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Abstract

Angiogenesis is important for many physiological processes, diseases, and also regenerative medicine. Therapies that inhibit
the vascular endothelial growth factor (VEGF) pathway have been used in the clinic for cancer and macular degeneration. In
cancer applications, these treatments suffer from a ‘‘tumor escape phenomenon’’ where alternative pathways are
upregulated and angiogenesis continues. The redundancy of angiogenesis regulation indicates the need for additional
studies and new drug targets. We aimed to (i) identify novel and missing angiogenesis annotations and (ii) verify their
significance to angiogenesis. To achieve these goals, we integrated the human interactome with known angiogenesis-
annotated proteins to identify a set of 202 angiogenesis-associated proteins. Across endothelial cell lines, we found that a
significant fraction of these proteins had highly perturbed gene expression during angiogenesis. After treatment with VEGF-
A, we found increasing expression of HIF-1a, APP, HIV-1 tat interactive protein 2, and MEF2C, while endoglin, liprin b1 and
HIF-2a had decreasing expression across three endothelial cell lines. The analysis showed differential regulation of HIF-1a
and HIF-2a. The data also provided additional evidence for the role of endothelial cells in Alzheimer’s disease.
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Introduction

Angiogenesis has been implicated in a wide spectrum of diseases

including cancer, age-related macular degeneration, rheumatoid

arthritis, diabetic nephropathy, pathologic obesity, and asthma.

Compounds that inhibit angiogenesis represent potential thera-

peutics for many diseases. Judah Folkman performed pioneering

research in the field of angiogenesis [1]; his work led to the

identification of a number of proteins and polypeptides with anti-

angiogenic activity [2]. Since then, many compounds have entered

clinical trials as modulators of angiogenesis. Targeting the vascular

endothelial growth factor (VEGF) pathway has been the leading

anti-angiogenic strategy in the clinic [3]. Other anti-angiogenic

targets include integrins [4] and angiopoietin 1 [5]. While these

therapies suppress new blood vessel growth for a period of time,

anti-angiogenic therapies suffer from the upregulation of compen-

sating pathways that circumvent the inhibited pathway. Conse-

quently, the field is in need of a comprehensive understanding of

the proteins and pathways involved in angiogenesis.

Identifying angiogenesis-associated proteins is related to the

problem of gene function prediction. Over the past decade, there

have been many important studies on using network structure to

functionally annotate gene products. These methods were

reviewed in [6,7]. Early methods transferred gene functions from

direct neighbors to annotate genes. Extensions to these methods

allowed more distant annotations through shortest paths [8] and

diffusion [9,10,11,12]. Some of these methods make use of diverse

machine learning techniques including SVMs [9] and Bayesian

networks [10].

There has been recent interest in the area of applying

bioinformatics approaches to study angiogenesis. These studies

integrate gene expression data with molecular interactions with

diverse goals. A recent study explored pathways associated with

VEGF [11]. Another study validated their new method by

recovering pathways known to be involved in angiogenesis [12].

A third study aimed to predict the impact of anti-angiogenic kinase

inhibitors [13]. A previous study conducted in our lab identified

crosstalk between angiogenesis modulating protein families [14].

These studies suggest momentum towards using bioinformatics to

study angiogenesis. However none of these studies had the goal of

finding new and missing angiogenesis gene annotations. We aimed

to: (i) identify novel and missing angiogenesis annotations and (ii)

verify their association with angiogenesis with statistical analysis

and multiple gene expression datasets.

Results and Discussion

In Figure 1, we describe our computational strategy to identify

and validate novel angiogenesis-associated proteins. To ensure

that the first objective is satisfied, the basis for our search began

with proteins known to be annotated with angiogenesis from the

Gene Ontology database (GO). We integrated molecular interac-

tions with the angiogenesis-annotated proteins to identify new

highly associated proteins. We satisfied the second objective with
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statistical analysis of three published datasets (see Table 1) that

showed the newly associated proteins frequently had perturbed

gene expression during angiogenesis. We combined the angiogen-

esis annotated and associated sets of proteins to form the Angiome,

the network of protein interactions associated with angiogenesis.

Angiogenesis annotation by graph diffusion
To determine the quality of graph diffusion annotations, we

compared graph diffusion to several basic methods for transferring

functional annotations including a first neighbors method and a

second neighbours method. Graph diffusion (see Methods) works

by ranking proteins by their interactions with annotated proteins

over paths of all lengths. The accumulation of evidence from all

path lengths generally leads to better performance. The first

neighbors method ranks proteins by the number of direct

interactions with annotated proteins. The second neighbors

method ranks proteins by the number of annotated proteins

reachable by paths of length less than three. To evaluate the

performance of these methods for angiogenesis annotations, we

performed a leave-one-out cross-validation (LOOCV) procedure.

In Figure 2, we show the performance of the diffusion kernel for

angiogenesis annotation. The figure shows the receiver operator

characteristic (ROC) curve and a precision recall curve for all

methods. The performance of the methods can be summarized by

the area under the ROC curve (AUC). Greater AUC indicates

better performance. Graph diffusion achieves an AUC of 0.76,

while the first and second neighbor methods achieved an AUC of

0.66 and 0.58 respectively. Based on this data, we proceeded to

make angiogenesis annotations using graph diffusion.

Validation by network randomization
The highest ranking proteins by graph diffusion are topologi-

cally closer to the annotated proteins; however the method can be

biased towards hubs and other highly connected proteins. To

eliminate this bias, we tested the statistical significance of a protein

achieving as high of an association score in randomized networks.

For a given protein, we test the null hypothesis that the score is

equal to the rank that could be achieved in a randomized network

with identical degree distribution. We generated 300 randomized

networks by repeated edge swapping. The probability of the null

hypothesis is given by the fraction of randomized networks where

the score of the protein exceeds the score from the real network.

We reject the null hypothesis if the probability is less than 0.01.

Using this procedure, we identified a set of 202 angiogenesis

associated proteins.

Figure 1. Computational strategy to identify and verify novel angiogenesis-associated proteins. We began by integrating known
angiogenesis-annotated proteins (GO-annotated) with a set of known human interactions (from MiMI). We used a graph diffusion approach to
identify new angiogenesis-associated proteins using a ‘‘guilt-by-association’’ approach. We verified the set of selected genes using two approaches.
First, we evaluated the statistical significance of the selected genes by repeatedly permuting the human interactome (statistical hypothesis given in
Methods). Secondly, we integrated a time series gene expression experimental dataset obtained during VEGF-induced angiogenesis to determine if
the selected genes are enriched in the set of most perturbed transcripts.
doi:10.1371/journal.pone.0024887.g001

Table 1. VEGF stimulated time series gene expression
datasets analyzed.

Ref. Source Cells Culture Timepoints

[15] GDS3567 HUVEC Gelatine 0 m, 30 m, 1 h, 2.5 h

[16] GDS2039 HMVEC Matrigel 30 m, 2 h, 2 h, 4 h, 8 h

[17] Mellberg et al. TIME Collagen I
15 m, 1 h, 3 h, 6 h, 8 h, 12 h, 18 h,
24 h

Each dataset measured VEGF induced changes in endothelial cell gene
expression over a time course. The datasets used different cell lines, cell culture,
and time points for their studies.
doi:10.1371/journal.pone.0024887.t001

VEGF-A Regulated Gene Expression in Angiogenesis
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The Angiome
The combined set included 293 angiogenesis annotated and

associated proteins. The interactions (Table S1) and proteins

(Table S2) included in this network are given as Supporting

Information. In Figure 3, we visualized the combined network of

angiogenesis-associated proteins (we call it the Angiome) by cellular

compartment. Proteins were placed into the nucleus (green nodes),

cytoplasm (yellow nodes), plasma membrane (orange nodes), or

extracellular space (cyan nodes). Proteins that have been identified

in multiple compartments were duplicated in the layout. Protein

trafficking between compartments was indicated by dashed purple

lines. Molecular interactions within a compartment were shown in

grey. The interaction density of the figure illustrated the

redundancy and complexity of the angiogenesis process.

Validation by transcriptional profiling
Using graph diffusion, we identified 202 proteins that are

significantly connected to angiogenesis-annotated proteins. We

needed additional validation that these proteins were functionally

related to angiogenesis. We expected that many angiogenesis-

related genes would have VEGF-regulated gene expression in time

during angiogenesis. We analysed three separate time series gene

expression studies of angiogenesis involving VEGF stimulated

endothelial cells. To mitigate potential cell line bias, we chose

studies performed on HUVEC (GDS3567) [15], HMVEC

(GDS2039) [16], and TIME [17] cells (see Table 1).

To identify transcripts with high temporal correlation after

VEGF stimulation, we ranked transcripts by the absolute value of

the covariance between the transcript measurements and the

measured time points. For each protein, the temporal correlation

of the gene expression profile was given as Supporting Information

(Table S3). We tested the null hypothesis that the distribution of

angiogenesis-associated proteins was uniform throughout the

ranked list of transcripts. We determined the significance of the

enrichment using the Kolmogorov-Smirnov test [18]. A significant

p-value indicated that the angiogenesis-associated proteins were

disproportionally ranked at either the head or tail of the ranked list

of transcripts.

We first tested the set of angiogenesis-annotated genes (GO-

annotated) to ensure that they were enriched in the ranked list of

perturbed transcripts. As expected, we found that the set of

angiogenesis-annotated (i.e. GO-annotated) proteins were signif-

icantly perturbed in HUVEC (p = 0.04) and TIME (p = 0.041) cell

lines (see Table 2). We then tested the combined set of 293

proteins including the proteins found using graph diffusion and

significant at the 0.01 level. We found that the combined set of

proteins was more significantly perturbed than the set of GO-

annotated proteins alone across all three endothelial cell lines

(shown in Table 2).

Genes with VEGF-regulated expression
We identified seven genes that were consistently regulated by

VEGF-A across all three cell lines (shown in Table 3). Only genes

with reliable gene expression measurements in all three datasets

were considered. Genes such as HIV-1 tat interactive protein 2

(HTATIP2), HIF-1a, b-amyloid precursor protein (APP), and

myocyte enhancer factor 2C (MEF2C) all had increasing gene

expression across all three endothelial cell lines. Genes such as

endoglin (ENG), liberin b1 (PPFIBP1), and EPAS1 (HIF-2a) had

decreasing expression after VEGF treatment. We identified

literature that supported the association of some of these proteins

with angiogenesis. It was previously reported that HTATIP2 (also

Figure 2. Graph diffusion for angiogenesis annotation. The receiver operator characteristic (ROC) curve and precision recall curve detailing the
leave-one-out cross validation prediction accuracy of angiogenesis annotation. Using graph diffusion the area under the curve (AUC) was 0.76.
Annotation by the first neighbors method achieved 0.66, and second neighbors method achieved 0.58.
doi:10.1371/journal.pone.0024887.g002

VEGF-A Regulated Gene Expression in Angiogenesis
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known as CC3) had antiangiogenic properties [19], and VEGF

induced MEF2C expression [20]. We found that while endoglin

had a known role in angiogenesis [21], the association between

liperin b1and angiogenesis was not well established. Of these seven

genes, only two had non-electronic angiogenesis annotations.

It was known that HIF-1a was a transcription factor for VEGF

[22]. Across three endothelial cell lines, we found a VEGF-

regulated increase in HIF-1a expression over time. It was also

established that HIF2A was a hypoxia responsive transcription

factor [23]. We found that EPAS1 (also known as HIF-2a) had

decreasing expression after VEGF-treatment across three endo-

thelial cell lines. The analysis showed differential regulation of

HIF-1a and HIF-2a.

It was speculated that endothelial cells may have a role in

Alzheimer’s disease [24,25]. In this proposed mechanism, hypoxic

brain cells produced VEGF and stimulated endothelial cells. It was

also known that the disease resulted in the destruction of neurons

by the accumulation of b-amyloid plaques (i.e. APP protein

aggregates). After treatment with VEGF-A, we found increasing

expression of APP across all three endothelial cell lines. These data

Figure 3. The Angiome. This figure represents all proteins currently annotated (diamond nodes) and topologically associated (circle nodes) with
angiogenesis. The figure showed these proteins by their general cellular compartments: nucleus (green), cytoplasm (red), plasma membrane
(orange), and extracellular (cyan). Protein trafficking between cellular components was shown as purple dashed lines. Protein-protein interactions
within a compartment were shown as blue lines. The figure included the proteins in the single largest component of the network. A complete list of
the proteins, interactions, and cellular component assignments could be found in the supplement.
doi:10.1371/journal.pone.0024887.g003

VEGF-A Regulated Gene Expression in Angiogenesis
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supported the relation between endothelial cells and Alzheimer’s

disease.

Pathways linked to angiogenesis
Using the expanded network shown in Figure 3, we identified

overrepresented pathways linked to angiogenesis (see Table 4).

The pathways we report in Table 4 could not be identified using

angiogenesis-annotated proteins alone. A pathway associated with

acute myocardial infarction (AMI) was identified as angiogenesis-

associated with the expansion of the network to type IV collagens

(i.e. COL4A3 and COL4A2) and coagulation factors (e.g. F10, F2,

and F7). It was known that angiogenesis was a natural mechanism

to restore perfusion after AMI [26]. The coagulation factors were

also associated with prothrombin activation. Fragments of

prothrombin had been identified as regulators of angiogenesis

[27]. Collagen IV proteins also contributed to the platelet b-

amyloid precursor protein pathway (APP). While the molecular

basis was unclear, angiogenesis was identified as part of a

mechanism for Alzheimer’s disease along with pathological

secretion of b-amyloid proteins [24]. In this study, the expansion

of the angiogenesis-associated network gave us increased statistical

power to link pathways with angiogenesis.

Conclusions
Compounds that inhibit angiogenesis represent potential

therapeutics for many diseases. Therapies that target the VEGF

pathway have been used in the clinic. These treatments suffer from

an ‘‘escape phenomenon’’ where alternative pathways are

upregulated and angiogenesis continues. The redundancy of

angiogenesis regulation indicates the need for additional studies

and new drug targets.

To discover novel and missing angiogenesis annotations, we

integrated the human interactome with known angiogenesis-

annotated proteins to identify a set of 293 angiogenesis-related

proteins. We verified these protein associations by repeated

network randomization and analysis of relevant time series gene

expression datasets. After treatment with VEGF-A, we found

increasing expression of HIF-1a, APP, HIV-1 tat interactive

protein 2, and MEF2C, while endoglin, liprin b1 and HIF-2a had

decreasing expression across three endothelial cell lines. The

analysis showed differential regulation of HIF-1a and HIF-2a.

The data also provided additional evidence for the role of

endothelial cells in Alzheimer’s disease.

Materials and Methods

The interaction dataset was taken from the Michigan Molecular

Interaction database (MiMI) [28] (Feb 2009 version). The dataset

was composed of 13,491 genes, proteins, and RNA connected by

126,763 physical interactions. The interactions included protein-

protein, protein-DNA, protein-RNA, and RNA-RNA. As a result,

the dataset captured diverse aspects of biomolecular interactions

including protein complexation, transcriptional regulation, and

RNA interference. The dataset consisted of interactions curated

from reputable online databases such as Reactome [29], BIND,

BioGrid [30], HPRD [31]. This network of physical interactions

formed the basis for pathway expansion. Gene Ontology (GO)

[32] annotations were used to determine the known set of

angiogenesis-associated proteins (6/2010 version). MsigDB C2 was

used for pathway annotations [33]. Preparation and computa-

tional preprocessing of the gene expression measurements was

described in their manuscript.

Graph diffusion
We used graph diffusion to establish topological associations.

Intuitively, the algorithm worked by initiating a series of fixed

length random walks through the network originating at nodes of

interest. The score of each node was given by the fraction of

Table 2. Enrichment of angiogenesis-associated proteins in a
ranked list of the most perturbed gene expression transcripts
during angiogenesis.

Gene Set HUVEC HMVEC TIME

GO angiogenesis annotated only 0.04 0.185 0.041

angiogenesis annotated and associated at
p,0.01

0.008 0.001 0.001

angiogenesis associated at p,0.01 only 0.08 0.001 0.001

angiogenesis annotated and associated at
p,0.05

0.005 0.02 0.001

angiogenesis associated at p,0.05 only 0.035 0.026 0.008

To evaluate the relevance of angiogenesis-associated proteins with
angiogenesis, we evaluated the significance of gene sets in the ranked list of
most perturbed gene expression profiles. We obtained the gene expression
profiles from three studies performed on different endothelial cell lines. The
table gave the p-value of the enrichment of the gene set at the head of the
ranked list of perturbed gene transcript.
doi:10.1371/journal.pone.0024887.t002

Table 3. Summary of genes temporally regulated by VEGF across cell lines.

Symbol Name Annotated HMVEC HUVEC TIME

HTATIP2 HIV-1 Tat interactive protein 2 yes 0.72 0.71 0.86

HIF1A hypoxia inducible factor 1 yes 0.59 0.85 0.89

APP amyloid beta (A4) precursor protein no 0.85 0.81 0.85

MEF2C myocyte enhancer factor 2C no 0.99 0.82 0.63

ENG endoglin no 20.60 20.62 20.74

PPFIBP1 liprin beta 1 no 20.61 20.89 20.79

EPAS1 endothelial PAS domain protein 1 no 20.81 20.93 20.53

We highlighted those proteins from Figure 3 that had consistently correlated gene expression in time after VEGF stimulation. HTATIP2, HIF-1a, APP, and MEF2C had
positively regulated gene expression, while ENG, PPFIBP1, and EPAS1 had negatively regulated gene expression. Correlation values are shown for HUVEC HMVEC and
TIME endothelial cells. Only those genes with reliable measurements in all three datasets were considered.
doi:10.1371/journal.pone.0024887.t003

VEGF-A Regulated Gene Expression in Angiogenesis
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random walks that pass through the node. A parameter c
controlled the length of the random walks. The aggregation of

evidence over multiple paths led to a more stable result from

potentially unreliable data. The steady-state solution of this system

associated each node with an association score. In this study, we

set c such that all nodes receive some non-zero association score.

We made this functionality available through our webserver

(sysbio.bme.jhu.edu).

For a weighted undirected graph G(V,E) with vertex set V and

edge set E, let A be the symmetric adjacency matrix representing

G. Let qi be 1 if node i was in the query set or zero otherwise. Let

i,j be the set of nodes connected to node i. We expressed the time

derivative _ssi of the diffusion kernel score si(q) for node i[V as

_ssi~
X

i~j

Ajisj{si

X

i~j

Aij{csizqi ð1Þ

Let D be the degree weighted diagonal matrix of A. In matrix

notation, equation (1)had the form in equation (2).

_ss~As{Ds{cIszq ð2Þ

Our goal was to identify the values of s at steady-state. We set

_ss~0T from equation (2) and solve for s in equation (3).

s~½D{AzcI�{1
q ð3Þ

The values in s gave the association of each node with the query

nodes defined by q.

Statistical significance by network randomization
We computed the statistical significance of protein associations

by permutation testing. We tested the null hypothesis that the

association score of a protein is equal to the score of the protein in

randomized networks. The alternative hypothesis was that the

score of a protein is greater than the score of the protein in

randomized networks. To test these hypotheses, we generated 300

randomly edge swapped networks. The probability of the null

hypothesis was given by the number of randomized networks

where the score of a protein exceeded the score of the protein in

the real network. Pseudocounts were added to avoid fitted

probabilities of zero. We did not evaluate the statistical

significance of the angiogenesis-annotated proteins. Angiogene-

sis-annotated proteins were selected for the study and as such they

are inherently biased.

Time series gene expression analysis
We reanalyzed three time series gene expression datasets to

validate the angiogenesis-associated proteins and mitigate potential

cell line bias. In Table 1, we presented the three time series datasets

used in this study. These studies focused on early transcriptional

changes during VEGF induced angiogenesis. The studies used

different endothelial cell lines and measured different time points.

Mellberg et al. [17] measured gene expression of VEGF stimulated

telomerase-immortalized human microvascular endothelial (TIME)

cells at 15 min, 1, 3, 6, 9, 12, 18, and 24 hours. Schweighofer et al.

[15] measured gene expression in VEGF simulated HUVEC at

30 min, 1, 2.5, and 6 hours (GDS3567). Glesne et al. [16] measured

gene expression in VEGF stimulated HMVEC at 30 min, 1, 2, 4,

and 8 hours of tubulogenesis (GDS2039).

To identify temporal correlations, we computed the Pearson’s

correlation coefficient and covariance between each gene

expression profile and the time course. Genes with fewer than 3

reliable gene expression measurements are excluded. We formed a

ranked list of perturbed genes using the absolute value of the

covariance. We tested the null hypothesis that angiogenesis-

annotated genes are evenly distributed throughout the ranked list

of genes. The alternative hypothesis was that the proteins were

disproportionally ranked at either the head or tail of the list. We

used the gene set enrichment analysis (GSEA) software to compute

the p-value [34]. Pathway enrichment was computed using Fisher’s

exact test followed by correction for the false discovery rate (i.e.

Benjamini-Hochberg [35]).

Supporting Information

Table S1 Molecular interactions and types included in
Figure 3. The file listed the interactions included in Figure 3.

Proteins trafficking between components and transmembrane

proteins may be represented in multiple compartments.

(XLS)

Table S2 Graph diffusion scores and associated p-
values. The data included the individual genes included in

Figure 3. The file indicated if the protein was previously annotated

with angiogenesis, the graph diffusion score, and the permutation-

based p-value. Pseudocounts may have been added to avoid fitted

probabilities of zero.

(XLS)

Table 4. Pathways significantly represented in the Angiome.

Pathway Description p-value

AMI Acute myocardial infarction-associated pathway 2.00E-06

Extrinsic Extrinsic prothrombin activation pathway 2.02E-04

Platelet APP Platelet amyloid precursor protein pathway 3.50E-04

TGFB TGF beta signaling pathway 3.00E-03

Nkt Expression of chemokine receptors during T-cell polarization 3.80E-02

Keratinocyte Keratinocyte differentiation 5.39E-02

Cardiac EGF EGF receptor transactivation by GPCRs in cardiac hypertrophy 7.92E-02

These pathways could not be statistically identified from angiogenesis-annotated proteins alone. With the expansion of the angiogenesis-related network, these
pathways were easily detected. The p-value was computed using Fisher’s exact test followed by correction for the false discovery rate.
doi:10.1371/journal.pone.0024887.t004

VEGF-A Regulated Gene Expression in Angiogenesis
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Table S3 VEGF-induced gene expression correlation
measurements. For each protein, we list the temporal

correlation of the gene expression profile during VEGF-induced

angiogenesis. A positive (negative) correlation value indicated a

trend towards increasing (decreasing) gene expression after VEGF

treatment. Results were shown for the three VEGF-A induced

gene expression datasets.

(XLS)
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