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Abstract

Down syndrome (DS) is caused by triplication of Human chromosome 21 (Hsa21) and associated with an array of deleterious
phenotypes, including mental retardation, heart defects and immunodeficiency. Genome-wide expression patterns of
uncultured peripheral blood cells are useful to understanding of DS-associated immune dysfunction. We used a Human
Exon microarray to characterize gene expression in uncultured peripheral blood cells derived from DS individuals and age-
matched controls from two age groups: neonate (N) and child (C). A total of 174 transcript clusters (gene-level) with eight
located on Hsa21 in N group and 383 transcript clusters including 56 on Hsa21 in C group were significantly dysregulated in
DS individuals. Microarray data were validated by quantitative polymerase chain reaction. Functional analysis revealed that
the dysregulated genes in DS were significantly enriched in two and six KEGG pathways in N and C group, respectively.
These pathways included leukocyte trans-endothelial migration, B cell receptor signaling pathway and primary
immunodeficiency, etc., which causally implicated dysfunctional immunity in DS. Our results provided a comprehensive
picture of gene expression patterns in DS at the two developmental stages and pointed towards candidate genes and
molecular pathways potentially associated with the immune dysfunction in DS.
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Introduction

Down syndrome (DS; trisomy 21) is characterized by a

complete, or occasionally partial, triplication of Hsa21. With an

incidence of about one in 750 births [1], DS is the most common

autosomal abnormality affecting live-born infants. More than 80

clinical features with variation in number and in severity are

reported in DS [2].

DS patients are clinically associated with multiple blood cell-

related phenotypes, including increased risk to develop leukemia,

decreased lymphocyte counts, markedly enhanced incidence of

autoimmune disorders as well as vulnerability to recurrent

bacterial and viral infections [3,4,5,6]. Moreover, pneumonia

and other types of respiratory infections are the most common

causes of death in DS children and early adults [7]. The

abnormalities highlight that DS individuals are very likely

associated with intrinsic defects of the immune system [8].

However, the molecular mechanisms by which trisomy 21 leads

to the immune system disorders in DS remain poorly investigated.

Transcriptome of peripheral blood cells from DS would provide a

unique molecular window into immunodeficiency relevant to DS.

Several gene-expression studies in T lymphocytes [9] and blood

cells [10] from DS patients reported dysregulated expression of

some immune-associated genes, yet very small sample size or age-

unmatched controls restricted statistical analysis.

Here, we characterized gene-expression in uncultured blood

cells from DS and age-matched control samples in neonate and

child group. The dysregulated genes in DS at the two develop-

mental stages were identified and showed a comprehensive picture

of gene expression patterns. Furthermore, classification of

dysregulated genes based on their known functions provided

insight into immunodeficiency in DS patients.

Results

Identification of differentially expressed genes between
DS and control samples

Using the Affymetrix GeneChip Human Exon 1.0 ST Array

containing ,20,000 known human genes, we performed gene

expression analysis in DS peripheral blood cells and age-matched

controls from N and C group. Of 17,626 core transcript clusters

with RefSeq-supported annotation, 13,027 in C group and 13,168

in N group (corresponding to 12,876 and 13,017 well-character-

ized genes, respectively) were reliably expressed. In RNA-Seq

analysis of endothelial progenitor cells from DS and control,

13,144 active RefSeq genes were shared by both the cells [11].

This suggests that the number of the expressed genes in DS and

control cells was comparable in the two studies.
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To identify differentially expressed genes between DS and

controls in each group, we used ANOVA in combination with fold

change in gene expression. Consistent with the observations of

Prandini et al. [12], gender and DS6gender effects were not

significant for expressed Hsa21 genes in DS individuals; however,

expression of some non-Hsa21 genes were significantly affected by

the two effects in each group. Therefore, the two effects were kept

in our analysis. In N group, 174 (1.3%) of the 13,168 transcript

clusters, containing 113 (64.9%) up-regulated genes and 61

(35.1%) down-regulated genes, were differentially expressed

between DS and controls (Figure 1A, Table S1). In C group,

383 (2.9%) transcript clusters displayed differential expression

between DS and controls. Pearson’s correlation test showed no

significant results between the child age and expression of the

genes (smallest q value was 0.99). Among the 383 transcript

clusters, 312 (81.5%) were up-regulated and 71 (18.5%) were

down-regulated in DS children (Figure 1B, Table S2). The higher

percentage of up-regulated genes in N and C group was similar to

prior report [13]. In the two groups, only 22 dysregulated genes,

including six transcript clusters on Hsa21, were shared (Table 1).

Elevated expression of the six transcript clusters was also

implicated in other DS cells or tissue (Table 1). For the 22

transcript clusters, the extent of fold change between the two

groups was significantly correlated (Pearson’s cor = 0.92,

P = 1.2861029), suggesting their importance in DS phenotypes

at the two developmental stages.

Furthermore, the dysregulated genes in each group were

divided into four intervals according to fold change (Figure 2).

The genes that were mildly altered in expression, with fold change

between 0.5,0.77 or 1.3,2.0, accounted for the majority of the

dysregulated genes in each group. The genes whose expression was

intensively varied (fold change ,0.5 or .2) were in the minority.

Expression variation of Hsa21 genes in DS
Given trisomy of Hsa21, we assessed expression variation of

genes on this chromosome. There are 237 transcript clusters on

the array, corresponding to 234 known genes on Hsa21. Of the

transcript clusters, 157 (66%) and 146 (62%) were expressed in N

and C group, respectively. There were 5.1% (8/157) in N group

and 38.3% (56/146) in C group with significant expression

difference between DS and age-matched controls (Figure 1C, D).

Of the expressed Hsa21 genes in the two groups, no significantly

down-regulated genes was detected in DS samples (Figure 1C and

D), which is consistent with other reports [12,14] and reflects the

dosage effects of trisomy. The average expression ratios (DS/

control) of expressed Hsa21 genes were 1.2960.43 (mean 6 sd) in

N group and 1.4060.35 in C group, revealing an overall up-

regulation of Hsa21 genes which is also observed in previous data

[12,15,16,17].

QPCR validation
To confirm changes in gene-expression levels detected by the

arrays and assess our statistical methods, we conducted approx-

imately 2,500 QPCRs of all 37 cDNA samples from DS and

control individuals. We first checked our definitions about a

reliably expressed gene. To this end, several genes, whose

normalized expression signals on the array in some individuals

were close to the threshold according to our definition, were

analyzed in the assay. These genes included VAV2 in N group and

BTG3, PDGFD and PDGFRB in C group. Their signals, albeit very

weak relative to the endogenous genes, were detected by QPCR in

all samples, thereby indicating the reasonable threshold defined by

our criterions. We next selected a subset of the genes from each

group and measured their expression levels. These genes included

Hsa21 and non-Hsa21 genes that were statistically up-regulated,

unaltered or down-regulated in analysis of the array. DS/control

ratio for each gene was calculated and was very consistent with

fold change obtained from the array (Table S3, Figure S1), with a

Pearson correlation coefficient of 0.91 (P = 2.2610214) (Figure 3).

Chromosomal distribution of the dysregulated genes
We analyzed chromosomal distribution of the dysregulated

genes in N and C group to evaluate effects of trisomy 21 on the

whole genome. Of the dysregulated transcript clusters, 326 and

166 were mapped to non-Hsa21 in N and C group, respectively.

These data are in agreement with the prior data [13,15,18],

providing further evidence for the idea that both expression

changes of Hsa21 and non-Hsa21 genes contribute to the etiology

of DS. Chromosomal distribution of these dysregulated genes in N

group and C group were showed in Figure 4. Figure 5 illustrated

the percentage of the dysregulated genes in the expressed genes at

individual chromosome and the whole genome level (correspond-

ing to ‘‘all’’). Through binomial tests, chromosome 21 in each

group was significantly overrepresented with Pc = 0.027 in N

group and Pc,1026 in C group after Benjamini-Hochberg (BH)

correction [19]. None of the remaining chromosomes was

significantly overrepresented or underrepresented at Pc,0.05.

Hierarchical cluster analysis of the dysregulated genes
In Figure 6, we illustrated the results of hierarchical clustering

on the dysregulated transcript clusters in DS. Cluster analysis

clearly separated the DS neonates from controls (Figure 6A). The

child samples were divided into two major distinguishable groups,

leaving one DS exception (D6) grouped into the control group

(Figure 6B). This exception is not surprising, because although

some phenotypes frequently occur in DS patients, the degree to

which individual is affected varies. It is likely that the misclassi-

fication of the DS child is a reflection of mild phenotypic

abnormalities caused by a combination of environmental and

genetic variation.

We further asked whether hierarchical clustering could distin-

guish DS from control individuals based on the dysregulated non-

Hsa21 genes. DS neonates were also separated from the matched

controls (Figure S2A), which is similar to the observation that

hierarchical clustering distinguishes DS from control fetuses based

on the non-Hsa21 altered genes in amniotic fluid cell-free mRNA

[18]. Unlike N group, DS and control children were clearly

divided into three groups (Figure S2B). The first group included 11

controls and sample D6 that showed different expression patterns

from the other DS samples in Figure 6B. The second group

included the remaining 9 DS samples. The third group, including

control C1, 3, 5 and 8, seemed to display intermediate patterns

between the other two groups. The four controls were also

grouped together as shown in Figure 6B, showing less well-defined

expression patterns in these samples.

Effects of transcription factors on disruption of non-
Hsa21 genes in DS

The dysregulated non-Hsa21 genes in each group demonstrated

the pervasive effects of trisomy 21 on the whole genome. One

hypothesis suggests that disruption of non-Hsa21 genes in DS is

through modulation of transcription factors (TFs) [20]. Therefore,

we searched the dysregulated genes in each group for TFs.

Expectedly, ten TFs in C group and two in N group were

deregulated (Table 2). We next asked whether targets of the TFs

were accordingly altered in expression. We first checked Pax5

which was down-regulated in both of the groups. Six genes, CD19,

Genome-Wide Expression Analysis in Down Syndrome
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CD79A, BLNK, EBF1, FCER2 and SPIB, are activated by Pax5

[21,22,23]. Expression of these targets was down-regulated in DS

children and neonates, however, only CD79A, BLNK, FCER2 and

SPIB were expressed with significant alteration in DS children

(Table S6). We further examined expression pattern of the known

targets of the other TFs in our array data. A total of 31 genes can

be activated or repressed by the TFs (Table S6); nonetheless,

expression of the targets was not significantly altered accordingly.

The reason for this could be that dysregulation of target gene

expression also depends on other deregulated TFs or coactivators.

These data indicate that deregulation of these TFs plays limited

roles in massive disruption of non-Hsa21 gene expression in DS.

Functional analysis of the dysregulated genes
To explore biological functions of the dysregulated genes in

each group, we analyzed the biological process and KEGG

pathways through Onto-tools. The significantly enriched GO

biological processes and KEGG pathways (Pc,0.05 after BH

correction) were showed in Table 3. One GO biological process

and two KEGG pathways were found to be enriched in N group.

Likewise, one GO biological process and six KEGG pathways

were enriched in C group.

Discussion

In present study, we analyzed gene expression difference

between uncultured blood cells from DS and controls at the two

age stages. A total of 383 and 174 dysregulated transcripts were

identified in DS children and neonates, respectively and the array

data were validated by approximately 2,500 QPCRs. Using

functional profiling analysis, we identified significantly disrupted

biological pathways which were relevant to immunodeficiency

observed in DS.

The frequency (35.1%) of the down-regulated genes in DS

neonates was higher than that (18.5%) in DS children. In amniotic

fluid cell-free mRNA [18] and heart tissue [24] from DS fetuses,

46% and 59% of the dysregulated genes showed down-regulation,

respectively. However, the reason for these observations is unclear.

Given that TFs usually can activate or repress multiple targets, we

postulated that the deregulated TFs exclusively in N or C group

could contribute to the frequency difference observed in our study.

GRHL1 expression was up-regulated exclusively in DS neonates,

however, its target, P450scc [25], showed normal expression.

Similarly, the known targets of the altered TFs only in DS children

were normally expressed (Table S6). The data point to limited

contribution of TFs to the frequency difference between N and C

Figure 1. A global and local view of expression patterns in DS in the two age groups. Each dot represents a gene. Red and green dots
indicate genes significantly up- and down-regulated in the DS samples, respectively. Blue dots indicate genes without change. (A) and (B) represent
the expressed transcript clusters on whole genome in N and C group, respectively. (C) and (D) represent the expressed transcript clusters located on
Hsa21 in N and C group, respectively.
doi:10.1371/journal.pone.0049130.g001
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Table 1. The common dysregulated genes in the two age groups.

Gene symbol Gene description N group C group Chr. Referenceb

Ratio P Ratio P

NAV1 neuron navigator 1 1.45 9.1E-03 1.35 4.7E-03 chr1 no

RALGPS2 Ral GEF with PH domain and SH3 binding motif 2 0.42 3.7E-03 0.43 9.9E-05 chr1 no

AFF3 AF4/FMR2 family, member 3 0.39 1.0E-03 0.61 6.6E-03 chr2 no

OSBPL10 oxysterol binding protein-like 10 0.33 1.0E-04 0.43 3.1E-05 chr3 no

TLR10 toll-like receptor 10 0.36 5.0E-03 0.46 9.0E-04 chr4 no

HLA-DOA major histocompatibility complex, class II, DO alpha 0.50 1.2E-03 0.61 7.0E-04 chr6 no

HLA-DOB major histocompatibility complex, class II, DO beta 0.43 4.7E-03 0.49 1.0E-04 chr6 no

PLXNA4 plexin A4 1.77 9.3E-03 1.60 6.0E-04 chr7 no

NPDC1 neural proliferation, differentiation and control, 1 1.50 9.6E-03 1.60 3.0E-04 chr9 no

PAX5 paired box 5 0.36 3.9E-03 0.55 1.9E-03 chr9 no

C13orf18 chromosome 13 open reading frame 18 0.49 4.7E-03 0.47 1.3E-03 chr13 no

P2RX5 purinergic receptor P2X, ligand-gated ion channel, 5 0.50 3.8E-03 0.63 6.9E-03 chr17 no

CD22 CD22 molecule 0.30 5.1E-03 0.49 2.0E-04 chr19 no

CLEC17A C-type lectin domain family 17, member A 0.38 7.0E-04 0.55 4.0E-04 chr19 no

CST7 cystatin F (leukocystatin) 2.74 9.4E-03 1.80 6.3E-03 chr20 no

ATGAT3a 1-acylglycerol-3-phosphate O-acyltransferase 3 1.73 5.7E-03 2.05 8.1E-06 chr21 [12]

ATGAT3a 1-acylglycerol-3-phosphate O-acyltransferase 3 1.90 9.4E-03 1.79 1.4E-06 chr21 [12]

ITGB2 integrin, beta 2 2.03 1.9E-03 1.73 3.5E-03 chr21 [12,13,14,16,30]

PDXK pyridoxal (pyridoxine, vitamin B6) kinase 2.51 5.0E-04 1.93 1.0E-04 chr21 [14,16]

PTTG1IP pituitary tumor-transforming 1 interacting protein 1.79 7.1E-03 1.46 6.4E-03 chr21 [13,14,16]

TRPM2 transient receptor potential cation channel,
subfamily M, member 2

2.67 6.3E-03 1.51 4.3E-03 chr21 [12]

SLC9A7 solute carrier family 9 (sodium/hydrogen exchanger),
member 7

0.52 6.9E-03 0.69 5.1E-03 chrX no

aDifferent transcript clusters of the same gene.
bReference detecting dysregulation of the gene in DS studies.
doi:10.1371/journal.pone.0049130.t001

Figure 2. Fold change (DS/control) distribution of the dysregulated genes in DS. The x-axis indicates fold changes which are divided into
four intervals and the y-axis represents percentage of the genes in one interval in all the dysregulated genes in one group.
doi:10.1371/journal.pone.0049130.g002
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group. Other mechanism responsible for the observations remains

further postulated.

In DS neonates, only eight transcript clusters on Hsa21 were

significantly up-regulated in expression. The finding is compatible

with the previous data that a quite small number of Hsa21 genes

are dysregulated in DS fetus samples [16,18,26]. We thus

hypothesize that triplication of Hsa21 per se induces a modest

dysregulation of Hsa21 genes during early developmental stages.

The modest dysregulation might partially account for the

phenotypes of DS individuals and mouse models at early stages.

It has been reported that the basal forebrain cholinergic system is

apparently normal in DS fetuses and infants, based on both

neuronal numbers and choline acetyltransferase activity [27,28].

In Ts65Dn mice, the cerebellum has normal size at birth as

compared to wild type littermates [29].

We analyzed functions of the 22 common dysregulated genes in

both age groups. Among the 22 genes, ITGB2, HLA-DOA, HLA-

DOB, Pax5 and CD22 are more associated with the immune system

based on published data. ITGB2 encodes b chain of the integrin

lymphocyte functional antigen-1 (LFA-1) and its overexpression

increases aggregation of DS lymphoblastoid cell lines (LCLs) [30].

HLA-DOA and HLA-DOB form HLA-DO which functions as a

modulator of Ag presentation [31]. Their down-regulation in DS

might affect efficiency of Ag presentation. Both Pax5 and CD22

were down-regulated in DS children and neonates. Pax5 plays an

essential role in B-lineage commitment [32]. Strikingly, Pax5(2/

2) cells show slower growth, decreased surface IgM expression,

and total loss of B cell receptor signaling [33]. CD22-deficient mice

exhibits a reduced number of mature B cells in circulation and a

significant diminution of surface Ig levels in these B cell

subpopulations [34,35]. Deregulation of the five genes suggests

their critical roles in immunodeficiency in DS patients.

We further explored biological functions of the dysregulated

genes in the two age groups at a genome-wide level. In N group,

innate immune response and two KEGG pathways, systemic lupus

erythematosus (SLE) and leukocyte trans-endothelial migration,

were enriched. The process or pathways are directly linked to the

immune system, thereby supporting the hypothesis that the

immune system in DS is intrinsically deficient from the very

beginning [8]. Leukocyte trans-endothelial migration is vital for

immune surveillance and inflammation [36]. In this pathway, Vav2

expression in DS neonates was down-regulated (Table S3). The

gene is an activator of Cdc42, Rac1 and RhoA [37] which regulate

actin dynamics and gene expression. Down-regulation of Vav2

could disturb leukocyte migration, for knockdown of Vav2 prevents

Rac activation in some cells [38].

In C group, one biological process and six pathways were

significantly deregulated in PBMCs of DS patients. In the process

of leukocyte adhesion, overexpression of ITGB2 and ITGAL whose

products form integrin LAF-1 has been reported in LCLs from DS

patients and increase adhesiveness of these cells [30]. It is worthy

of note that product of ITGB1 can form 11 heterodimeric integrins

through pairing with alpha chain of integrins [39]. Up-regulated

expression of the gene could have an impact on balance of the

associated integrins. The first three pathways are focal adhesion,

cell adhesion molecules (CAMs) and regulation of actin cytoskel-

eton which are implicated in cell growth, survival and mobility

[40,41,42]. It has been shown that absolute total lymphocytes are

significantly lower in DS children than controls [43,44,45]. Also, T

lymphocyte maturation is impaired in DS individuals [46]. Our

findings could be used to evaluate these observations associated

with DS. The three remaining pathways are B cell receptor

signaling pathway, primary immunodeficiency and natural killer

cell mediated cytotoxicity. Individuals with DS display increased

susceptibility to recurrent infections [4] and significantly reduced

IgG2 levels [45]. Moreover, lower NK cytotoxic activity compared

to controls has been observed in DS children and adults [47,48].

Disturbance of the three pathways could contribute to immune

dysfunction observed in DS.

There are several potential limitations in this work. One

limitation is that total RNA was isolated from distinct cell types

and cell composition between N and C group. Another is smaller

sample size in N group which could reduce statistical power. For a

more comprehensive analysis of gene expression in DS, one would

need to consider cell type difference and sample size.

Materials and Methods

Ethics statement
The Ethical Committee of the Chinese National Human

Genome Center at Shanghai approved this project for the

involvement of human subjects (approval ID: 201201) and parents

of all the individuals provided written informed consent.

Samples and groups
All samples, including 15 DS patients and 22 controls, were

collected at the Shanghai Children’s Medical Centre from

peripheral blood of the participants. All DS patients were

confirmed by karyotyping. The samples were divided into two

groups: N group (5 DS versus 7 control individuals, age: 3 days to

38 days) and C group (10 DS versus 15 control individuals, age: 1

year to 13 years). In each group, age and cell type were matched

between DS and controls. Although the mean age of all the DS

individuals was less than that of all control individuals, the

difference was not statistically significant (p = 0.27 and p = 0.20 for

C and N group, respectively, Student’s t test) (Table S4).

Total RNA isolation
From the 25 child samples (C group), peripheral blood

mononuclear cells (PBMCs) were isolated from peripheral blood

using Lympholyte H-H (CEDARLANE), and total RNA was

extracted using the mirVanaTM miRNA Isolation Kit (Invitrogen)

Figure 3. Comparison of fold change between array and QPCR.
A blue dot represents a gene.
doi:10.1371/journal.pone.0049130.g003
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Figure 4. Chromosomal distribution of the differentially expressed genes. (A) and (B) indicate the chromosomal distribution of the 174 and
383 differentially expressed transcript clusters in N and C group between DS and age-matched controls, respectively. Blue bars represent lower
expressed genes and red bars represent higher expressed genes in DS individuals.
doi:10.1371/journal.pone.0049130.g004

Figure 5. Percentage of dysregulated genes in expressed genes. Each bar indicates the percentage of the dysregulated genes in the
expressed genes on each chromosome. ‘‘all’’ represents the percentage of total dysregulated genes in all expressed genes in each group.
doi:10.1371/journal.pone.0049130.g005
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according to the manufacturer’s protocol. The remaining 12

neonate samples (N group) had limited blood volume; therefore,

total RNA was extracted from peripheral blood cells (PBCs). RNA

concentration and purity was tested using a Nanodrop 2000c

spectrophotometer (Thermo Scientific). RNA quality was further

assessed with the Agilent 2100 Bioanalyzer using RNA 6000

Nanochips (Agilent Technologies). None of the 37 RNA samples

had DNA contamination or RNA degradation. RNA samples

were stored at 280uC for hybridization.

Screening of GATA1 mutation in DS samples
DS neonates are at an increased risk of transient leukemia (TL)

[49] and as many as 10% of them are affected by transient myeloid

disorder [50]. Somatic mutations of GATA1 exon 2 including

insertions, deletions, and point mutations are found in almost all

cases of DS–associated TL [51,52]. GATA1 encodes hematopoietic

transcription factor [52,53] and its mutation in DS samples could

affect transcriptomes and lead to an unfair comparison between

DS and controls. Therefore, we checked for the presence of

GATA1 mutation in DS neonates and children. Genomic DNAs

from the DS samples were isolated with QIAamp Blood DNA

Mini kits (Qiagen) according to the manufacturer’s protocol.

Figure 6. Hierarchical clustering of the differentially expressed genes. (A) hierarchical clustering of N group (DS: D11–D15 versus control:
C16–C22) based on the 174 dysregulated transcript clusters (rows). (B) hierarchical clustering of C group (DS: D1–D10 versus control: C1–C15) based
on the 383 differentially expressed transcript clusters. Red indicates higher expression and green indicates lower expression.
doi:10.1371/journal.pone.0049130.g006

Table 2. The dysregulated transcription factors in DS.

Accession number
Gene
symbol Gene description

Ratio
(DS/control)

P_value
(ANOVA) Chromosome Group

NM_005263 GFT1 growth factor independent 1 transcription
repressor

1.82 2.9E-04 chr1 C

NM_001040667 HSF4 heat shock transcription factor 4 1.38 6.0E-04 chr16 C

NM_003121 SPIB Spi-B transcription factor (Spi-1/PU.1 related) 0.49 9.1E-04 chr19 C

NM_001001890 RUNX1 runt-related transcription factor 1 1.50 1.8E-03 chr21 C

NM_002040 GABPA GA binding protein transcription factor, alpha
subunit 60 kDa

1.55 9.8E-03 chr21 C

NM_001951 E2F5 E2F transcription factor 5, p130-binding 0.49 8.7E-03 chr8 C

NM_016734 PAX5 paired box 5 0.55 1.9E-03 chr9 C

NM_022465 IKZF4 IKAROS family zinc finger 4 (Eos) 1.34 8.3E-03 chr12 C

NM_015995 KLF13 Kruppel-like factor 13 1.51 7.2E-03 chr15 C

NM_001031804 MAF v-maf musculoaponeurotic fibrosarcoma
oncogene homolog (avian)

1.99 8.6E-04 chr16 C

NM_198182 GRHL1 grainyhead-like 1 (Drosophila) 1.39 2.9E-03 chr2 N

NM_016734 PAX5 paired box 5 0.36 3.9E-03 chr9 N

doi:10.1371/journal.pone.0049130.t002

Genome-Wide Expression Analysis in Down Syndrome
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Amplicons including the whole GATA1 exon 2 were obtained by

PCR using forward (59-TGTCTGAGGACCCCTTCTGT-39)

and reverse (59-AAGCTTCCAGCCATTTCTGA-39) primer

and then sequenced. Sequence comparisons were performed by

use of programs available from NCBI. However, no mutation of

GATA1 exon 2 was found in the DS samples used in this study

(Files S 1).

Array hybridization
For each sample, ribosomal RNA was removed from 1 mg of

total RNA with the RiboMinus Human/Mouse Transcriptome

Isolation kit (Invitrogen) [54,55]. A similar approach for the

depletion of abundant rRNA molecules was used in RNA-seq

analysis [11,56], which could investigate a plethora of non-

polyadenilated mRNA. cDNA was synthesized using the Gene-

Chip WT (Whole Transcripts) cDNA Synthesis and Amplification

Kit (Affymetrix) according to manufacturer’s instructions. The

sense cDNA was fragmented and end labeled by use of the

GeneChip WT Terminal Labeling Kit (Affymetrix). Approxi-

mately 5.5 mg of biotin-labeled DNA target was hybridized to the

Affymetrix GeneChip Human Exon 1.0 ST Array at 45uC for

16 hr following manufacturer’s protocol (Affymetrix). Arrays were

washed after hybridization, stained on a GeneChip Fluidics

Station 450 and scanned on a GCS3000 Scanner (Affymetrix).

Raw data were extracted from the scanned images and the

Expression Console software (Affymetrix) was used for data

analysis.

Normalization and summarization of array hybridization
data

Expression Console software (Affymetrix) was used to quantile-

normalize the probe fluorescence intensities over all 37 samples

with PM-GCBG background correction. An iterative probe

logarithmic intensity error (IterPlier) model (http://www.

affymetrix.com/support/technical/technotes/plier_technote.pdf)

was used to summarize the meta-probe set (representing gene

expression) intensities. To stabilize variance, a constant of 16 was

added to all probe set intensities, and then the signal values were

log2 transformed. Removing the transcript clusters without any

RefSeq-supported annotation, we generated the expression signals

of 17,626 transcript clusters with core sets. A transcript cluster was

considered to be reliably expressed when the log2-transformed

expression signal was larger than 6.0 in at least 90% of the all

samples in each group [54]. The remaining transcript clusters in

each group, which met this criterion as determined by using R

software (http://www.r-project.org/), were utilized for further

analysis.

Raw microarray data have been deposited with GEO (Acces-

sion No. GSE35665).

Identifying differentially expressed genes in each age
group

In this study, gender was less well matched between DS and

controls in each group. Gender and interaction of DS and gender

effects could have an impact on gene expression variation. To

identify differentially expressed genes between DS and control

individuals in each group which are independent of the two effects,

we used analysis of variance (ANOVA) at an individual gene level.

For each gene, the following linear model was used:

yijk~mzDizGjzDGijzeijk

Where yijk is the normalized expression of the gene in log2 for ith

disease type (DS or control), jth gender (male or female), and kth

sample in each group; the symbols D, G and DG represent the fixed

effects due to the disease, gender as well as interaction of

disease6gender, respectively; the error for each gene for sample ijk

is designated as eijk. ANOVA was performed using R software.

Table 3. Enriched GO biological processes and KEGG pathways in the dysregulated genes in DS.

Age group GO/KEGG ID
Biological Process/KEGG
Pathway Gene Symbol Pa Pcb

Neonate group GO: 45087 innate immune respones C1QC; FCGR1A; PGLYRP1; C1R; TLR10; CYBA;
AKIRIN2

,1.0E-04 9.3E-04

KEGG: 05322 Systemic lupus erythematosus HLA-DOA; HLA-DOB; C1R; C1QC;
FCGR1A; ELA2

2.0E-04 9.0E-03

KEGG: 04670 Leukocyte transendothelial
migration

CYBA; ITGB2; MAPK14; VAV2; MMP9 1.1E-03 2.4E-02

Child group GO: 7159 leukocyte adhesion CERCAM; ITGAL; ITGB2; ITGB1; EZR ,1.0E-05 6.5E-03

KEGG: 04510 Focal adhesion PDGFRB; MAP2K1; FYN; ITGA10; DIAPH1;
COL6A2; PDGFD; CAPN2; SHC1; LAMB2;
PPP1CA; ITGAV; ERBB2; ITGB1

1.6E-06 6.9E-05

KEGG: 04514 Cell adhesion molecules (CAMs) ITGB1; ITGB2; ITGAV; NCAM1; ITGAL; CD22;
HLA-DOA; PTPRM; SPN; HLA-DOB; CNTAP2

2.0E-06 6.9E-05

KEGG: 04810 Regulation of actin cytoskeleton ITGB1; ITGB2; ITGAV; ITGAL; TIAM1; PPP1CA;
PDGFRB; PDGFD; EZR; MAP2K1; DIAPH1;
ITGA10

6.6E-05 1.6E-03

KEGG: 04662 B cell receptor signaling pathway CD79A; RASGRP3; BLNK; CD22B; CD78B;
CD72

4.0E-04 6.2E-03

KEGG: 05340 Primary immunodeficiency BLNK; CD79A; TNFRSF13C; ADA 1.6E-03 2.2E-02

KEGG: 04650 Natural killer cell mediated
cytotoxicity

PRF1; MAP2K1; SHC1; CD244; FYN; ITGB2;
ITGAL

2.4E-03 2.8E-02

aNominal p values.
bAdjusted p values after BH correction.
doi:10.1371/journal.pone.0049130.t003
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Multiple testing (BH correction) was performed on P values after

ANOVA, no gene in DS neonates and only eight genes in DS

children were significantly dysregulated (q,0.05). Thus, we

referred to the method of Conti et al. [15] and applied P value

after ANOVA and fold change (DS/control) for differentially

expressed genes between DS and controls in each group.

Specifically, genes with significantly different expression between

DS and control individuals met following criteria: P value,0.01

and fold change (DS/control).1.30 (up-regulated) or ,0.77

(down-regulated). Here, fold change is equal to 2 ‘ delta mean

value, which is the error of the mean of log2 (DS) and mean of log2

(control).

Due to broad age range (from 1 year to 13 years) in C group, we

determined correlation of differentially expressed genes with age

and assessed whether the variable had effects on gene expression.

Pearson’s correlation test was performed for age, as described by

Lockstone et al [13] and P values were adjusted by use of BH

correction.

Quantitative real-time PCR
For validation of expression ratios between DS and control

samples obtained from the array, total RNA was reverse

transcribed into cDNA using PrimeScriptTM RT reagent Kit

(TaKaRa). Quantitative real-time PCR (QPCR) was performed

on 11 genes from N group and 25 genes from C group using the

LightCycler 480 (Roche Diagnostics) or the StepOne Plus (Applied

Biosystems) systems with SYBRH Premix Ex TaqTM II (Perfect

Real Time) (TaKaRa). Each gene was amplified in replicates of

three. The genes and their primer sequences, designed by Primer 3

software [57], were described in Table S5. UBA7 (NCBI Gene ID

7318) and RNF4 (NCBI Gene ID 6047) were used as endogenous

control genes [14]. For each sample, we normalized the mean

cycle threshold value (Ct) by subtracting the mean of the Ct

generated from the two reference genes. The same ANOVA as the

array analysis above was used to test statistical significance of

difference in gene expression between DS and controls.

Chromosomal distribution of significantly dysregulated
genes in DS

Distribution of significantly dysregulated genes in DS individ-

uals was tested against the null chromosomal distribution of the

expressed transcript clusters in N and C group, respectively.

Significant chromosomes were identified with binomial test

(Pc,0.05 after BH correction), as described by Zhang et al [54].

STRIPE software was used to plot the chromosomal distribution

of the dysregulated transcript clusters in each group [58].

Cluster analysis
For the transcript clusters in each group that were differentially

expressed between DS and control samples, Euclidean distance of

expression levels was computed and hierarchical clustering was

performed using complete-linkage method (the hclust function in

the stats package) in R software. Heatmaps were plotted using the

heatmap.2 function in the gplots package with the ‘‘scale = ‘row’’’

option set to ‘‘z-score normalize the rows’’.

GO and KEGG pathway analysis
Onto-Express and Pathway-Express in Onto-tools [59] were

used to identify enriched Gene Ontology (GO) [60] terms and

Kyoto Encyclopedia of Genes and Genomes (KEGG) [61]

pathways, respectively. Among the differentially expressed genes

in each group, GO terms or KEGG pathways that were over-

represented relative to the gene set on the Affymetrix Human

Exon 1.0 ST Array were selected (four or more hits [54],

hypergeomatric test Pc,0.05 after BH correction ).

Supporting Information

Figure S1 Box plots of normalized expression levels of
36 genes from QPCR. The Y-axis is normalized expression

values and the x-axis is sample (D: DS versus C: control). Each

panel represents a gene. DS and control in each panel is

represented by red and green box in N group and by red and

blue box in C group, respectively.

(TIF)

Figure S2 Hierarchical clustering of the differentially
expressed non-Hsa21 genes. (A) hierarchical clustering of N

group (DS: D11–D15 versus control: C16–C22) based on the non-

Hsa21 dysregulated transcript clusters (rows). (B) hierarchical

clustering of C group (DS: D1–D10 versus control: C1–C15) based

on the non-Hsa21 differentially expressed transcript clusters.

(TIF)

Table S1 List of the dysregulated genes in neonate
group.
(XLS)

Table S2 List of the dysregulated genes in child group.
(XLS)

Table S3 Comparison between microarray data and
QPCR.
(DOC)

Table S4 Characteristics of samples.
(DOC)

Table S5 List of oligonucleotide primers used in the
QPCR.
(DOC)

Table S6 Expression pattern of known targets of the
transcription factors.
(DOC)

File S1 Sequences of GATA1 exon 2 in DS samples.
(FASTA)
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