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Abstract

SELDI-TOF mass spectrometer’s compact size and automated, high throughput design have been attractive to clinical
researchers, and the platform has seen steady-use in biomarker studies. Despite new algorithms and preprocessing
pipelines that have been developed to address reproducibility issues, visual inspection of the results of SELDI spectra
preprocessing by the best algorithms still shows miscalled peaks and systematic sources of error. This suggests that there
continues to be problems with SELDI preprocessing. In this work, we study the preprocessing of SELDI in detail and
introduce improvements. While many algorithms, including the vendor supplied software, can identify peak clusters of
specific mass (or m/z) in groups of spectra with high specificity and low false discover rate (FDR), the algorithms tend to
underperform estimating the exact prevalence and intensity of peaks in those clusters. Thus group differences that at first
appear very strong are shown, after careful and laborious hand inspection of the spectra, to be less than significant. Here we
introduce a wavelet/neural network based algorithm which mimics what a team of expert, human users would call for peaks
in each of several hundred spectra in a typical SELDI clinical study. The wavelet denoising part of the algorithm optimally
smoothes the signal in each spectrum according to an improved suite of signal processing algorithms previously reported
(the LibSELDI toolbox under development). The neural network part of the algorithm combines those results with the raw
signal and a training dataset of expertly called peaks, to call peaks in a test set of spectra with approximately 95% accuracy.
The new method was applied to data collected from a study of cervical mucus for the early detection of cervical cancer in
HPV infected women. The method shows promise in addressing the ongoing SELDI reproducibility issues.
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Introduction

The data analysis pipeline following a SELDI study involves 1)

preprocessing to produce quantified peak clusters, 2) manually

validating peak clusters as a QC step, and 3) group analysis to find

differences between cases and controls. The methodology for

preprocessing SELDI involves multiple algorithmic steps, and has

been reviewed in [1]. In particular, the goal of preprocessing is to

detect peaks in individual spectra corresponding to proteins and to

produce estimates of peak areas/concentrations while minimizing

the effects of noise and artifacts. Validation and QC of the

preprocessing steps is generally done manually and can be time-

consuming. In addition, visual interpretation is not always

objective and it is not uncommon for experts to have trouble

reaching a consensus about the validity of a preprocessing result.

However, this step is essential in order to reduce the chance that

false positive and false negative peaks may bias the group

comparison results. In a group analysis, peaks detected across

multiple spectra are associated together to form peak clusters

estimated to be from the same analyte (present/absent across

samples, with varying peak area/concentration). Statistical tech-

niques such as t-tests and Mann-Whitney U-tests are used to find

peaks that are significantly different between groups. Out of these

three major components in the SELDI clinical data analysis

pipeline, the manual validation step can be especially laborious

especially on heterogeneous clinical data that may contain

subtypes. This ultimately limits the size of study feasible with

SELDI.

In order to facilitate more accurate SELDI studies with larger

sample sizes, we introduce a neural network model to improve the

automation of the validation step along with major improvements

to the LibSELDI preprocessing approach. The neural network is

trained on approximately 4200 expert annotated peaks. In this

way, the neural network mimics the validation behavior of our in-

house scientists in a more automated and objective fashion. The

algorithm improvements to LibSELDI include 1) a 6506speed up
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of the algorithm, 2) improved denoising to reduce artifacts, and 3)

quantitation. These algorithm improvements are demonstrated on

a pooled-sample dataset. Finally, the improved LibSELDI is

combined with the neural network and tested on a pilot clinical

dataset consisting of samples from two different stages of cervical

neoplasia. We compare the results of the LibSELDI/neural

network approach to the standard Ciphergen Express analytical

software on both the QC samples and the clinical samples.

Methods

Ethics Statement
This research was approved by the Centers for Disease Control

and Prevention’s Institutional Review Board. Informed consent

was obtained in writing from participants in the study.

Cervical mucous was collected from women enrolled as part of

an ongoing study of cervical neoplasia [2]. Briefly, participants

were non-pregnant, HIV-negative women, aged between 18–69

years, attending colposcopy clinics at urban public hospitals in

Atlanta, Georgia, and Detroit, Michigan between December 2000

and June 2004. As previously described, at the time of colposcopy

two Weck-CelH sponges (Xomed Surgical Products, Jacksonville,

FL) were placed, one at a time, into the opening of the cervical

canal that leads to the cavity of the uterus (cervical os) to absorb

cervical secretions [3]. The wicks were immediately placed on dry

ice and stored at 280uC until processed. Preparation of the pooled

QC sample has been previously described [3,4]. Forty Weck-CelH
sponges with no visual blood contamination from 25 randomly

selected subjects were extracted using M-PERH buffer (Thermo

Fisher Scientific, Rockford, IL) containing 0.15M NaCl and 16
protease inhibitor (Roche, Indianapolis, IN). The extracts were

combined, aliquoted and stored at 280uC until assayed. Total

protein content was measured using the Coomasie PlusTM kit

(Thermo Fisher Scientific) as per the manufacturer’s protocol. For

the pilot clinical analysis we selected 16 non-dysplastic cervical

mucosa controls (CIN0) and 8 cervical intraepithelial neoplasia

grade III cases (CIN3) consisting of post-menopausal women

matched for age and race, so as to minimize the confounding

effects of varied stages of the menstrual cycle on protein profiles.

The Protein Biological System II-cTM mass spectrometer, with

Protein Chip software (version 3.2) (Ciphergen Biosystems,

Fremont, CA) was used to perform SELDI-TOF MS as described

previously [5]. Protein chip surface preparation, sample applica-

tion, wash, and application of matrix was automated using the

BiomekH 2000 laboratory automation workstation (Beckman

Coulter Inc., Fullerton, CA) as per manufacturer’s instructions

(Ciphergen). The All-in-one protein standard (Ciphergen) was run

weekly on the NP-20 (normal phase) chip surface (Ciphergen) to

be used for external mass calibration. The QC sample was

included as one spot on at least one chip in each run. The

prepared weak cation exchanger chips (CM10) evaluated were

incubated with the sample for 1 h at room temperature (24uC62)

and washed three times at 5 min intervals with the CM10 low

stringency binding buffer, followed by a final wash with ddH2O. In

the case of NP-20 arrays, the surface was prepared with 3 mL

ddH2O, and ddH2O was used for all washing steps. Chips were

air-dried 30 min prior to the application of sinnapinic acid (SPA)

matrix. The chips were analyzed on the SELDI-TOF instrument

within 4 h of application of the matrix. The previously optimized

instrument settings were used here [5]. Data collection was set to

150 kDa optimized for m/z between 3–30 kDa for the low mass

range. The laser intensity was set at 185 with a detector sensitivity

of 8 and number of shots averaged at 180 per spot for each sample.

Two warming shots were fired at each position with the selected

laser intensity +10. These were not included in the data collection.

Data was exported to Ciphergen Express Client (CE, version 3.5)

for further analysis. Data collection from start to finish took

2 weeks.

CE was used to preprocess the spectra following a modification

of the standard operating procedure that has been developed in

house and previously described [6]. Briefly, baseline correction,

external calibration using protein standards, normalization using

total ion current, and mass alignment were applied to all spectra.

Peak detection was performed on this pre-processed data. Peaks

from 3–30 kDa were detected by centroid mass, minimum percent

threshold set to 10%, estimated peaks, and a mass window of

0.3%. Two different signal to noise settings were used for peak

detection 1) First pass (S/N) = 5, valley depth = 3, Second pass

(S/N) = 3, valley depth = 2; 2) First pass (S/N) = 3, valley depth

= 2, no second pass. Group differences between Cin0 and Cin3

were estimated using the p-value wizard in CE. Significance of the

median peak intensities between the 2 groups was calculated using

the Mann-Whitney test as described in the Protein Chip Data

Manager Software 3.5 Operation Manual.

Orthogonal wavelet transforms, while having excellent denois-

ing properties in the mean-squared error sense, can sometimes

produce artifacts. These artifacts appear in the data as localized

ringing in the vicinity of high frequency components/discontinu-

ities (the pseudo-Gibbs effect) and reconstruction errors containing

imprints of the particular wavelet basis used with the transform.

To address these issues, Coifman and Donoho introduced the

concept of cycle-spinning [7]. Let denote the vector of raw

intensities measured from a SELDI experiment, and let and be the

circulant-shift operator and the wavelet-denoising operator,

respectively. The ‘‘Cycle-Spinning’’ wavelet transform is defined

by Coifman and Donoho as

T(x;D)~Aved[DS{d(T(Sd(x))), ð1Þ

where D is a set of signal shifts. In other words, this framework is a

shift-denoise-unshift-average approach [7]. Coifman and Donoho

have shown that this approach suppresses the energy in artifacts.

The cycle-spinning wavelet transform is also equivalent to the

undecimated and translation-invariant wavelet transforms.

Coombes et al. [8] have previously introduced the undecimated

wavelet transform for application to SELDI data. Since this is a

general framework and T can represent any wavelet denoising

operator, we extended the quadratic variance-based denoising of

Emanuele and Gurbaxani [9] to use cycle spinning by applying (1)

with T defined by eq. (10) of [9].

We designed and implemented a zero-phase, finite-impulse

response (FIR) filter for LibSELDI (LS) to prepare processed

spectra for quantification using peak heights or peak areas. While

LS has been shown previously to perform well at resolving the

mean m/z of peak clusters in a group of spectra, the denoised

output of the modified Antoniadis-Sapatinas algorithm often

decreases the peak heights. This effect was noted previously by

Besbeas et al. [10]. The comparison paper by Cruz-Marcelo et al.

[11] showed that different preprocessing techniques tend to be

good at peak detection and peak quantification, respectively. This

seems to imply that separate strategies are required for these

preprocessing tasks. We designed the filter using the Parks-

McLellan algorithm to give us good noise attenuation properties

while maintaining the fidelity of the peak shape [12].

To automate peak validation, a feed-forward neural network

with one hidden layer and sigmoid activation function was built in

4 steps: 1) a large set of manually validated peaks to use for model

parameter estimation was created, 2) peaks were divided into

Wavelet/Neural Network Algorithm for SELDI

PLOS ONE | www.plosone.org 2 November 2012 | Volume 7 | Issue 11 | e48103



training/validation/test sets according to a 50/25/25 percent

split, 3) model parameters were estimated,

H~ H(1)[<n|n2 ,H(2)[<n2|1
� �

, and regularization parameter, l,

using the training and validation sets, and 4) the generalization/

test error was estimated. A detailed review of neural networks can

be found in [13]. In our model of peak validation, a peak had one

of two states: y~1 if validated and y~0 if discarded. The goal of

the neural network was to take feature vectors f(k)
� �

k
derived

from local windows around a set of peak m/z predictions mzkf gk

and produce a corresponding set of predictions hH f(k)
� �� �

k
where

hH f(k)
� �

~ Pr yk~1Df(k)
� �

. For training the network, let

f(1),y(1)
� �

, . . . , f(mTrain),y(mTrain)
� �� �

denote mTrain training exam-

ples. The regularized cross-entropy cost function corresponding to

a neural network with known parameters and 1-hidden layer

topology is

Jl Hð Þ~

{
1

mTrain

XmTrain

i~1

y(i) log hH f(i)
� �� �

z 1{y(i)
� �

log 1{ hH f(i)
� �� �� �" #

z
l

2mTrain

X2

k~1

Xnk

i~1

Xnkz1

j~1

H(k)2

j,i

ð2Þ

where

hH f(i)
� �

~g H
(2)
1,0z

Xn2

k~1

H
(2)
1,kg H

(1)
k,0z

Xn1

j~1

H
(1)
k,j f

(i)
j

 ! !
, ð3Þ

g tð Þ~ 1

1ze{t
: ð4Þ

Note that in (2)–(4), f
(i)
k represents the kth element of the n

dimensional feature vector f(i). For a given l, Jl Hð Þ was

minimized using the conjugate-gradient method (Polack-Ribiere)

with step sizes selected by the slope-ratio method and Wolfe-

Powell stopping criteria [14]. To fit the regularization parameter,

we calculated the validation set classification error over a grid of l
values and kept the H corresponding tos the l giving the lowest

validation set classification error. With this best set of parameters,

we evaluated the performance on the test set to estimate the

expected performance on data that the neural network has not

seen. Using the best H, we validated a predicted peak cluster from

a clinical experiment using the following procedure:

1. Let x(1), . . . ,x(m)
� �

and s(1), . . . ,s(m)
� �

be a collection of raw

and accompanying processed spectra, respectively, from LS.

Define mz to be a mean peak cluster m/z value estimated to be

present in the data using LS.

2. In a local window +0:3% around mz, find if a local peak, mzi

exists. If so, extract feature vector f(i) from x(i),s(i),mzi

� �
, and

add i to set f. Repeat for all spectra i~1, . . . ,m.

3. For i[f, ‘‘look’’ at the peak with the neural network to validate

the prediction. In other words, keep peak i in the cluster if and

only if hH f(i)
� �

§0:5.

4. Calculate the peak cluster prevalence as
DfD
m

, and extract peak

height and peak area values for each peak that has been

validated for use in the group analysis step later.

We used a dataset of spectra from 31 pooled cervical mucous

QC samples to evaluate the ability of LS and CE to accurately find

peak cluster mean m/z values corresponding to reproducible

peaks. We define a reproducible peak as one that is present at the

same m/z value (within 0.3% mass error tolerance) in 80% or

more of the spectra. Two of the authors (VE, GP) visually

inspected every reproducible peak predicted by each method

adhering to the following protocol:

1. Size of window or zoom was 62% of the m/z value of the

peak.

2. Peaks were categorized separately as Confirmed or Rejected

for the processed and raw spectra. Agreement was required

between authors VE and GP for close calls.

3. If a peak was confirmed in the processed spectra but rejected in

the raw spectra, the final consensus call was ‘‘reject’’, as the

peak could be an artifact introduced after processing.

4. Criteria for rejection were:

a. Peaks that were too broad at a given m/z.

b. Peaks that could not be distinguished from the noise of the

surrounding regions.

c. A cluster is rejected if there were less than 24 spectra with

good peaks (prevalence = 24/30 = 80%).

d. Peak was clearly an artifact from the preprocessing step.

Once all reproducible peaks had a final annotation of

confirmed or rejected, summary statistics were calculated to

analyze the virtues of each approach. For each approach, we

calculated.

Sensitivity TPRð Þ~ TP

FNzTP

Falsediscoveryrate FDRð Þ~ FP

FPzTP
:

ð5Þ

In this case, the estimated TP is the number of reproducible

peaks predicted that were confirmed by visual inspection, the

estimated FN is the number of confirmed peaks that were missed,

and the estimated FP is the number of peaks that were rejected as

false after visual inspection. In other words, sensitivity is the

percentage of reproducible peaks that are confirmed via manual

validation, while the false discovery rate is the percentage of

reproducible peaks that were rejected after manual validation but

predicted by CE or LS.

We tested both CE and LS on a pilot clinical data set containing

16 controls and 8 cases. In addition to estimating mean peak

cluster m/z values accurately, clinical data presents the additional

challenge of accurately estimating peak cluster prevalence and

peak height/area measurements. Fisher-exact tests with mid-P

correction were used to test for significant prevalence differences

between cases and controls. T-tests and Mann-Whitney U tests

were performed to find peak clusters with significant differences.

Peak clusters with statistically significant behavior were qualitative

reviewed to check for quality of the preprocessing and neural

network-based validation results.

ð2Þ

Wavelet/Neural Network Algorithm for SELDI
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Results

All samples were tested in duplicate and provided spectral

profiles in the initial run. In the case of 3 samples, duplicate

spectra were removed after initial analysis using CE as the

normalization factor (NormF) was greater than average

NormF+2s generated with the batch analysis. These samples

were rerun and replicate spectra used in further analysis. In the

case of LS analysis, duplicate or replicate spectra were averaged to

produce a single spectrum representing each subject prior to peak

detection, unlike CE. In the CE analysis, duplicates or replicates

peak heights were averaged after peak detection but before t-tests/

group analysis.

We estimated the quadratic variance function (QVF) from

spaces between the peaks of the QC data. Peak-free regions were

selected by visual inspection, with the mean and variance at each

point calculated across spectra. A quadratic detector response

curve is fit to the mean/variance points using least squares, and

results of the QVF estimation procedure are shown in Figure 1.

The QVF is stored for use with LS as part of the modified

Antoniadis-Sapatinas (mA-S) algorithm for denoising the QC and

clinical spectra.

Extending the modified Antoniadis-Sapatinas algorithm to use

cycle spinning required decreasing the computational complexity

of the algorithm. For the implementation of the mA-S algorithm

used in [9,10], approximately 19.5 minutes of computing time

using 10Gb of RAM was required to denoise a single spectrum.

Coifman and Donoho showed that it is sufficient to compute

O log nð Þ shifted transforms for a signal of length n. In a typical

low-laser low-mass focused spectrum we have generated,

O log nð Þ&15, which means it would take almost 5 hours for a

cycle-spinning mA-S algorithm to denoise a single spectrum. Five

hours is enough time to manually process several spectra, so this

result is unacceptable. We made the following observations about

the computations:

1. The slow part of the computation was the default implemen-

tation for calculating the term Wð ÞV xð Þ from Eq. (9) of [9].

2. Many computations were redundant in the 2-D wavelet

decomposition used to calculate this term; i.e. the wavelet

operator was the same for every spectrum and does not need to

be recomputed every time.

3. The n 6 n wavelet operator was very sparse, containing

approximately 99% zeros.

Combining these facts we implemented a sparse matrix-based

formulation of the problem to save memory and computation time

rather than the standard 2-D filter bank decomposition. The

wavelet transform matrix was constructed one time and a sparse-

format matrix is stored off line. The sparse-matrix representation

uses significantly less memory. Thus, in this implementation,

every-time the Wð ÞV xð Þ component needs to be computed, a

sparse-matrix computed offline is read into memory and

computation performed with a simple matrix multiply. This

implementation resulted in a 6406 speed up, as illustrated in

Table 1. The time required to denoise a dataset of spectra from a

group of 60 spectra decreased from ,16 hours to less than

1.5 minutes.

The FIR low-pass filter coefficients were estimated using the

Parks-McClellan algorithm in MATLAB (firpm and firpmord

functions). The specifications given the algorithm are: normalized

frequency transition band between 0.15 and 0.25, pass-band ripple

of 0.01, and stop band attenuation of 60 decibels (dB). The non-

causal zero-phase implementation of the filter is used to prevent

phase delays and preserve the locations of the peaks (filtfilt

command in MATLAB)[15]. The order of the filter is 67. In

Figures 2 and 3, we show the frequency response of the filter and

Figure 1. Quadratic detector response curve fit to data using space between the peaks of QC spectra.
doi:10.1371/journal.pone.0048103.g001

Wavelet/Neural Network Algorithm for SELDI
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smoothed output, respectively. Our FIR filter can be thought of as

an extension of a Savitsky-Golay filter with greater noise

suppression properties at high frequencies [16]. The smoothed

spectra are much more visually consistent with that expected from

visual observation by clinicians. The FIR smoothing procedure

gives rise to , 700 local maxima compared to the , 150 given by

the A-S algorithm, illustrating the tradeoff between peak detection

performance and denoising performance between different

smoothing approaches.

A feed-forward artificial neural network with one hidden layer

was designed that validates peaks with (96.5%, 93.4%, 94.7%)

accuracy on the training set, validation set, and test set,

respectively. Peaks were detected in the QC data using LS with

the most liberal settings possible so as to cast a wide net for all

possible peak configurations and shapes in the data for the training

process. We manually validated each prediction as a confirmed

peak, a noisy/false prediction, or indeterminate. All indeterminate

predictions were removed from the model estimation process.

After removal of indeterminate cases, we had 4256 expert-

annotated predictions, containing 57.07% percent ‘‘true’’ (con-

firmed peak) examples. We then randomly sampled the data into

an approximate 50/25/25% split for the training set, validation

set, and test set respectively. To construct the corresponding 62-

dimensional feature vector f(i) corresponding to a peak predicted

at mass mzi, we considered the following intuition about how we

manually QC peaks in-house.

1. For SELDI, all the information needed to make a judgment

about peak validity is contained in a window mzi+0:3%.

2. When deciding whether a peak is acceptable or not, both the

raw and processed spectra carry important information; a good

peak shape in the processed spectra is not sufficient by itself if

the corresponding raw spectrum is very noisy and of poor

quality.

3. mzi may affect judgment due to changes in the theoretical peak

shape as a function of mass.

4. Good peaks seem to look like a healthy concave quadratic

centered at mzi, but not always.

These insights are applied to the following procedure used to

construct the feature vector. Let Mi~ mi,1, . . . ,mi,30ð Þ be a linear

grid of 30 m/z points evenly spaced over the inter-

val mzi 1{0:003ð Þ,mzi 1z0:003ð Þ½ �.

1. f
(i)
1 ~{a:Dmz.(peak concavity measure, with parameter a

representing the quadratic coefficient of the best fit quadric

curve for the raw intensities in the window centered at mzi).

2. f
(i)
2 ~mzi (mass information, since peak shapes change with

mass).

3. f
(i)
3 , . . . ,f

(i)
32 = the linearly interpolated intensities of the

processed spectrum on support Mi.

4. f
(i)
33, . . . ,f

(i)
62 = the linearly interpolated intensities of the raw

spectrum on support Mi.

We used a fully-connected feed-forward neural network with 63

input nodes, 21 hidden layer nodes, and 1 output layer node

(including bias nodes). Thus, the parameter matrices had

dimensions H(1)[<63|20,H(2)[<21. Before training, all features

were standardized by subtracting the mean value in that

dimension and dividing by the standard deviation (calculated

across the training set). The normalization parameters are saved

for use with the neural net on the validation data, test data, and

clinical data. Regularization was used to control the complexity

and avoid over-fitting. For each candidate value of l across a grid

of points L (between 0.003 and 10), the best-fit H~ H(1),H(2)
� �

neural network parameters were found by using conjugate-

gradient descent to minimize Jl Hð Þ across the training set. The

gradient of Jl Hð Þ was calculated using the forward/back-

propagation algorithm [13]. The optimization step was observed

to converge after 400 iterations. For each l, we calculated the

classification error on the validation set, err
(val)
l . We selected our

optimal neural network parameters as

Table 1. Processing time (in seconds) for denoising a single spectrum using different implementations of the modified Antoniadis-
Sapatinas algorithm.

n

Implementation 210 211 212 213 214 215

Original 0.1235s 0.5066s 2.0476s 7.8817s 32.5274s 1155.85s

Gen-Sparse 0.0688s 0.2392s 0.9250s 9.1161s 23.3283s 97.5260s

Offline-Sparse 0.0089s 00174s 0.0407s 0.0999s 0.2177s 1.7856s

doi:10.1371/journal.pone.0048103.t001

Figure 2. 67th order FIR filter frequency response designed for
flat-pass band analogous to a Savitsky-Golay filter, but with
better high-frequency noise suppression properties.
doi:10.1371/journal.pone.0048103.g002

Wavelet/Neural Network Algorithm for SELDI
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l�~ arg min
l[L

err
(val)
l

n o
:

H�~ arg min
H

Jl� Hð Þ
ð6Þ

where, in Eq. (6) it is understood that the estimate of H� is most

likely only a local minima. The trained neural network hH� was

evaluated on the independent test set and found to perform with a

classification accuracy of 94.7%. By design, the test set was not

used at any stage of the parameter-fitting process in order to

ensure our test set classification accuracy estimate is an unbiased

estimate for how the neural network will perform on peaks it has

not ‘‘seen’’ at any stage of parameter fitting.

LibSELDI showed improved sensitivity and specificity for

detecting peak cluster mean m/z values corresponding to

reproducible peaks in the pooled-sample QC data. Figure 4 shows

the operating characteristics for LS at each iteration of improve-

ment discussed in the Methods section. On QC spectra, LS

recovered ,50% percent of the true peak cluster m/z values

without a mistake, and 70% at a 5% FDR. Operating points for

Ciphergen Express using stringent (S/N 3/2) and non-stringent

parameter settings (S/N 1) show a reference method for

comparison. While peak cluster mean m/z values were recon-

structed successfully, this benchmark did not show the accuracy of

individual peak predictions within a cluster, a limitation of this

approach. Resolving individual peak predictions within a cluster is

critical for clinical group analysis and is discussed next.

LS w/neural network validation found 124 peak clusters and

resolved peak predictions accurately within clusters and CE with a

SOP were applied to the pilot clinical mucous data. An overview

of the LS/neural network strategy for analyzing clinical data is

shown in Figure 5. Since the LS/neural network predictions were

able to resolve more accurate peak predictions within clusters, this

set the stage for a variety of analyses that would have been more

difficult to carry out with Ciphergen Express alone. The results of

t-tests, Mann-Whitney U-tests, and Fisher-exact tests with mid-P

correction are shown in Tables 2 and 3. Only 2 p-values come in

less than 0.01, and each test conducted tells a different story.

There is some consistency in the tests with regards to which peak

clusters tend to ‘‘look’’ different with respect to the various tests.

With the different parameters used for peak detection, CE

detected 106 (stringent) and 168 (non-stringent) peak clusters.

Under the stringent parameter (S/N 5/3), 6 peak clusters were

found to have differences (p-values less than 0.05, no multiple test

correction) (Table 4) based on peak heights between CIN0 and

CIN3 groups as opposed to 10 peak clusters with less stringent

parameter (S/N 3/2). However, in several cases visual inspection

of the spectra showed that peak detection was not accurate thereby

leading to false readings of peak heights, as shown in Figure 6.

This could be attributed to the need to include ‘estimated peaks’ as

a peak detection parameter to enable calculation of p-values

between sample groups in CE.

Discussion

Neural networks were successful in their ability to automate the

manual/visual validation step, mimicking the peak-calling perfor-

mance of our in-house scientists with somewhere between 93%–

95% accuracy. While this is very good classification performance

for a complex task, we feel that for a true revolution to take place

in SELDI preprocessing automation we would require a classifier

with classification accuracies greater than 99.9%. After all, at our

current accuracy rates, we still expect the neural-network validator

to make 1–2 validation mistakes per cluster on our data. We feel

strongly that if we could increase our training data by an order of

Figure 3. An example denoised peak using the FIR filter approach used for quantification. This is a typical example where the Antoniadis-
Sapatinas denoising would find the peak but distort its peak height.
doi:10.1371/journal.pone.0048103.g003
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magnitude (from ,5000 peak examples to ,50,000), the neural

network approach we outlined could achieve such accuracy. With

a classification accuracy of 99.9% we would only expect to make a

single mistake validating a peak cluster representing a sample size

of 1000! Such performance would enable the design of large

studies with greater statistical power for making a biological

discovery.

A case study in the challenges arising in biomarker discovery is

the proteomics literature studying breast cancer. Starting in

approximately 2002, breast cancer studies began to appear using

the SELDI platform. Over the next several years, many studies

followed using different specimens (mostly serum, plasma, or

nipple aspirate fluid or NAF), on different groups of patients (early

stage breast cancer, post-operative, benign breast cancer, those

undergoing surgery, chemotherapy, radiation treatment, or some

combination of the above), and some using the closely related

MALDI instead of SELDI. Several proteins of interest began to

emerge from the studies as being reproducible. Two helpful

reviews by Calleson [17] and Gast [18] compiled some of the

results. Specifically, three peaks of interest occurred in $5 studies

that were subsequently identified via more specific protein

chemistry methods: a neutrophil associated protein at ,3440

Da, the inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4) at

,4300 Da, and the complement protein C3a des-arginine

anaphylatoxin at , 8940 Da. In all 3 cases, although multiple

studies verified both the magnitude (reported as a p-value ,0.05)

and direction (over or under expressed in cancer) of the reported

differences between groups, at least one confirmatory study using

the same type of sample from similar groups of study subjects

could not verify the magnitude of the difference, i.e. the p-value

was no longer significant, or even the direction, i.e. the peak went

from being significantly over expressed in cancer to significantly

under expressed or vice versa [19–21]! The authors of these

reviews and confirmatory studies therefore had to conclude in

each case that more work was needed. Further preprocessing

technique improvements enabling larger studies could help

prevent some of the issues encountered by these studies.

Through a series of advancements to the different parts of the

processing pipeline, LibSELDI has shown great promise for a level

of detail in analysis of clinical data that was previously unavailable.

The combination of the Antoniadis-Sapatinas algorithm-based

denoising with an FIR filter designed for better noise suppression

properties than popular Savitsky-Golay filter was a good

combination of the strengths of each approach. The A–S

algorithm has shown good performance for detecting and

estimating peak cluster mean m/z values on simulated, pooled-

sample QC, and clinical data. The tendency of the A–S denoising

approach to unsatisfactorily alter the peak heights in the denoised

spectra is balanced carefully with the FIR-filter based quantifica-

tion step. We illustrated that the FIR-filtering step on its own

would produce too many peak predictions, leading to many false

positive peak clusters. By gluing these two methods together we

have been able to capitalize on their respective strengths. We have

confirmed that SELDI spectra are too inherently bumpy for a

single denoising method to be superior at both the peak detection

and quantification steps.

The computational tricks that enabled inclusion of the cycle-

spinning variant of the modified A–S algorithm were also

important, bringing LS a step closer towards enabling the use of

SELDI for study designs with large sample size. We showed that a

dataset that used to take 16 hours to process can now be processed

in under 1.5 minutes. The addition of cycle-spinning reduced the

energy in wavelet artifacts present in the denoised spectra, which

Figure 4. False-discovery rate and true-positive rate operating points showing various stages of improvement for LibSELDI.
doi:10.1371/journal.pone.0048103.g004
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led to increased sensitivity and specificity of the algorithm when

benchmarked on the pooled-sample QC data.

The LibSELDI/neural-network validated peak clusters gave us

higher quality predictions, allowing us to resolve individual peak

predictions within clusters to a degree of accuracy that gave us

fairly accurate measurements of the peak prevalence in each

cluster and with respect to the case/control labels in the study. We

were able to carry out a series of both parametric and non-

parametric analyses based on peak height, peak area, and peak

cluster prevalence. These analyses would have been impractical to

conduct using the Ciphergen Express software alone. In all, 11

unique clusters came out of the analysis at a significance level

Figure 5. LibSELDI/neural network strategy for analyzing clinical spectra.
doi:10.1371/journal.pone.0048103.g005

Table 2. CIN0 vs. CIN3 group tests (t-tests and Mann-Whitney U-tests) based on peak height and peak area measurements.

t-test, peak area t-test, peak height U-test, peak area U-test, peak height

—
mz CIN0 CIN3

—
mz CIN0 CIN3

—
mz CIN0 CIN3

—
mz CIN0 CIN3

16054.5 Da 180 (8.6) 150 (1.1) 11821.9 Da 0.69 (0.12) 0.27 (0.07) 6912.8 Da 52.1 (0.6) 58.2 (3) 11821.9 Da 0.69 (0.1) 0.27 (0.1)

3017.1 Da 26.5 (1.6) 21.9 (0.6) 16054.5 Da 0.58 (0.09) 0.26 (0.003) 12680.8 Da 116.8 (3.8) 136.5 (8.0) 8287.7 Da 0.15 (0.03) 0.07 (0.008)

8287.7 Da 66.6 (0.9) 64.0 (0.4) 3017.1 Da 0.48 (0.12) 0.13 (0.03) 10427.1 Da 83.3 (1.9) 88.5 (2.8) 3682.3 Da 0.46 (0.06) 0.89 (0.16)

11821.9 Da 115.6 (5.1) 100.4 (3.8) 3682.3 Da 0.46 (0.06) 0.89 (0.16) 3682.3 Da 34.2 (1) 40.3 (2.3) 12680.8 Da 0.38 (0.07) 0.78 (0.15)

2887.8 Da 24.6 (0.5) 22.6 (0.6) 2887.8 Da 0.32 (0.04) 0.18 (0.03) 5647.0 Da 45.2 (0.6) 42.7 (0.8) 6912.8 Da 0.13 (0.01) 0.38 (0.13)

5849.7 Da 49.7 (2.2) 43.1 (1.0) 8287.7 Da 0.15 (0.03) 0.07 (0.01)

3682.3 Da 34.2 (1.0) 40.3 (2.3) 5647.0 Da 0.22 (0.02) 0.14 (0.02)

12680.8 Da 0.38 (0.07) 0.78 (0.15)

Showing quantification (SEM) for clusters with p-values less than 0.05.
doi:10.1371/journal.pone.0048103.t002
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below 0.05. Performing the study and analysis on a clinical set with

larger sample size is a future work.

The current study contains several limitations that should be

noted when interpreting the results. First, we have only shown

results on a single sample medium analyzed on a single chip type.

While we feel that LibSELDI algorithm extensions and neural-

network validation model will extend to other Protein Chips and

sample types (e.g. serum, plasma), we have not shown that in this

paper. Also, the extension of the neural network to other chip and

sample types may require adding significant additional training

data to tune the neural network. In general, the baseline removal

process has an effect on the quantification of peak heights and

peak areas. To the authors’ knowledge, there has been no study to

date isolating the effect of baseline removal on peak quantitation.

This holds for true for LS that we do not have a thorough

understanding of the effect of the baseline removal technique used.

Lastly, the sample size in our pilot clinical sample is too small to

make any real biological conclusions. The small sample size was

convenient for performing a preliminary evaluation of the LS and

CE methodology on real clinical data. Follow up studies with

larger samples sizes will be necessary in order to understand the

Table 3. CIN0 vs. CIN3 prevalence differences scored using
the Fisher-exact test with mid-P correction.

Fisher-exact tests
with mid-P correction

Cluster
—

mz
Prevalence,
CIN3

Prevalence,
CIN0 p-value

3017.1 Da 0.375 0.938 0.007

Showing only clusters with p-values less than 0.05.
doi:10.1371/journal.pone.0048103.t003

Figure 6. An example peak cluster output from Ciphergen Express v3.5.
doi:10.1371/journal.pone.0048103.g006

Table 4. CIN0 vs. CIN3 group tests (Mann-Whitney) based on
peak height measurements under stringent condition (S/N 5/
3) using Ciphergen Express.

Cluster
—

mz Average Peak Height (SD)

CIN3 CIN0

21663.4 0.843 (0.44) 0.429 (0.41)

3904.4 5.442 (7.75) 12.201(10.72)

7910.3 1.676 (1.36) 6.00 (5.63)

17205.5 0.121 (0.13) 0.570 (0.55)

8378.3 0.747 (0.35) 1.571 (1.26)

17341.8 0.171 (0.21) 0.57 (0.60)

Showing only clusters with p-values less than 0.05.
doi:10.1371/journal.pone.0048103.t004
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performance limits of the methodology and to assess potential

increases in statistical power for making biological discovery.

Lastly, while we have qualitatively observed an improvement in

the characterization of peak prevalence for peak clusters in clinical

data, there is considerable room in the literature for a future work

quantifying the performance of peak cluster composition/preva-

lence estimation.

The algorithmic and computational improvements in Lib-

SELDI combined with the neural network-based peak cluster

validation model moves us one step closer to larger SELDI

experiments with greater chance of reproducible biological

discovery.
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