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The influence of maternal environment on fetal development is largely unexplored, the available evidence concerns only the
deleterious effects elicited by prenatal stress. Here we investigated the influence of prenatal enrichment on the early
development of the visual system in the fetus. We studied the anatomical development of the rat retina, by analyzing the
migration of neural progenitors and the process of retinal ganglion cell death, which exerts a key role in sculpturing the
developing retinal system at perinatal ages. The number of apoptotic cells in the retinal ganglion cell layer was analyzed using
two distinct methods: the presence of pyknotic nuclei stained for cresyl violet and the appearance of DNA fragmentation
(Tunel method). We report that environmental enrichment of the mother during pregnancy affects the structural maturation of
the retina, accelerating the migration of neural progenitors and the dynamics of natural cell death. These effects seem to be
under the control of insulin-like growth factor-I: its levels, higher in enriched pregnant rats and in their milk, are increased also
in their offspring, its neutralization abolishes the action of maternal enrichment on retinal development and chronic insulin-
like growth factor-I injection to standard-reared females mimics the effects of enrichment in the fetuses. Thus, the
development of the visual system is sensitive to environmental stimulation during prenatal life. These findings could have
a bearing in orienting clinical research in the field of prenatal therapy.
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INTRODUCTION
During development, the nervous system is highly plastic to

environmental influence. Experience is essential during the first

postnatal weeks of life, when sensory activity drives the refinement

and maintenance of neural connections. The visual system has

emerged as a paradigmatic model of development and plasticity of

neuronal connections under the influence of the environment [1].

Recently, we showed that postnatal environmental enrichment,

a condition of increased physical exercise, social interactions and

sensory stimulation, results in a conspicuous acceleration of visual

system development at behavioral, electrophysiological and

molecular level [2–4].

Much less is known about the influence of the environment on

the development of central nervous system during prenatal life.

The only available evidence concerns the deleterious effects of

prenatal stress on the embryonic development. Prenatal stress is

tightly associated with growth retardation [5,6], structural

malformations [6], delayed motor development [7] and with

behavioral anomalies and impaired cognitive functions at adult

ages [8–14]. In humans, it is well known that the offspring of

mothers experiencing stress during pregnancy have an increased

risk of unexpected death due to structural malformations,

increased frequency of spontaneous abortion, reduced weight at

birth and display long-term behavioral abnormalities [14,15].

Despite these data on the harmful effects of prenatal stress, the

possibility that maternal exposure to conditions of increased sociality

and sensory-motor activity could influence embryonic development

remains unexplored. In the present study, we investigated this issue

by analyzing whether maternal environmental enrichment during

pregnancy affects the visual system development of the fetus. We

found that maternal enrichment influences the anatomical and

molecular development of the retina, accelerating the migration of

neuronal progenitors and causing a marked increase in the rate of

naturally occurring cell death, an essential developmental event until

now considered to be programmed only by intrinsic signals,

independently of experience. These changes were accompanied by

a marked increase in insulin-like growth factor-I (IGF-I) expression

in the retinas of enriched rats compared with standard reared

animals. Furthermore, administration of anti-IGF-I antiserum

provided to enriched mothers during late pregnancy totally

prevented the acceleration of retinal development induced by

environmental enrichment, while IGF-I infusions in standard

pregnant females mimicked the EE effect of acceleration in the time

course of both the migration and death of ganglion cells. These

results suggest that maternal enrichment effects on retinal de-

velopment are under the control of IGF-I.

RESULTS

Acceleration of natural ganglion cell death

dynamics by maternal enrichment during

pregnancy
We studied the anatomical development of the retina by analyzing

retinal ganglion cell (RGC) death, a process which exerts a key role

in sculpturing the developing retinal system at perinatal ages in the

rat. The RGC number in the mature retina is the result of a period of

RGC overproduction, followed by an intense process of pro-

grammed cell death (called ‘apoptosis’). We assessed the appearance

of apoptotic cells in the RGC layer using two different procedures,
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i.e. the counting of fragmented nuclei in coronal retinal sections

reacted with the Tunel method and the counting of pyknotic cell

number in cresyl violet stained whole-mount retinas. We counted

apoptotic RGCs in the offspring of mothers reared in standard

condition (SC) and compared the results with those obtained in the

offspring of enriched (EC) mothers. We found that the temporal

dynamics of RGC death were accelerated in EC animals: the

number of apoptotic cells was higher in EC with respect to SC fetuses

at embryonic day 18 (E18) and E20, and remarkably lower in EC

compared to SC pups at postnatal day 1 (P1), when the peak of

natural cell death is typically seen [16,17] (Fig. 1A). We did not

observe, however, any difference in RGC number between SC and

EC animals, either at P1 (19524067009 for SC, 18560767101 for

EC; t-test, p = 0,347) or in adulthood (Fig. 1B). The similar number

of living RGCs in EC and SC rats could be attributable to the fact

that the P1 decrement of natural cell death in EC rats could

compensate for the increased number of apoptotic cells found at E18

and E20. Moreover, no differences were detected in the number and

morphology of retinal microglial cells between EC and SC pups

(Fig. 1C), indicating that the changes in the pyknotic cell number

induced by maternal EE reflected a true variation in cell death rate,

rather than a change in the speed of pyknotic debris’ clearance.

Maternal enrichment accelerates the migration of

differentiating neural progenitors in the retina of

the fetus
We assessed whether the increased levels of cell death we found in

EC pups were due to an accelerated migration of retinal neural

progenitors into the RGC layer. To this purpose, E15 and E18

retinal slices from EC and SC fetuses were immunostained for

double-cortin (DCX), which labels migrating cells and is a good

marker of the temporal and spatial distribution of neural

progenitors during the early developmental stages of the rat retina

[18]. Levels of DCX immunofluorescence did not differ between

EC and SC fetal retinas at E18, when a clear band of staining

appeared in the RGC layer, reflecting the progressive accumula-

tion of migrating cells during retinal maturation (Fig. 2A). On the

contrary, we found higher levels of DCX pixel intensity

immunofluorescence in the retinal outer layers of EC compared

to SC animals at E15 (Fig. 2A). To assess whether the enhanced

intensity of staining was due to an increased DCX cell number, we

counted migrating cells in the region comprised from the neural

progenitor layer to the RGC layer in E15 EC and SC embryos.

We found that the number of migrating cells marked for DCX was

significantly higher in EC with respect to SC fetuses (Fig. 2B). We

then evaluated whether the EE effects were restricted to specific

retinal cell types. Distinct populations of differentiating cell types

were marked with cell-specific antibodies such as Islet-1 (a marker

for ganglion and cholinergic amacrine cells), calbindin (a marker

for horizontal cells) and rodopsin (a marker for photoreceptors),

and the number of each differentially labeled cell type was counted in

the retinal outer layers of EC and SC animals at E15. We found

a higher number of cells immunoreactive for Islet-1 in EC compared

to SC fetuses (Fig. 3A). Instead, we did not observe any difference

between EC and SC embryos in the number of calbindin positive

cells (Fig. 3B), while rodopsin was not expressed in the fetal retina of

both environmental groups. It is interesting to note that the number

of DCX positive cells was very similar to that of Islet-1 labeled cells,

as further confirmed by a double labeling experiment in which

DCX-positive cells were found to be immunoreactive also for Islet-1

(Fig. 3C). These results indicate that the influence of maternal

enrichment on retinal structural development extends also to

maturational stages prior natural cell death.

Maternal enrichment effects on retinal development

are dependent of higher levels of IGF-I
To shed light on possible molecular mechanisms mediating the

influence of maternal EE on retinal development, we focused on

the growth factor IGF-I, which is known to play a central role in

building the cytoarchitecture of the retina [19,20]. We first studied

IGF-I in the mothers. Since it is known that differences in blood-

borne IGF-I are hard to detect due to its uptake by various tissues

[21], we measured IGF-I levels in the brain and in the milk of EC

and SC pregnant rats. We found higher levels of IGF-I in the brain

of EC compared to SC pregnant rats (data not shown) and an

Figure 1. (A) Accelerated natural cell death in the RGC layer of EC
rats. RGC layer apoptotic cell number in EC and SC rats, analyzed at the
indicated ages with the Tunel method (top) and with cresyl violet
staining of whole-mount retinas (bottom). With both methods, two-
ways ANOVA showed an effect of age (p,0.001) and housing condition
(p,0.05) and a significant age6housing condition interaction
(p,0.001). Mann-Whitney rank sum test with Bonferroni correction
revealed a difference between EC and SC at E18, E20 and P1 (p,0.001)
for the tunel method, and at E18 and P1 (p = 0.002) for cresyl violet
staining. (B) RGC number was not different between SC and EC adult
rats either as estimated by calculating the 50% of total cell number in
the RGC layer (A), or by subtracting the number of displaced amacrine
cells remaining in the RGC layer 30 days after ipsilateral optic nerve
transection from the number of cells counted in contralateral retinas (B)
(p = 0.77 and 0.28, t-test). (C) Micrographs of RGC layer of P1 whole
mount retinas labeled with B4 isolectin. No qualitative difference was
detected in the shape and intensity of microglial cells between SC and
EC pups. Scale bar: 20 mm. Graph: microglial cell number in the RGC
layer of SC and EC rats. Mann-Whitney rank sum test showed no
difference between the two groups (p = 0.429). Bars indicate s.e.m.
doi:10.1371/journal.pone.0001160.g001
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increase of IGF-I in the milk of EC dams in the first day

postpartum (Fig. 4A). To investigate whether the increment of

IGF-I detected in the mother was present also in the offspring, we

analyzed IGF-I expression in the RGC layer from E15 to P10,

when the period of RGC death is almost concluded [16]. IGF-I

expression was found to be developmentally regulated in the RGC

layer, progressively increasing during late embryonic life. EC

animals displayed a marked increase in RGC layer levels of IGF-I

at E15 and at E18, as shown in Fig. 4B and 4C.

To assess whether maternal IGF-I was implicated in the effects

of EE on the fetus, we administered, from E10 until E18, a chronic

infusion of anti-IGF-I antibody to EC pregnant rats and an

infusion of IGF-I protein to SC pregnant rats. We first quantified

the number of DCX and Islet-1 positive cells in the fetuses of both

experimental groups at E15, i.e. the age at which a difference in

the number of migrating cell was detected between SC and EC

embryos. We found that the number of DCX and that of Islet-I

positive cells was significantly lower in E15 EC embryos treated

with anti-IGF-I than in EC untreated animals, and it did not differ

from that of SC embryos at the same age (Fig. 5A, B). On the

contrary, the number of DCX and Islet-I positive cells was

significantly higher in E15 IGF-I-treated SC embryos than in SC

untreated animals (Fig. 5A, B). The effect of IGF-I administration

was comparable with that induced by EE: the number of DCX

and Islet-I positive cells of E15 IGF-I-treated SC embryos did not

differ from that of E15 EE embryos (Fig. 5A, B). Thus, IGF-I

administration to SC pregnant rats mimicked EE effects on the

maturation of retinal progenitors, while anti-IGF-I antibody

infusion completely blocked the EE effects.

We then analyzed RGC death levels and IGF-I expression in

E18 fetuses of both experimental groups. Treatment with anti-

IGF-I totally prevented the IGF-I increase induced by EE in fetal

expression in the retina (Fig. 5C) and lowered the number of RGC

pyknotic profiles in E18 EC fetuses to that found in SC (Fig. 5D).

IGF-I infusion, on the contrary, was sufficient to induce in SC

animals all the reported changes induced by enrichment, i.e.

a pronounced increment of RGC layer IGF-I expression and of

pyknotic profiles’ number (Fig. 5C, D).

Although we did not perform a quantitative analysis of IGF-I levels

due to the extremely low doses at which the protein is present in the

embryonic retinas, taken together our results strongly suggest that

IGF-I is a key regulator of the time-course of natural RGC death.

The influence of maternal enrichment on fetal

development is not restricted to the retina
In order to better characterize the influence of maternal enrichment

on global fetal development, we investigated whether any matura-

tional changes between EC and SC subjects were detectable also out

of the retina. Since IGF-I is known to regulate cerebellar maturation

[22] and is a strong modulator of fetal growth [23], we analyzed

IGF-I levels in the cerebellum and measured the body weight of EC

and SC rats at different ages. Enriched animals had a marked

increase in cerebellar IGF-I protein expression compared with SC

Figure 2. Anticipated migration of retinal neural progenitors in EC fetuses. (A, top) Micrographs of EC and SC retinal sections immunostained for
double-cortin (DCX) at E15 and E18. DCX expression was increased in EC rats at E15. (A, bottom) Quantitative analysis of DCX immunofluorescence
intensity in the outer retinal layers of SC and EC rats. Two-ways ANOVA showed a statistical interaction between animal age and housing condition
(p = 0.02). A Pairwise Multiple Comparison Procedure (Holm-Sidak method) revealed that the two groups were statistically different at E15 (p = 0.03),
but not at E18 (p = 0.19). (B, top) Micrographs of EC and SC retinal sections immunostained for double-cortin (DCX) at E15, acquired at 56 (left, scale
bar: 100 mm) or 206 (right, scale bar: 50 mm) magnification to count the number of migrating cells. (B, bottom) Number of cells stained for DCX in
the outer retinal layers of SC and EC rats. The number of DCX-labeled cells was higher in EC than in SC embryos (Mann-Whitney rank sum Test,
p,0.05). Bars indicate s.e.m.
doi:10.1371/journal.pone.0001160.g002
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rats (Fig. 6A) and their weight was increased by ,10% at both E18

and P1 (Fig. 6B). It is worth noting that administration of anti-IGF-I

antibody to enriched pregnant rats reported fetal weight to control

values (EC fetuses = 1,3760,04 g ; EC anti-IGF-I fetuses:

1,1560,05 g; Mann-Whitney Rank Sum Test, p = 0,005). The

increase in cerebellar IGF-I levels and body weight suggests that

maternal enrichment during pregnancy affects the global de-

velopment of the fetus.

DISCUSSION
Our results show that the development of the nervous system is

sensitive to environmental stimulation during prenatal life. The

effects of the environment on fetal development are mediated by

the mother: enriched environmental conditions provided to the

mother during pregnancy affect retinal development by control-

ling fetal growth factor levels and result even in an increased

somatic growth.

Retinal development is sensitive to prenatal

environmental stimulation
We previously demonstrated that EE from birth promotes the

maturation of the visual cortex [2–4,24] and accelerates

the postnatal development of the retina [4]. The finding that the

effects of EE on visual system development are present in the

Figure 3. Identification of specific cell types involved in the
accelerated migration of retinal cells in EC fetuses. (A, top)
Micrographs of EC and SC retinal sections immunostained for ISLET-1
(a marker for ganglion and cholinergic amacrine cells) at E15, acquired
at 56 (left, scale bar: 100 mm) or 206 (right, scale bar: 50 mm). (A,
bottom) Number of cells stained for ISLET-1 in the outer retinal layers of
SC and EC rats. The number of ISLET-1-labeled cells was higher in EC
than in SC embryos (t-test, p,0.001). Bars indicate s.e.m. (B)
Micrographs of EC and SC retinal sections immunostained for calbindin
(a marker for horizontal cells) at E15, acquired at 206(scale bar: 50 mm).
The number of calbindin-labeled cells did not differ between EC and SC
embryos (t-test, p = 0.253). (C) Micrographs of EC and SC retinal sections
co-immunostained for DCX (red) and ISLET-1 (green) at E15, acquired at
60x. Scale bar: 10 mm.
doi:10.1371/journal.pone.0001160.g003

Figure 4. (A) Increased IGF-I concentration in the maternal milk. RIA
determination of IGF-I concentration in the milk of SC and EC suckling
pups: two-ways ANOVA showed a significant age6housing condition
interaction (p,0.05). Post-hoc Tukey test revealed a difference at P1
(p,0.05), but not at P10 (p = 0.258) between EC and SC groups. Bars
indicate s.e.m. (B–C) Enhanced IGF-I expression in the RGC layer of EC
rats. (B) Micrographs of EC and SC retinal sections immunostained for
IGF-I at different ages. Scale bar: 50 mm (C) Quantitative analysis of IGF-I
immunofluorescence intensity in the RGC layer of SC and EC rats. Two-
ways ANOVA showed an effect of age (p,0.001) and housing condition
(p,0.001). t-test with Bonferroni correction revealed a statistical
difference between EC and SC groups at E15 (p = 0.009) and E18
(p,0.01).
doi:10.1371/journal.pone.0001160.g004
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retina is particularly relevant, since this structure has been

classically thought to be resistant to experience-dependent

alterations. Here we extend this finding, showing that the

environmental influence on the visual system development occurs

also during prenatal life. Indeed, we report that the maternal

environment can profoundly affect the development of the retina

in the embryo by anticipating structural processes which are

critical for retinal maturation, such as the migration of neuronal

progenitors and the time-course of natural cell death. Until now,

a shift in the time-course of retinal development has been observed

Figure 5. IGF-I is the mediator of maternal enrichment effects on
retinal development in the fetus. Number of DCX (A) and of ISLET-1
(B) positive cells in the outer retinal layers of EC, anti-IGF-I EC, SC and
IGF-I SC rats at E15. For both (A) and (B), one-way ANOVA showed an
effect of the treatment (p,0.05). A difference was found between EC
and SC, between EC and EC anti-IGF-I and between SC and SC IGF-I
groups (p,0.05, Post-hoc Tukey test). Neither EC anti-IGF-I and SC
groups nor EC and SC IGF-I groups were instead found to differ
between each other. (C) Quantitative analysis of IGF-I immunofluores-
cence intensity in the RGC layer of EC, anti-IGF-I EC, SC and IGF-I SC rats
at E18. (D) Pyknotic cell number of EC, anti-IGF-I EC, SC and IGF-I SC rats
at E18. After treatment with anti-IGF-I, levels of IGF-I expression and
number of pyknotic profiles in the RGC layer of EC fetuses were lowered
to those of SC rats while, after chronic IGF-I protein infusion, levels of

r

IGF-I expression and the number of pyknotic profiles in the RGC layer of
SC fetuses were enhanced up to those of EC rats. For both (C) and (D),
one-way ANOVA showed an effect of the housing treatment (p,0.001).
A difference was found between EC and SC, between EC and EC anti-
IGF-I and between SC and SC IGF-I groups (p,0.05, Post-hoc Tukey
test). Neither EC anti-IGF-I and SC groups nor EC and SC IGF-I groups
were instead found to differ between each other. The bars indicate
s.e.m.
doi:10.1371/journal.pone.0001160.g005

Figure 6. (A) Increased IGF-I levels in the cerebellum of EC rats.
Coronal sections through the cerebellum: IGF-I immunoreactivity is low
in cerebellar cells of SC rats, while the cerebellar cells of EC rats show
a strong IGF-I staining. Scale bar: 50 mm. Graph: quantitative analysis of
the pixel intensity of IGF-I immunofluorescence reactivity showed
higher levels in the cerebellum of EC (black) compared with SC (grey)
rats at P1 (Mann-Whitney rank sum test, p,0.05). The bars indicate
s.e.m. (B) Prenatal enrichment increases body weight. The weight of
EC fetuses was 10% greater at E18 (n = 19 for EC and n = 15 for SC), and
8% greater at P1 (n = 64 for EC and n = 49 for SC). Two ways ANOVA of
rat weights for different environmental conditions and ages showed
a significant effect of age (p,0.001) and environmental housing
condition (p,0.001). Mann-Whitney rank sum test with Bonferroni
correction revealed a significant increase in EC animals body weight
compared with SC rats at both E18 and P1 (p,0.001 in both cases).
doi:10.1371/journal.pone.0001160.g006
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only in mice with natural genetic mutations that affect the rate of

natural cell death [25]. This is the first case in which the

environment is reported to accelerate the retinal pattern of cell

migration and cell death, cardinal features of visual system

development. The precise assembly of neuronal circuits requires

a tight control of a correct number of pre- and post-synaptic

neurons forming synaptic connections. The earlier time-course of

RGC death induced by maternal environmental enrichment may

be determinant for an accelerated maturation of intra-retinal

circuits and sculpting of the retinofugal projections.

IGF-I: a key player in maternal enrichment effects on

retinal development
The effects we found on retinal development seem to be

dependent on IGF-I, as suggested by the increased expression

we found in EC pregnant rats and in their offspring. Although

a rigorous analysis of IGF-I levels in the retinas of SC and EC

embryos would require quantitative assays which could hardly be

performed because of the very low quantity of IGF-I protein that

can be obtained from the embryonic retinas, a strong indication of

the IGF-I involvement in the accelerated retinal development

induced by prenatal enrichment comes from the results of our

artificial manipulations of IGF-I levels in SC and EC pregnant

rats. Indeed, we showed that neutralization of IGF-I abolished the

action of maternal enrichment on the migration of neuronal

progenitors and RGC pyknosis, and that these effects were

accompanied by a marked reduction of IGF-I expression in the

EC retinas. On the other hand, chronic IGF-I infusions during late

pregnancy were sufficient to induce in SC animals all the reported

changes elicited by EE on retinal development. Therefore, we

think that our results indicate that IGF-I is the mediator of the

effects of prenatal enrichment on retinal development. IGF-I

receptors are present in the retina [26,27] and are expressed in

a developmental manner [20,28]. Moreover, it is known that IGF-

I has a central role in building the cytoarchitecture of the retina

[19], promoting early cell proliferation, differentiation [20] and

migration [29,30]. Therefore, it is possible that alterations in the

expression of IGF-I may affect naturally-occurring developmental

cell death in the RGC layer. More specifically, it is conceivable

that increased levels of retinal IGF-I induced by enrichment may

enhance the proliferation of progenitors, which in turn would

anticipate the time course of their differentiation, migration and

cell death. Such a model is supported by our results showing that

the numbers of retinal cells expressing double-cortin and positive

for Islet-I were higher in EC compared to SC embryos at E15,

suggesting that an earlier time course of cell migration resulted to

the anticipated dynamics of RGC death observed in EC animals.

Since Islet-I is a specific marker for ganglion and cholinergic

amacrine cells, we can not exclude the possibility that IGF-I could

have exerted a parallel action on both RGCs and amacrine cells.

On the other hand, we think that one indirect effect of IGF-I on

RGCs’ development through the influence on displaced amacrine

cells is unlikely. Indeed, it is well known that the development of

amacrine cells occurs later than that of RGCs [31], which are

instead the first class of retinal cells to differentiate, and we found

an increased IGF-I expression in the maturing RGC layer of EC

rats at a developmental age when displaced amacrine cells are only

a minority of the total cell population.

Concluding remarks
We have recently demonstrated that EE from birth determines

a marked acceleration of visual system development, detectable at

the functional level, with a precocious maturation of retinal and

cortical acuities, and at the molecular level, with increased levels of

BDNF in the retina and of BDNF and IGF-I in the visual cortex

[2,4,32]. The most precocious effects elicited by EE were observed

at postnatal ages preceding eye opening, and have been

hypothesized to depend on differential maternal stimulation

received by pups in different environmental conditions. Indeed,

higher levels of maternal care have been shown to be provided to

EC compared with SC pups [3].

The findings reported in the present paper demonstrate that the

acceleration of visual system development induced by EE can start

even before the age of birth. Therefore, we propose a model in

which three distinct temporal phases during pup development are

differently controlled by the richness of the environment. In the

first phase, maternal enrichment during pregnancy affects IGF-I

expression in the offspring RGC layer, resulting in an accelerated

retinal development. Subsequently, enhanced maternal care levels

in EC provide to the developing subject a robust tactile stimulation

which can induce higher levels of BDNF in the retina and visual

cortex, and a precocious eye opening. Finally, when pups begin to

actively explore the surroundings, the complex sensory-motor

stimulation provided by EC may directly influence their visual

system development, contributing to further accelerate the

maturation of visual acuity. The effects present in the three

phases occur sequentially, but it is conceivable they are causally

linked together, i.e. each phase might act as a trigger for the

successive one(s). These studies suggest that the influence of

environment on the development and plasticity of visual system is

due not only on changes in the levels of sensory visual stimulation,

but mostly on factors activated even in the absence of vision.

The finding that maternal enrichment during pregnancy results

in an increase of IGF-I, which is essential throughout gestation and

is a key player of fetoplacental growth [22,33,34], could have

a bearing in orienting clinical research in the field of prenatal

therapy.

MATERIALS AND METHODS

Animal treatment
All experiments were performed on Long Evans hooded rats in

accordance with the Italian Ministry of Health guidelines for care

and use of laboratory animals. Rat pups (P1) were anesthetized by

hypothermia, young rats (P10) were anesthetized with ether and

adult rats by chloral hydrate or avertin (1 ml/100 g body weight).

Rearing environments
Enriched Condition (EC) Consisted of a large cage

(100650682 cm) with three floors linked by stairs, containing

several food hoppers, two running wheels and differently shaped

objects (toys, tunnels, shelters) that were repositioned and/or

substituted with others once a week. Every cage housed at least 6

adult females and one male. The male was removed after 7 days.

With this procedure, the whole pregnancy occurred in the

enriched condition.

Standard Condition (SC) Consisted of a standard cage

(40630620 cm) housing a maximum of 3 animals (two females

and one male). The male was removed after 7 days.

In both environmental conditions food and water were available

ad libitum.

To obtain timed pregnant rats we used the following procedure:

a male was put with the females from 4.00 p.m. until 9.00 a.m. of

the following morning, in either SC or EC. The latter calendar

day was called embryonic day (E) E0, the first day of gestation.

The day of parturition (i.e. first 24 hours after delivery) has been

referred to as P0.
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Histology
To take the eyes from E15 and E18 embryos, pregnant dams were

anesthetized with chloral hydrate, perfused through the hearth

with 4% paraformaldehyde in 0.1 phosphate buffer (pH 7.4) and

the embryos were removed after surgical hysterotomy. To take the

eyes from P1 pups, rats were perfused through the hearth with 4%

paraformaldehyde in 0.1 phosphate buffer (pH 7.4). The eyes of

E18 and P1 rats were fixed in 4% paraformaldehyde for 24 h.

Retinas (E18: n = 19 for EC and 10 for SC; P1: n = 25 for EC and

12 for SC; retinas derived from at least two litters per experimental

group) were then dissected from the eyes, flattened on gelatinized

slides and fixed with 2,5% glutaraldehyde and then with formalin-

ethanol solution (1:9). Whole-mounted retinas were stained with

cresyl violet (0.1%). The number of pyknotic profiles was counted

following a ‘‘blind procedure‘‘ in the RGC layer of 60 fields

(80680 mm) per retina on average, uniformly distributed across

the retinas. The proportion of retina sampled in this way ranged

from 2.1 to 13.8%. Pyknotic cells were counted at 1006
magnification using a Zeiss computerized microscope (software,

Stereo Investigator, Microbrighfield). Pyknotic cells were identified

by the presence of darkly and uniformly stained nuclei, sometimes

fragmented. When two or more fragments were seen within a cell

diameter distance from each other, they were counted as a single

pyknotic cell. Total number of pyknotic cells per retina was

estimated by multiplying the average number of cells per field

times the ratio of the total area of each retina to field area. For

microglial cell number analysis, the Griffonia simplicifolia lectin

labeling was performed on whole-mount retinas of P1 rats (EC,

n = 6; SC, n = 6). Retinas were incubated overnight in B4 isolectin

biotinylated (0.025 mg/ml, Sigma). Bound lectin was revealed by

ABC kit (Vector) and nickel-enhanced diaminobenzidine (DAB)

reaction. Microglial cells were counted at 1006 magnification.

The total number of microglial cells per retina was estimated using

the same counting procedure described before.

Analysis of natural cell death with the Tunel method
Since the newborn rat ganglion cells are stacked in a pseudos-

tratified fashion and it is difficult to detect the border between the

RGC layer and the inner plexiform layer [16], we cannot exclude

the possibility to have counted pyknotic profiles in both of these

layers with the cresyl violet staining procedure. Therefore, we

repeated the analysis on natural cell death using the Tunel

method, analyzing also levels of apoptosis at E20. In this analysis,

counterstaining of retinal coronal sections with the nuclear marker

TOTO (see below) allowed us to clearly visualize the position of

fragmented nuclei in different retinal layers.

To detect DNA fragmentation in RGC layer dying cells, terminal

deoxynucleotidyl transferase mediated dUTPNick.End Labeling

(TUNEL) technique was employed, using a commercially available

kit (DeadEndTMFluorometric Tunel System, Promega). Eyes were

immersion-fixed in 4% paraformaldehyde, cryoprotected in 30%

sucrose and embedded in Tissue-Tek. Retinal sections of 18 mm

were cut using a cryostat and collected in serial order through the

entire retina. After treatment with proteinase K (20 mg/ml) to

dissociate proteins from DNA, sections were incubated (1 h at 37uC)

with ‘‘the Tunel reaction mixture’’, containing the TdT enzyme and

Nucleotide mix with fluorescein-12-dUTP. Retinal sections (n = 4

SC and EC rats for each age) were then counterstained with TOTO-

3 iodide (Molecular Probes) to visualize the different cell layers, and

rinsed in PBS. In the negative controls, which never gave any

significant staining, the Tunel reaction mixture was omitted. Tunel-

positive cells were counted with ‘‘a blind procedure’’ by the use of

a 406objective, in the RGC layer of 10 equally spaced sections per

retina. Each retinal section was completely sampled. The total

number of cells per retina displaying fragmented nuclei in the RGC

layer was calculated by multiplying the average number of labeled

cells per section times the total number of retinal sections. The

morphological appearance of retinal layers was indistinguishable

between EC and SC rats.

Analysis of RGC number
We analyzed RGC number in EC and SC rats at P1 (n = 10 for

both SC and EC) and in adulthood. We estimated this number in

cresyl violet-stained whole mounts retinas, excluding cells with

a diameter of less than 8 mm with a darker stained nuclei,

a cytological characteristic of displaced amacrine cells [16,35] and

small cells with mottled nuclei, described to be glial cells [36].

For analysis of the final number of retinal ganglion cells in adult

EC rats, 7 EC and 3 SC rats (P.45) were deeply anesthetized with

avertin. The left optic nerve was retro-orbitally transected

mechanically with thin surgical forceps. All animals were killed

1 month after surgery, when most (about 95%) of RGCs were lost

in the eye ipsilateral to the lesioned optic nerve [35]. The relative

proportion of displaced amacrine cells and RGCs in enriched

adult rats was not known, so we counted the total number of

RGCs in retinas ipsilateral (IR) and contralateral (CR) to the

lesioned optic nerve. These numbers were estimated using the

same counting procedure described before. Since amacrine cells

are not affected by optic nerve lesion [16], RGC number was

calculated by subtracting the number of displaced amacrine cells

(counted in IR) from the number of cells counted in CR.

Determination of IGF-I concentration in the

maternal milk
Milk samples were collected from P1 and P10 suckling pups. Pups

(P1, n = 15 for both EC and SC; P10, n = 6 for both SC and EC

groups) were killed between 9 and 10 a.m. through decapitation

and the gastric content was quickly removed, weighed and frozen

at 280uC until assayed. Milk samples were homogenized with

distillate water and centrifuged at 14000 rpm at 4uC for 30 min to

separate the whey (infranatant) from the fat (supernatant) and

casein (pellet). The whey milk was acid-ethanol extracted to

remove IGF-I binding proteins. The concentration of IGF-I was

determined by radio immunoassay (RIA) using a commercial kit

specific for rodents (DSL-2900, Diagnostic Systems Laboratories,

Webster, TX), with a sensitivity of 21 ng/ml.

Immunohistochemistry
For IGF-I immunostaining, vertical retinal sections (16 mm thick)

and cerebellar sections (40 mm thick) were cut using a cryostat and

then processed as follows. Sections were permeabilized in 0,3%

triton X-100 and incubated in 1:500 rabbit polyclonal anti-IGF-I

antibody (kindly provided by Prof. Ignacio Torres-Aleman). Bound

antibody was detected by incubating sections with biotinylated goat

anti-rabbit IgG (1:200, Vector) followed by fluorescein-conjugated

extravidin (1:300, Sigma). The number of animals used for IGF-I

analysis in the retinas was: 10 (E15), 7 (E18), 7 (P1), 4 (P10), for EC; 6

(E15), 5 (E18), 7 (P1), 4 (P10), for SC. For the analysis of IGF-I in the

cerebellum, 4 animals per group were used.

For doublecortin (DCX) immunostaining, vertical retinal sections

were incubated, after a blocking step, in goat polyclonal anti-

doublecortin antibody (1:1000, C-18 Santa Cruz), then exposed to

biotinylated rabbit anti-goat antibody (1:200, Vector lab) followed by

fluorescein-conjugated extravidin (1:300, Sigma). The number of

animals used in DCX analysis was: 6 (E15) and 5 (E18) for EC; 4

(E15) and 4 (E18) for SC. For Islet-1 and calbindin immunostaining,
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vertical retinal sections were incubated, after a blocking step, in

mouse anti-Islet-1 antibody (1:50, DSHB) and rabbit anti-calbidin

antibody (1:1000, Swant), respectively. Immunoreaction was

detected using biotinylated horse anti-mouse or biotinylated goat

anti-rabbit antibody (1:200, Vector lab) followed by fluorescein-

conjugated extravidin (1:300, Sigma). The number of animals used

in Islet-1 analysis was: 6 for E15 EC; 3 for E15 SC. For the analysis of

Calbindin, 3 animals per group (E15 EC and SC) were used.

Counting of DCX, Islet-1 and calbindin labeled cells
Images were acquired using an Olimpus Optical confocal

microscope at 206 magnification (zoom 1.5, field 4606460 mm,

acquired at 102461024 pixels). Settings for laser intensity, gain,

offset and pinhole were optimized initially and held constant

through the study. For each retina, at least 4–5 sections (16 mm

thick) taken at the level of the optic nerve head were acquired,

imaging four fields per each section. The collected images of the

retina were imported to the image analysis system MetaMorph

and used to count the number of labelled cells in the neuroblastic

layer. All acquisitions and counting analysis were performed blind

to the rearing and experimental condition. To identify whether the

migrating cells were also positive for ISLET-1, a double labeling

for both DCX and ISLET-1 was performed in SC and EC retinas

at E15. Images were acquired at 606 magnification, zoom 2.5,

field 92692 mm, 102461024 pixels.

Chronic infusions of anti-IGF-I antiserum or IGF

protein to pregnant rats
Timed pregnant rats were reared in either SC or EC since the start

of gestation. At E10, anti-IGF-I antiserum or IGF-I protein were

infused to EC and SC pregnant rats, respectively. It has been

reported that the anti-IGF-I antibody has ,1% cross-reactivity

with either insulin or IGF-II, as determined by competition with
125I-IGF-I (for reference, see ref. 37). Infusions were done through

implantation of a subcutaneous osmotic minipump (Alzet; anti-

IGF-I infusion: 20% in saline; IGF-I protein infusion:1 mg/ml;

infusion rate: 0.25 ml/h in both cases) placed in the back of the

animal in the scapula [38]. Qualitative observations performed

during both daytime and during the dark phase of the daily cycle

revealed an apparently normal behavior of implanted pregnant

rats. In particular, EC pregnant rats were frequently observed to

use the running wheel. At E18, pregnant rats were perfused

transcardially and their embryos were removed through surgical

hysterotomy. The eyes of the embryos were removed, fixed and

processed for DCX and ISLET-1 positive cell number in the

retinal outer layers (DCX: n = 7 animals for EC, n = 5 animals for

SC; ISLET-1: n = 7 animals for EC, n = 5 animals for SC), RGC

apoptosis analysis (n = 13 animals for EC, n = 20 animals for SC)

and IGF-I expression levels (n = 7 animals for EC, n = 5 animals

for SC), as previously described. Examination of histological brain

sections revealed no signs of malformations or gross morphological

abnormalities in both anti-IGF-I and IGF-I embryos.
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