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Abstract

The Research Center for Human Development in Dakar (CRDH) with the technical assistance of ICF Macro and the National
Malaria Control Programme (NMCP) conducted in 2008/2009 the Senegal Malaria Indicator Survey (SMIS), the first nationally
representative household survey collecting parasitological data and malaria-related indicators. In this paper, we present
spatially explicit parasitaemia risk estimates and number of infected children below 5 years. Geostatistical Zero-Inflated
Binomial models (ZIB) were developed to take into account the large number of zero-prevalence survey locations (70%) in
the data. Bayesian variable selection methods were incorporated within a geostatistical framework in order to choose the
best set of environmental and climatic covariates associated with the parasitaemia risk. Model validation confirmed that the
ZIB model had a better predictive ability than the standard Binomial analogue. Markov chain Monte Carlo (MCMC) methods
were used for inference. Several insecticide treated nets (ITN) coverage indicators were calculated to assess the effectiveness
of interventions. After adjusting for climatic and socio-economic factors, the presence of at least one ITN per every two
household members and living in urban areas reduced the odds of parasitaemia by 86% and 81% respectively. Posterior
estimates of the ORs related to the wealth index show a decreasing trend with the quintiles. Infection odds appear to be
increasing with age. The population-adjusted prevalence ranges from 0.12% in Thillé-Boubacar to 13.1% in Dabo.
Tambacounda has the highest population-adjusted predicted prevalence (8.08%) whereas the region with the highest
estimated number of infected children under the age of 5 years is Kolda (13940). The contemporary map and estimates of
malaria burden identify the priority areas for future control interventions and provide baseline information for monitoring
and evaluation. Zero-Inflated formulations are more appropriate in modeling sparse geostatistical survey data, expected to
arise more frequently as malaria research is focused on elimination.
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Introduction

More than two hundred million cases of malaria were estimated

worldwide in 2008 and the majority (85%) was in African

countries. Malaria accounted for 850 thousand deaths in the same

year, 89% of which occurred in Africa. Over 85% of deaths were

in children under five years of age [1]. Senegal is one of the 45

countries in Africa where malaria is endemic and represents the

leading cause of morbidity and hospital mortality [2]. The main

parasite transmitted by anopheline mosquitoes is Plasmodium

falciparum and transmission occurs seasonally in the entire country,

from June to November. Rapid diagnostic tests (RDTs) have been

provided free of charge since 2007. Two years later, almost 86% of

suspected malarial fever cases were screened with an RDT [3].

Malaria incidence in children under five decreased from 400 000

suspected cases in 2006 to 30 000 confirmed cases in 2009 [4].

Routine surveillance provides some evidence that the number of

malaria inpatient cases and deaths during the same period are

decreasing. However, these estimates must be interpreted with

caution since they are affected by poor reporting, introduction of

RDTs as well as changes in case definition [1]. Furthermore, the

lack of nationally representative surveys makes these estimates

unreliable. Almost all malaria surveys in Senegal were carried out

in five parts of the country: Dakar and its suburbs, specific areas

around the Senegal River, Fatick region and Niakhar province.

Few studies have been conducted in the rest of the country,

particularly in the regions of Tambacounda and Casamance.

The Senegal Malaria Indicator Survey (SMIS) is the second

nationally representative household survey focusing on malaria-

related indicators and the first that collected parasitological data.

The survey was supported by the National Malaria Control

Program (NMCP) and carried out between November 2008 and

January 2009 by the Research Center for Human Development in

Dakar (CRDH) with the technical assistance of ICF Macro and
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funding from the President’s Malaria Initiative (PMI). Malaria

control interventions have been implemented in the country

recently. The SMIS collected information on interventions such as

ownership and use of insecticide treated nets (ITNs) or long lasting

impregnated nets (LLINs) as well as intermittent preventive

treatment for pregnant women (IPTp). ITN coverage, measured

by ownership of at least one mosquito net per household, reached

82% in 2010 [4]. In 2006, Artemisin-based combination therapies

(ACTs) were introduced and they were made freely available in

2010. However, indoor residual spraying (IRS) has not been

implemented as a routine intervention in the country. During the

SMIS only three districts had introduced IRS as a mean of malaria

control and therefore no related information was collected in the

survey. The number of districts using IRS increased to six in 2010.

A national contemporary map of malaria distribution is an

essential tool in order to prioritize control interventions in areas

with higher burden and to achieve a better resource allocation and

health management. Several maps presenting the distribution of

malaria risk in Senegal have been generated over the last few years

as part of mapping efforts covering larger areas. A West Africa

malaria risk map [5] was obtained using Bayesian geostatistical

models on entomological inoculation rate estimates produced by

applying the Garki transmission model [6] on historical survey

data from the MARA database [7]. An updated malaria risk map

for West Africa was estimated using geostatistical models on

MARA survey data considering a different effect of environmental

factors on malaria depending on the ecological zones [8]. A

Senegal malaria risk map was also embedded in a worldwide map

based on historical survey data and geostatistical models [9]. All

these efforts made use of old and heterogeneous survey data,

collected over different seasons, diagnostic tools and overlapping

age groups across locations.

Common exposures such as environmental or climatic condi-

tions as well as socio-economic status influence the transmission of

malaria similarly in neighboring regions introducing spatial

correlation. Geostatistical models including location-specific ran-

dom effects were employed to model spatial correlation as a

function of the distance between sampled locations. The data

consisted of a large number of locations with zero prevalence;

therefore the commonly used Binomial distribution may under-

estimate the zero-prevalence probability. Zero-Inflated Binomial

(ZIB) models provide a flexible way to address this problem [10].

ZIB models for prevalence data have not been applied before in

the context of geostatistical modelling of infectious disease data.

To our knowledge, the only application is in the modeling of

sparse malaria entomological data [11]. Zero-Inflated Poisson/

Figure 1. Environmental and climatic factors. Distance to water bodies, Rainfall, NDVI (Normalized Differenced Vegetation Index), Night and
Day LST (Land Surface Temperature) and altitude at 4 km2 resolution in Senegal. Regional boundaries are overlaid.
doi:10.1371/journal.pone.0032625.g001
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PLoS ONE | www.plosone.org 2 March 2012 | Volume 7 | Issue 3 | e32625



Negative Binomial models have been formulated for geostatistical

count data (i.e. mapping isopod nest burrows [12] and child HIV/

TB mortality [13]), however applications are rather limited.

In this paper, we provide spatially explicit burden estimates of

malaria in Senegal using the SMIS data and Bayesian geostatis-

tical Zero-Inflated Binomial models based on variable selection

methods for spatial data.

Materials and Methods

Country Profile
Senegal is located in Western Africa, facing the North Atlantic

Ocean between Guinea-Bissau and Mauritania. Its borders run

south of the Casamance River and along the Senegal River

respectively. The Gambia penetrates more than 320 km into the

country, from the Atlantic coast to the centre along the Gambia

River which bisects Senegal’s territory. Northern Senegal is

characterized by a Sahelian ecological zone with semiarid

grasslands and acacia savannas. Malaria is unstable hypoendemic

and immunity is acquired later in life. A Sudano-Sahelian zone in

the centre of the country is dominated by a flat wooded savanna

with very few prominent topographical features. Malaria is

endemic in this area and immunity is acquired around the age

of ten. The southern part of Senegal is occupied by a Sudano-

Guinean ecological zone, with annual rainfall exceeding 800 mm.

Malaria is hyperendemic and immunity is acquired in the first five

years of life. The urban malaria burden is concentrated in the

cities of Dakar, Rufisque, Kaolack and Saint-Louis where the

anopheles vector density is very low. The high transmission season

in Senegal occurs mainly between July and October. However, in

the Senegal River delta area, there are two annual peaks of the

disease caused by river flooding: one in the rainy and the other in

the dry season.

Ethical statement
Participation in the survey was voluntary and written informed

consent was obtained in the local language before questionnaire

administration and blood collection for parasitaemia and anemia

testing. Individuals were told about the general purpose of the

survey, possible risks and benefits of the survey and those

presenting malaria parasites and/or anaemia were treated. The

survey protocol was submitted to and approved by the Ethical

Review Committee at the National Malaria Control Program and

the Institutional Review Board (IRB) of Macro International.

Malaria Data (SMIS 2008–2009)
A nationally representative random sample of 320 clusters and

9600 households was selected through a stratified two-stage

sampling procedure. The clusters were the census units (CU) used

by the National Agency for Statistics and Demography (ANSD) in

the census carried out in 2002 (Recensement Général de la

Population et de l’Habitat, RGPH-2002). However, in the three

regions of Kaolack, Kolda and Saint-Louis, the health districts

served as sampling clusters. At the first sampling stage, 320 clusters

were drawn with probability proportional to the number of

households in each cluster. The sampling procedure was stratified

by the area type (urban/rural) of the clusters: 67.5% of the selected

ones were in rural areas and 32.5% in urban areas. At the second

sampling stage 30 households were selected randomly from each

cluster. Rural areas are slightly overrepresented due to over-

sampling in the three regions of Kaolack, Kolda and Saint-Louis.

Geographical information is available at cluster level. As part of

the final sampling, one every third village was randomly selected

and every child between 6 and 59 months of age was tested for

parasitaemia. Two tests were performed, RDT and blood smear

test [14]. This study is based on the results of microscopic

examination since thick blood smear test is considered as the gold

standard [15].

Malaria predictors
Three sets of malaria predictors were considered in the study,

namely environmental/climatic proxies, socio-economic factors

and malaria intervention measures. The environmental/climatic

variables were extracted from remote sensing sources. Decadal

rainfall data were downloaded via the Africa Data Dissemination

Service (ADDS). Weekly day/night land surface temperature

(LST) and biweekly normalized difference vegetation index

(NDVI) data were obtained from Moderate Resolution Imaging

Spectroradiometer (MODIS). Permanent rivers and lakes were

extracted from Health Mapper. The shortest Euclidean distance

between the centroid of each pixel and the closest water body was

calculated in ArcGIS version 9.1 (ESRI; Redlands, CA, USA).

Figure 2. Prevalence at survey locations. Prevalence reported in
the 317 locations of the SMIS 2008. Regional boundaries are overlaid.
doi:10.1371/journal.pone.0032625.g002

Table 1. Posterior model probabilities obtained using Gibbs
Variable Selection (First stage).

Model Environmental Variables Binomial ZIB

1. Night LST, NDVI 2.46% 2.52%

2. Night LST, NDVI, Area type 72.21% 74.28%

3. Night LST, Rainfall, NDVI, Area type 12.13% 13.23%

4. Others 13.2% 9.97%

In the model with the highest posterior probability (72.21% with Binomial
model and 74.28% with ZIB), Night LST, NDVI and Area type were included as
covariates. This model was selected and used to predict the malaria risk.
doi:10.1371/journal.pone.0032625.t001

Geostatistical Modeling of the Senegal MIS 2008
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Altitude data were obtained from an interpolated digital elevation

model (DEM) developed by the U.S. Geological Survey - Earth

Resources Observation and Science (USGS EROS) Data Center.

The geographical distributions of the environmental factors are

displayed in Figure 1. Data on the rural extents in Senegal are

provided by the Global Rural-Urban Mapping Project (GRUMP).

According to the UN definition for Senegal, agglomerations with

more than 10 000 inhabitants were considered as urban [16]. The

above data were available at 1 km2 spatial resolution, with the

exception of rainfall which has a resolution of 8 km2.

Socioeconomic disparities were measured by a wealth index,

included in the SMIS data and calculated by a weighted sum of

household assets. The weights were estimated through principal

components analysis [17]. ITN related information in the SMIS

was used to calculate the following ITN coverage indicators ([18]

and [19]): i) a binary variable reporting whether the child has a

bed net for sleeping; ii) the proportion of children under the age of

5 years reported to have slept under an ITN the night before the

survey visit; iii) the total number of nets per household (irrespective

of the number of household members); iv) a binary indicator

representing the availability of at least one ITN per every two

household members and v) at least one ITN per every two children

under the age of 5 years in the household. Human population data

estimates for the year 2010 were obtained from the Gridded

Population of the World version 3 (GPWv3) database at 1 km2

spatial resolution. These data were used to convert spatially

explicit parasitaemia risk estimates into number of infected

children under the age of 5 years. The total number of children

under 5 years of age was obtained from the International Data

Base of the U.S. Census Bureau, Population Division for the year

2010.

Bayesian geostatistical modeling
Let Yi and Ni be the number of infected with malaria parasites

and the number of screened children under the age of 5 years at

location si (i.e. cluster centroid) respectively. Yi is typically

assumed to arise from a Binomial distribution, Yi*Bin(Ni,pi)
where pi indicates the probability of parasitaemia at si. However,

in the presence of excessive number of zeros, a Binomial model

may be inadequate to estimate the zero-prevalence probability and

to identify relevant covariates related to the outcome. To take into

account the sparsity of the data, a Zero-Inflated Binomial (ZIB)

model Yi
~ZZIB(Ni,pi,hi) was fitted and compared to the standard

Binomial analogue. A ZIB model assumes two sources of zeros:

hi% (mixing probabilities) of the zeros are structural, not random

and the remaining (1{hi)% arise with a frequency defined by a

Binomial distribution, see equation (1)

Yijpi,hi*
0 with probability hi

Bin(Ni,pi) with probability 1{hi

�
ð1Þ

In the above formulation, pi does not have a direct interpretation

of parasitaemia risk since it is influenced by the proportion of

structural zeros.

Figure 3. Model comparison and validation. Percentage of test locations with malaria prevalence falling in the highest posterior density
intervals (HPDI) predicted from Binomial and Zero-Inflated Binomial models (bars). Lines indicate the corresponding HPDI length.
doi:10.1371/journal.pone.0032625.g003
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The relation between pi and the vector of k associated

predictors X i~(Xi1,Xi2,:::,Xik)T observed at location si is

modeled via the equation �l�o�git(pi)~X ibzvizwi, where

bi~(b1,b2,:::,bk) is the regression coefficient vector, vi and wi

are location-dependent random effects. Spatial dependence is

introduced by assuming that the random effects w~(w1,w2,:::,wn)
are distributed according to a MVN distribution with mean 0 and

covariance matrix S where each element sjl is defined by an

exponential parametric function of the distance djl between two

locations sj and sl , i.e. sjl~s2
w exp({rdjl). The parameter s2

w
represents the spatial variation and r is the parameter controlling

the rate of correlation decay with increasing distance. In the case

of exponential correlation function, 3=r can be used to calculate

the distance above which spatial correlation is negligible, known as

range. Any remaining non-spatial variation is estimated by the

random effects vi, assumed independent and normally distributed

with mean 0 and variance s2
v.

Bayesian variable selection approaches were employed using the

above geostatistical models to choose the best set of predictors. In

particular, three variable selection methods, namely Gibbs

variable selection (GVS) by Dellaportas et al. [20], Stochastic

Search Variable Selection (SSVS) by George and McCulloch [21]

and the variable selection sampler of Kuo and Mallick (KM) [22]

were compared. The best set of covariates was indicated by the

model with the highest posterior probability. Details of the

geostatistical variable selection methods are given in the Appendix.

The model includes over 330 parameters. To enable model fit

and prediction a Bayesian formulation and MCMC estimation

was adopted. To complete model specification, prior distributions

were assigned to the parameters. An inverse-gamma prior was

assumed for the variance and a gamma distribution for the spatial

decay parameter r. The priors for the regression coefficients were

non-informative Gaussian distributions with mean 0 and variance

100. Covariates were standardized in order to acquire better

correlation properties and reduce MCMC computational time

[23].

Bayesian kriging was employed to predict the parasitaemia risk

at unsampled locations and produce a parasitaemia risk map at

high spatial resolution [24]. A regular grid of 4 km2 resolution

covering the whole country was created, resulting in around

60 000 pixels. Predictions were based on a geostatistical model

using only environmental/climatic factors since data on malaria

interventions or socio-economic status are not available at high

resolution scale for the whole country. Therefore, a two stage

geostatistical variable selection approach was applied. In the first

stage, only climatic predictors were included to identify the best

prediction model. In the second stage, geostatistical variable

selection was carried out to select among the five ITN coverage

indicators defined above. The models were adjusted for age,

wealth index and the climatic predictors determined during the

first stage.

The predictive model was validated on a test subset of the data.

In particular, a randomly selected sample of 269 locations (85% of

the data locations) was used as a training set for model fit. The

predictive performance of the model was assessed by calculating

the proportion of observed prevalence data at the remaining 15%

of (test) locations, correctly estimated within Highest Posterior

Density Intervals (HPDI) of probability coverage ranging from 50

to 100% [25]. The above validation procedure was also used to

compare the ZIB model with its Binomial analogue. The number

of malaria infected children under five years of age was estimated

at pixel level by multiplying the geostatistical model-based risk

estimates with the total number of children under the age of 5

years provided by the International Data Base of the U.S. Census

Bureau, Population Division for the year 2010. The previous

values were added to calculate the total infected children under the

age of 5 years at district level. Subsequently, dividing by the

number of children under the age of 5 years living in the district,

population-adjusted estimates of parasitaemia risk were obtained.

Fortran 95 (Compaq Visual Fortran Professional 6.6.0) and

standard numerical variables (NAG, The Numerical Algorithms

Group Ltd.) were used to implement the MCMC code. Open-

BUGS [26] was also employed in the model fit.

Results

A total of 4138 children between 6 and 59 months of age from

320 clusters were tested for parasitaemia with both RDT and

blood smear test. The overall observed malaria prevalence was

6.74%. The number of children under the age of 5 years tested

with both Rapid Diagnostic Test and blood smear test was 3960.

Almost 12.05% of the children under the age of 5 years tested with

RDT were found positives. The percentage of children under the

age of 5 years that were positives to both tests was 5.44%. Due to

the observed discordance between the diagnostic tools, the

standard microscopy test was considered in the analysis [15].

A large number of survey locations (around 70%) had zero

prevalence. No children under the age of 5 years were tested in

two clusters of Saint-Louis region and one cluster in Kaolack, thus

reducing the actual number of GPS coordinates to 317. Figure 2

shows that the lowest malaria prevalence in the country was

recorded in Saint-Louis (0%), followed by the regions of Dakar

(1.72%) and Louga (1.43%).

Posterior model probabilities obtained from MCMC runs of

100 000 iterations using the GVS are presented in Table 1.

Similar results were obtained with the other two variable selection

methods, SSVS and KM. As shown in the table, the set of

Figure 4. Predicted parasitaemia risk map. Predicted parasitaemia
risk in children less than 5 years of age at 4 km2 resolution in Senegal.
Regional boundaries are overlaid.
doi:10.1371/journal.pone.0032625.g004
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covariates that defined the Binomial as well as the ZIB

geostatistical models with the highest posterior probabilities

consisted of night LST, NDVI and area type (urban/rural). The

predictive performance of the selected models is shown in Figure 3.

The proportion of test locations falling into the 50–95% HPDIs

was constantly higher under the ZIB model. Furthermore, the

latter model estimated narrower HPDIs. Based on the above

results, the ZIB was adopted to predict the parasitaemia risk at

high spatial resolution and to assess the effects of interventions on

the infection risk.

Geostatistical ZIB model parameter estimates are given in

Table 2. Model I includes only climatic covariates. The

posterior estimate of the OR indicates a positive association

between NDVI, night LST and parasitaemia, however the

corresponding 95% credible intervals include one. Living in

urban areas reduces the parasitaemia odds by 81% (95% BCI:

55%–93%). Raw data summaries estimate a parasitaemia

prevalence of 1.3% in urban compared to the 8.47% in rural

areas. The range parameter suggests that spatial correlation is

present up to a distance of 2.4u which is equivalent to 265 km

(1u= 111.12 km). The spatial variance (s2
w~2:49) was around 5

times higher than the non-spatial one (s2
v~0:52) indicating high

geographical variation. Model based predictions, obtained

through Bayesian kriging over a grid of around 60 000 pixels

of 2 km62 km spatial resolution are depicted in Figure 4. The

plotted values correspond to the medians of the pixel-specific

posterior predictive distributions. Low values of parasitaemia

prevalence are concentrated in the northern Senegal, particu-

larly in the region of Saint-Louis, Louga and Matam. Malaria

risk increases in some areas of central Senegal and reaches the

highest values in the southern Kolda and eastern Tambacounda

where the predicted risk was 10.66% and 9.45%, respectively.

Another high-risk area is located in the centre of Kaolak region

with an estimated prevalence of 5.6%.

Table 2. Association of parasitaemia risk with environmental/climatic factors, socio-economic status and malaria interventions
resulting from raw data summaries and geostatistical Zero-Inflated Binomial models.

Variable Raw Data Geostatistical model Ia Geostatistical model IIb

Prevalence OR 95% BCIc OR 95% BCIc

Night LST 1.16 (0.66, 1.86) 0.83 (0.53, 1.26)

NDVI 1.48 (0.88, 2.48) 0.91 (0.61, 1.83)

Area type

Rural 8.47% 1 1

Urban 1.30% 0.19 (0.07,0.45) 0.43 (0.16, 1.06)

Wealth Indexd

Most poor 13.75% 1

Very poor 6.51% 0.77 (0.57, 1.03)

Poor 1.51% 0.22 (0.08, 0.51)

Less poor 0.96% 0.12 (0.05, 0.41)

Least poor 0.65% 0.09 (0.01, 0.26)

Age

0–1 3% 1

1–2 4.54% 1.20 (0.70, 2.43)

2–3 8.07% 2.93 (1.62, 5.33)

3–4 7.95% 2.96 (1.66,5.74)

4–5 8.11% 2.77 (1.44, 5.21)

ITNse

,1 6.84% 1

§1 1.41% 0.14 (0.03, 0.7)

Spatial parameters Posterior median 95% BCIc Posterior median 95% BCIc

s2
v

2.49 (1.07, 6.41) 3.04 (2.22, 4.02)

s2
v

0.52 (0.25,1.03) 0.35 (0.15,0.73)

Rangef 2.40 (1.11, 2.98) 1.689 (0.003,2.93)

Mixing probabilities

h 0.29 (0.19,0.39) 0.35 (0.24,0.46)

aModel I includes only environmental/climatic factors.
bModel II includes ITN coverage, children’s age and wealth index.
cBayesian Credible intervals.
dHousehold wealth index.
eNumber of available ITNs per every two household members.
fThe range parameter (degrees), defined as 3=r indicates the distance above which the spatial correlation becomes negligible.
doi:10.1371/journal.pone.0032625.t002
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The predicted number of malaria infected children under the

age of 5 years is displayed in Figure 5 and the estimates of

population-adjusted prevalence obtained at the smallest adminis-

trative level (arrondissement) are summarized in Table 3. Kriging

enabled the estimation of parasitaemia prevalence in areas where

no survey locations were selected by the sampling procedure. For

instance, the population-adjusted prevalence is 0.61% in the

arrondissement of Barkedji, Louga region and 9.54% in Keniaba,

Tambacounda region. The total number of infected children

under the age of 5 years in the country below the age of five was

estimated to be around 48 thousand. The map of the estimated

number of children under the age of 5 years infected with malaria

and the predicted parasitaemia prevalence show very different

patterns, because of the population density, higher in the urban

regions of Dakar and Saint-Louis.

Geostatistical variable selection among the five different ITN

coverage indicators (Table 4) showed that having at least one

available ITN per every two household members was most related

with the parasitaemia risk after adjusting for climatic/environ-

mental factors, age and wealth index. The posterior probability of

the model was around 34% indicating that the model was chosen

34% of the times among the 25 = 32 possible models including all

combinations of the five coverage indicators. Estimates of the

posterior distribution of the parameters are given in Table 2

(Model II). Living in a household with at least one ITN per every

two members was found to have a protective effect on

parasitaemia, reducing the odds by 86% (95% BCI: 30%–97%).

This result was also seen in the raw data summaries as shown by

the second column of Table 2. The observed parasitaemia risk in

the two categories, i.e. ‘‘less than one ITN’’ and ‘‘at least one

ITN’’ per every two members was 6.84% and 1.41% respectively.

Posterior estimates of the ORs related to the wealth index show a

decreasing trend with the quintiles. The second quintile (very poor)

had an OR of 0.77 (95% BCI: 0.57–1.03) whereas the last one

(least poor) was 0.09, (95% BCI: 0.01–0.26). A similar pattern was

presented in the prevalence calculated from the raw data. The

highest (13.75%) and lowest (0.65%) infection risk were observed

in the most and least poor group, respectively. Infection odds

appear to be increasing with age. For instance, the OR is 1.2 (95%

BCI: 0.70–2.43) in children 1–2 years old and 2.77, (95% BCI:

1.44–5.21) in children 4–5 years old. Observed parasitaemia

prevalence was the lowest in infants (3%) reaching 8.11% in

children 4–5 years old.

Discussion

This study estimated the number of infected children under the

age of 5 years at different geographical scales in Senegal and

produced the first parasitaemia risk map in the country using

contemporary data collected under the nationally representative

malaria survey of 2008/2009. Geostatistical Zero-Inflated Bino-

mial models were developed and Bayesian variable selection

methods for spatially correlated data were employed to build a

predictive model and assess the effectiveness of the ITN

intervention adjusting for climatic and socio-economic confound-

ers.

A large number of zeros was observed when modeling the

number of infected children under the age of 5 years, probably due

to the fact that the survey was carried out at the beginning of the

dry season, when transmission starts to decrease. To address the

issue of sparsity a ZIB model was derived. Model validation

revealed that the ZIB model had higher predictive ability than the

Binomial analogue suggesting that, when a large number of zeros

occurs in the data, a ZIB model should be considered. Since

malaria research is focused on elimination and eradication of the

disease, it is expected that forthcoming surveys will include a large

number of locations with zero prevalence and the ZIB models

would provide a suitable alternative to the standard Binomial ones

for geostatistical modeling.

Geostatistical variable selection is an important topic in malaria

mapping. The predictive ability of a model depends on the

covariates included in the multivariate regression setting. Model-

ing approaches in malaria mapping treat selection of predictors

separately than the geostatistical model fit. Variable selection is

often based on regression models that ignore spatial correlation,

leading to wrong estimates of covariates effects and their

significance. Geostatistical variable selection not only identifies

the best set of predictors but builds parsimonious models with the

best predictive ability [27]. In addition, it can be used to avoid

overfitting due to the inclusion of unnecessary predictors or

random effects. In this work, we have employed three Bayesian

variable selection methods within a geostatistical model formula-

tion. The climatic model with the highest posterior probability

selected by the three methods included the following combination

of covariates: night LST, NDVI and area type. Altitude in Senegal

presents very little variation throughout the country therefore it

was not considered as a potential predictor of malaria transmission

in the variable selection procedure.

As mentioned above, maps showing the distribution of malaria

risk in Senegal can be found in [5], [8] and [9] as part of efforts in

mapping malaria risk at regional and continental level using

historical data. Nevertheless, compilations of historical data

obtained from surveys, heterogeneous in the age groups involved

and the seasons considered, require methods for standardizing risk

estimates into a common scale for mapping purposes. Different

statistical methods have been employed; the work by Gemperli

Figure 5. Estimated number of malaria infected children ,5
years. The smooth map depicts the estimated number of malaria
infected children less than 5 years of age at 4 km2 resolution in Senegal.
Regional boundaries are overlaid.
doi:10.1371/journal.pone.0032625.g005
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Table 3. Estimates of infected children less than 5 years old per arrondissernent.

Region Department Arrondissement OPa EICb PEPc Region Department Arrondissement OPa EICb PEPc

Dakar Dakar Parcelles Assainies 0% 360 0.20% Louga Louga Keur Monar Sarr 2.27% 72 0.31%

Dakar Guédiawaye Guédiawaye 0% 112 0.17% Louga Louga Sakal 0% 48 0.13%

Dakar Pikine Niayes 0% 356 0.21% Matam Matam Agnam-Civol 0% 376 1.56%

Dakar Rufisque Diamnadio 12.5% 272 1.16% Matam Matam Ogo 3.09% 1044 4.07%

Dakar Rufisque Rufisque-Bargny 4.35% 72 0.27% Matam Ranérou Ranérou 4.65% 1464 4.29%

Diourbel Bambey Baba-Garage 0% 176 0.87% Matam Kanel Sinthiou Bamambé 25% 532 5.08%

Diourbel Bambey Lambaye 0% 236 1.17% Saint-Louis Dagana Ross-Béthio 0% 120 0.28%

Diourbel Diourbel Ndindy 0% 516 1.41% Saint-Louis Podor Gamadji Sarré 0% 72 0.30%

Diourbel Diourbel Ndoulo 0% 384 0.93% Saint-Louis Podor Thillé-Boubacar 0% 80 0.12%

Diourbel Mbacké Taif 15.38% 436 1.96% Saint-Louis Dagana Mbane 0% 48 0.28%

Diourbel Mbacké Ndame 1.52% 356 0.44% Tambacounda Bakel Moudéry 27.08% 2436 7.49%

Fatick Fatick Diakhao 14.29% 420 2.94% Tambacounda Bakel Kéniaba — 384 9.54%

Fatick Fatick Niakhar 8.11% 636 2.75% Tambacounda Bakel Kidira 0% 204 7.13%

Fatick Fatick Tattaguine 7.55% 840 2.99% Tambacounda Kédougou Bandafassi — 244 8.24%

Fatick Foundiougne Djilor 7.14% 128 1.94% Tambacounda Kédougou Salémata — 172 6.89%

Fatick Foundiougne Colobane 6.98% 676 2.21% Tambacounda Kédougou Saraya 37.04% 208 6.35%

Fatick Gossas Ouadiour 5.17% 540 2.98% Tambacounda Tambacounda Koumpentoum 36.84% 3464 10.49%

Kaolack Kaffrine Maka Yop 6.91% 2240 5.53% Tambacounda Tambacounda Koussanar 17.31% 800 4.12%

Kaolack Kaffrine Malem Hoddar 11.87% 1740 6.15% Tambacounda Tambacounda Makacoulibantang 0% 1884 10.14%

Kaolack Kaolack Sibassor 15.79% 1208 5.07% Tambacounda Tambacounda Missirah 6.67% 424 5.71%

Kaolack Kaolack Ndiédieng 5.1% 452 3.01% Thiès Mbour Ndaganiao — 224 2.47%

Kaolack Kaolack Koumbal 4% 884 1.41% Thiès Mbour Sèsséne 5.08% 540 2.62%

Kaolack Nioro du Rip Paoscoto 3.77% 1264 3.48% Thiès Mbour Sindia 0% 684 1.84%

Thiès Thiès Keur Moussa 0% 1312 1.31%

Kaolack Kaffrine Birkelane 8.2% 656 3.54% Thiès Thiès Thiénaba — 120 1.12%

Kolda Kolda Dabo 39.18% 3212 13.1% Thiès Tivaouane Méouane 1.59% 360 1.09%

Kolda Kolda Médina Yoro Foula 27.17% 3240 8.59% Thiès Tivaouane Médina Dakar 0% 156 0.99%

Kolda Sédhiou Bounkiling 19.23% 1632 6.84% Thiès Tivaouane Niakhène 0% 288 0.92%

Kolda Sédhiou Diendé 3.49% 1280 3.62% Thiès Tivaouane Pambal 27.78% 136 1.71%

Kolda Sédhiou Djibabouya 5.56% 460 5.23% Ziguinchor Bignona Sindian 6.25% 408 3.52%

Kolda Vélingara Bonconto 5.45% 2644 8.98% Ziguinchor Bignona Tendouck 0% 208 2.19%

Kolda Vélingara Kounkané 9.76% 1472 10.47% Ziguinchor Bignona Tenghory 3.33% 196 1.44%

Louga Kébémer Ndande 0% 92 0.33% Ziguinchor Oussouye Loudia-Ouoloff 0% 32 1.17%

Louga Linguère Barkedji — 64 0.61% Ziguinchor Ziguinchor Niaguis — 24 1.37%

Louga Linguère Dodji 4.92% 348 1.50% Ziguinchor Ziguinchor Niassia 1.25% 348 0.78%

Louga Linguère Yang Yang 0% 68 0.52% Ziguinchor Bignona Diouloulou 6.25% 120 1.72%

aObserved Prevalence.
bEstimated number of infected children under 5 years of age.
cPopulation-adjusted estimated prevalence.
Data based on the old administrative division (Decret nu 2002-166).
doi:10.1371/journal.pone.0032625.t003

Table 4. Posterior model probabilities obtained using Gibbs Variable Selection (Second stage).

Model ITN coverage indicators Posterior Probabilities

1. None 25.20%

2. Ownership of 1 ITN per 2 household members 34.00%

3. Child has ITN for sleeping, ownership of 1 ITN per 2 household members, n. of ITNs per household 7.80%

4. Others 33.0%

The model with the highest posterior probability (34%) includes ‘‘Ownership of 1 ITN per 2 household members’’ as the selected ITN coverage indicator.
doi:10.1371/journal.pone.0032625.t004
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and colleagues [5], for instance, made use of the Garki

transmission model to take into account the heterogeneity in the

surveys. The model developed by Pull and Grab [28] was instead

employed by the MAP project [9], standardizing age-groups to

produce a world map of Plasmodium falciparum malaria

endemicity. The parasitaemia risk map presented in this paper,

has been estimated from a contemporary survey and shows similar

patterns to the one obtained from previous efforts [5], especially in

the Southern and Eastern part of Senegal, at the border with Mali

where the risk is higher. However, Gemperli et al. [5] predicted a

lower risk in the Central part of the country and higher in the

urban areas of Dakar and Saint-Louis, as well as throughout the

Sahelian region. In terms of absolute values, those results are

uniformly higher than the current ones, due to the fact that the

SMIS was carried out at the beginning of the low transmission

season. The predicted pattern of malaria produced by the more

recent work by Gosoniu et al. [8] is more consistent with the map

we generated, however the absolute values are still far from our

estimates. The map of Senegal from the MAP project [9] does not

show any relevant variations or geographical differences in the

intensity of malaria risk throughout the country. For logistic

reasons the survey took place at the start of the dry season, thus

projections from our model are likely to underestimate the burden

during the highest transmission season.

Furthermore, the differences between observed and population

adjusted risk estimates are mainly due to low prevalence observed

in highly populated areas. The urban area of Dakar, for example,

is the most populated one, and the majority of surveys were carried

out in that area although the parasitaemia risk is very low.

Geostatistical variable selection enabled the assessment of the

effect on parastaemia risk of different ITN coverage indicators

after taking into account climatic factors and socio-economic

disparities. Recent work by [18] and [19] proposed a number of

ITN coverage measures related to the ownership and use of nets at

individual or household level. Five indicators have been assessed in

the study and only one suggested a reduction in malaria risk with

increasing coverage. This may explain the lack of relation between

ITN coverage and malaria risk in similar analyses of MIS data.

The Senegal data revealed that the presence of at least one ITN

per every two household members reduced the odds of

parasitaemia by 86%. In a recent analysis in Tanzania [29],

ownership of at least one ITN was the only indicator assessed,

showing no protective effect. On the other hand, the analysis of

Zambia MIS 2005 [30] measured ITN coverage by the ownership

of at least one bednet per household and found a preventive effect

on malaria risk. Gosoniu et al. [31] reported a reduction in risk for

areas having at least 0.2 ITNs per person, a measure similar to the

one presented in this paper. Different indicators of ITN coverage

were considered in a spatial analysis of the Liberia MIS data [27],

however none of them was associated with a reduction in the

infection risk.

The model does not include some known risk factors for malaria

such as maternal education, proximity to health services as this

information was not readily available from the MIS data. It is

however interesting to collect this data and include them in future

MIS analyses aiming to assess ITN effects on parasitaemia.

This study found that the malaria risk in children less than five

years old increases with age. Infants had the lowest risk. The risk

rises especially after the age of two and levels off in older children.

Similar results were observed in other low endemic settings.

All the results presented in the paper are based on the

estimation of parasitaemia prevalence using the blood smear test.

Malaria prevalence estimated using the RTDs was almost twice as

high as the one based on the microscopy results. This confirms

earlier findings suggesting that RDTs might present a large

number of false positives when used in field conditions probably

due to high temperatures during storage and transport as well as

poor training on RDTs use.

In the model formulation, a linear relation between the

parasitaemia odds and the environmental covariates was assumed.

Geostatistical variable selection could be used to determine the

best functional form that describes the above relation. Further-

more, a stationary geostatistical model was fitted assuming that

spatial correlation depends only on the distance between locations

irrespective of the locations themselves. This assumption may not

be true when there are unobserved factors, such as health system

performance, that vary across the country. The relation between

climatic predictors and malaria may differ as well among the

ecological zones.

Future control interventions can be planned and implemented

by decision-makers according to the priority of the areas. A better

resource allocation and health management can be achieved by

monitoring the impact of prevention and control activities. The

produced map and estimates generated in this study can be

considered as baseline for comparisons with future national

surveys to evaluate the effectiveness and progress of on-going

intervention programmes as well as the changes of the parasitae-

mia risk over space and time.
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