives and false discovery
rate using GlycReSoft. The GlycReSoft generator func-
tion was used to generate three outputs using the
randomized elemental compositions shown. Each list
was appended to a generator ouput using the true
monosaccharide compositions. The monosaccharides
were combined using the algebraic rules given in the
methods section.
(TIF)

Figure S5 Histograms showing the compositions and
percent abundances for lung HS oligosaccharides. The
GlycReSoft score for each composition is labeled.
Compositions were assigned using GlycReSoft mini-
mum abundance setting of 1. Histograms were dis-
played with a GlycReSoft score threshold of 0.16. (A)
degree of polymerization (dp) 6, (B) dp8, (C) dp 10, (D)
dp 12, (E) dp14. The error bars reflect the standard
deviation of the average values obtained from three LC/
MS analyses.
(TIF)

Figure S6 Histograms showing the compositions and
percent abundances for lung HS oligosaccharides. The
GlycReSoft score for each composition is labeled.
Compositions were assigned using GlycReSoft mini-
mum abundance setting of 1200. Histograms were
displayed with a GlycReSoft score threshold of 0.16.
(A) degree of polymerization (dp) 6, (B) dp8, (C) dp 10,
(D) dp 12, (E) dp14. The error bars reflect the standard
deviation of the average values obtained from three LC/
MS analyses.
(TIF)
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