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Abstract

ChIP-Seq has become the standard method for genome-wide profiling DNA association of transcription factors. To simplify
analyzing and interpreting ChIP-Seq data, which typically involves using multiple applications, we describe an integrated,
open source, R-based analysis pipeline. The pipeline addresses data input, peak detection, sequence and motif analysis,
visualization, and data export, and can readily be extended via other R and Bioconductor packages. Using a standard
multicore computer, it can be used with datasets consisting of tens of thousands of enriched regions. We demonstrate its
effectiveness on published human ChIP-Seq datasets for FOXA1, ER, CTCF and STAT1, where it detected co-occurring motifs
that were consistent with the literature but not detected by other methods. Our pipeline provides the first complete set of
Bioconductor tools for sequence and motif analysis of ChIP-Seq and ChIP-chip data.
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Introduction

Transcription factors (TFs) play critical roles in regulating gene

expression. Determining transcription factor binding sites (TFBSs)

is challenging because the DNA segments recognized by TFs are

often short and dispersed in the genome, and the target loci of a

TF vary between tissues, developmental stages and physiological

conditions.

Genome-wide protein-DNA interactions are now typically

profiled using ChIP-Seq, i.e. chromatin immunoprecipitation

(ChIP) with massively parallel short-read sequencing [1]. A typical

ChIP-Seq experiment generates millions of short (35–75 bp)

directional DNA sequence reads that represent ends of ,200 bp

immunoprecipitated DNA fragments. The read sequences are

mapped onto a reference genome. Then, for experiments with

transcription factors, there are three central analysis issues: peak-

calling, binding motif identification, and motif interpretation.

Here, we report an R/Bioconductor-based pipeline that offers an

efficient, integrated set of analysis tools for such experiments.

The aligned read data are first transformed into a form that

reflects local densities of immunoprecipitated DNA fragments, and

regions with high read densities, typically referred to as peaks, are

identified by a peak-calling algorithm (Reviewed in [2,3]). Here,

we use an R package, based on PICS, which we developed for this

pipeline. PICS (see methods) has been shown to perform well

compared to the QuEST [4], MACS [5], CisGenome [6], and

USeq [7].

Peak-calling returns a list of enriched genomic regions in which

the protein of interest is expected to be directly or indirectly

associated with DNA. Analysis then identifies potential DNA

binding sites within these regions, and summarizes these sets of

short sequences as motifs, typically as position weight matrices

(PWMs) or families of PWMs [8,9]. There are two main types of

algorithms for de novo motif discovery: enumerative and probabi-

listic. Enumerative methods identify and rank all m-letter patterns

in a set of sequences. Probabilistic methods use stochastic sequence

models along with Expectation-Maximization (EM) or Gibbs

sampling techniques to infer PWMs [10–13], and can be

computationally impractical for large datasets. Established tools

like Weeder [14], Gibbs sampler [15] or MEME [16] were

developed to address relatively small sets of input sequences, and

scale poorly to the much larger sets of enriched sequences that

whole-genome ChIP-Seq data can return. Pipelines developed for

ChIP-Seq analysis, e.g. CisGenome [6] and MICSA [17], are

based on these algorithms or variants of them, and face similar

constraints. Other tools like HMS [18] and ChiPMunk [19] were

developed for motif discovery from ChIP-Seq data, and so are

more scalable, but can identify only a single-motif at a time, and

PLoS ONE | www.plosone.org 1 February 2011 | Volume 6 | Issue 2 | e16432

16



would need to be modified to discover motif combinations. Our

pipeline uses GADEM [20], which is a good compromise between

fully probabilistic and enumerative approaches, can process large

sets of ChIP-Seq regions, handles both dimer and monomer

motifs, automatically identifies multiple motifs, and automatically

adjusts motif widths. We have ported GADEM to R, as a package

called rGADEM. To address very large sets of enriched regions,

we have extended the original C code to take advantage of

multithreading, without requiring user configuration, via Grand

Central Dispatch on OS X, and openMP (openmp.org), which

supports shared-memory parallel programming on all architec-

tures, including Unix and Windows. Compared to probabilistic

approaches, this provides a simple, fast and efficient de novo

framework.

Once de novo motifs have been identified, it is desirable to

compare, annotate and assess these in order to retain motifs that

are likely to be biologically relevant, while removing artifactual

and background motifs. For this we have designed a new tool,

MotIV (Motif Identification and Validation), which is based on

STAMP [21]. Like STAMP, MotIV provides queries to the

JASPAR database [22], and users can flexibly input other sets of

reference PWMs (e.g. TRANSFAC [23], UniProbe [24], DBTBS

[25], or RegulonDB [26]). As outlined below, MotIV provides

visualization and postprocessing options that are unavailable in

STAMP, TOMTOM [27] and MACO [28]. It provides summary

statistics on motif occurrences, reports joint motif occurrences and

plots distance and pairwise-distance distributions. It can also refine

motifs and motif occurrences based on a set of filters provided by

the user.

Because gene regulation typically involves combinatorial action

of multiple TFs, functional binding sites tend to occur as groups

that are often referred to as cis-regulatory modules (CRMs) [29].

Identifying CRMs can improve the accuracy of predicting

functional binding sites. However, results from computational

methods for determining CRMs (e.g. Cluster-Buster [30] and

CisModule [31]) are rarely reported for ChIP-Seq data, because

they are too computationally intensive or return long lists of

candidate modules that are challenging to assess. MotIV offers an

alternative way to identify biologically relevant combinations of

motifs.

Below, we describe the pipeline in more detail. Its core consists

of three Bioconductor packages: PICS calls enriched regions;

rGADEM identifies de novo motifs; and MotIV visualizes and

annotates motifs, and identifies motif combinations that have

nonrandom spatial relationships. This is the first complete

Bioconductor pipeline for analyzing transcription factor ChIP-

Seq data. The pipeline is computationally efficient, supporting

processing datasets that consist of tens of thousands of peaks. We

illustrate the pipeline by analyzing published Illumina datasets for

genome-wide binding in human of FOXA1, ER, STAT1, and

CTCF. We compare the performance of our approach to

previously described methods for motif and module discovery,

and show that the pipeline supports detecting biologically relevant

motif modules that are not easily discovered by other methods.

Results

We applied the pipeline to the four ChIP-Seq datasets

mentioned above and described in the Methods section. We first

used PICS to select the top 15000 enriched regions for the CTCF,

STAT1 and the FOXA1 data. For the STAT1 and FOXA1 data,

this corresponded roughly to a 5–10% FDR. For the ER data,

PICS detected 8000 enriched regions at a similar FDR level

(Figures S1, S2, S3). For CTCF, because we had no control data,

we used the top 15,000 regions for consistency with STAT1 and

FOXA1. In each case, we used PICS to export the top-ranked

400-bp wide enriched regions around predicted binding sites (peak

centers). In R, this creates a RangedData object, containing the

chromosome, start and end positions of each sequence, which can

be input directly into rGADEM. We post-processed the resulting

rGADEM object using MotIV.

Identification of primary motifs
rGADEM respectively identified 68, 23, 25 and 78 motifs in the

CTCF, STAT1, FOXA1 and ER datasets. To interpret the

detected motifs, we used MotIV to compare the identified PWMs

to JASPAR PWMs [22]. For each input motif, MotIV returns a

user-defined number of best-matching PWMs from the user-

specified reference database. The output consists of the name and

sequence logo of the highly-ranked database hits, along with the

pairwise alignments (in consensus sequence format) and the

alignment E-values (see Figures S4, S5, S6, S7, S20).

When displaying PWM matches, the user can choose to set

filters that retain only certain motifs, e.g. all matches with an E-

value less than 1024, or all matches containing the name ‘STAT’.

Here, we retained only the ‘expected’ motif for each data set

(Figure 1) by filtering on the names STAT1, CTCF, FOXA1 and

ESR1 in the JASPAR database and applying an E-value cutoff of

1024. Figures S4, S5, S6, S7 show that rGADEM can sometime

identify variants of the same motif (e.g. FOXA1). A user may

chose to combine the motif occurrences of these variants and treat

them as occurrences of the same motif. This can easily be done via

MotIV’s combine method, which regroups multiple motifs based on

a set of filters. Using this approach, we combined all variants of

primary motifs, as follows: FOXA1 = {m5,m10,m25}, ER =

{m4,m22,m33,m48}, STAT1 = {m1} and CTCF = {m1}. Note

that such combining is ‘virtual’, in that the PWMs of the selected

motifs are not actually combined nor modified, but are simply

assigned the same label. We find the combining process

particularly useful for plotting distributions and exporting motif

occurrences, and the interactive R environment readily supports

iteratively exploring such operations. As a secondary check, we

used the distance distribution plots provided by MotIV. Given the

specificity of ChIP-Seq and the accuracy of PICS, a de novo motif

that reflects a DNA-binding interaction should be located close to

a PICS site prediction. Using both the output of rGADEM and the

RangedData object returned by PICS (i.e. the input of rGADEM)

MotIV can plot the frequency distributions of the distance

between motif occurrences and peak centers. Note that such

distance distribution plots do not depend on database matches,

and so can be used with novel motifs and motif variants. Figures

S8, S9, S10, S11 shows that the selected motifs are concentrated

around peak centers, as expected. Our combined primary motifs

resulted in a total of 10059, 7105, 8711 and 3947 binding site

occurrences for CTCF, STAT1, FOXA1 and ER respectively.

Figure 2 shows the distribution for the combined primary motifs.

Overall, the spatial error between PICS binding site predictions

and actual motif occurrences is relatively small.

Identification of secondary motifs
Once expected motifs have been identified, we now look for other

motifs that may be biologically relevant. Because we may not know

which secondary motifs to expect, further computational assessment

may be required to discriminate artifactual motifs. A simple but

elegant approach involves using distributions of distances between

rGADEM motif occurrences and PICS predicted binding sites. If

the identified motif corresponds to a protein that has a short-range

interaction with the immunoprecipitated protein, we would expect

R Pipeline for Transcription Factor ChIP-Seq Data
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the motif site to be close to the PICS site prediction. A quick look at

the distribution plots, sequence logos and E-values reveals three

interesting motifs for the STAT1 data: STAT1, AP-1 and CTCF

(Figure 3 and Figures S7, S8, S9, S10, S11). A similar approach

suggested ER, FOXA1 and AP-1 motifs for the ER data, FOXA1

and AP-1 for the FOXA1 data, and CTCF and Myf for the CTCF

data. As noted above, we identified 68 and 75 motifs for CTCF and

ER respectively. MotIV let us quickly filter and visualize these

(Figures S4, S5, S6, S7, S8, S9, S10, S11), and suggested that many

of these were either variants of the same motif or artifactual motifs

due to sequence repeats.

MotIV also provides a way to characterize how frequently two

motifs occur on the same input sequence, as well as distance

distributions between occurrences of any two motifs. Figure 3 and

Figure 1. Primary motifs identified by rGADEM and visualized with MotIV. The motif matches and associated similarity E-values are based
on the JASPAR database included in MotIV.
doi:10.1371/journal.pone.0016432.g001

Figure 2. Distance distribution between the rGADEM motif occurrences and the PICS predictions for the STAT1, CTCF, FOXA1 and
CTCT motifs identified from datasets.
doi:10.1371/journal.pone.0016432.g002

R Pipeline for Transcription Factor ChIP-Seq Data
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Figures S12, S13, S14 show that there were fewer secondary motifs

than primary, and that relatively large fractions of a secondary

motif’s sites can co-occur with a primary motif. The distance

distributions show that most distances between a primary motif

and its secondary ones are relatively short (,50–100 bps),

suggesting that the DNA-associated proteins may interact.

Functional annotation of motifs and modules
To complement our analysis, we can combine our results with

Gene Ontology (GO) annotations [32], using R’s ChIPpeakAnno,

to provide general insights into the functions of proteins targeted

by ChIP-Seq experiments. For primary motifs, we identified

several over-represented terms for associated genes, as determined

by the nearest transcriptional start site (TSS) (Tables S1, S2, S3,

S4). In general, the categories for the primary motifs listed in the

tables were consistent with the known biological role of ER/

FOXA1/AP1 (see Supplementary Material S1). Applying the

same analysis looking at genes that were close to motif pairs

formed by the primary motif and one secondary motif (Tables S1,

S2, S3, S4) returned terms that, in some cases, were not returned

when working with primary motifs only, which suggested that

motif pairs may be functionally more discriminatory.

Biological significance of modules
Given that PICS, rGADEM and MotIV support efficiently

identifying candidate factor-cofactor relationships in ChIP-Seq

data, we assessed whether the literature suggested that the

relationships identified were biologically meaningful. FOXA1,

which is regulated in response to estrogen treatment, has been

shown to be crucial for ER to bind to chromatin and activate

target gene transcription [33,34]. This supports the FOXA1 motif

detected by rGADEM in ER-enriched regions, and supports an

interaction between the two proteins.

Fos and Jun family proteins usually function as dimeric

transcription factor that bind to AP-1 regulatory elements

[TGA(C/G)TCA] [35,36]. The AP-1 complex has been shown

to be over-expressed in ER positive cells (e.g. MCF7) and can

interact directly with the ER transcription factor [37,38]. This

supports the AP-1 motif identified by rGADEM in the ER

enriched regions, and the AP-1 motif that we identified in

FOXA1-enriched regions, which may reflect interactions, possibly

indirect, between the AP-1 and FOXA1 proteins via ER.

Given that we identified the FOXA1 motif in the ER-enriched

regions, we expected to identify the ER motif in the FOXA1-

enriched regions. We noted that a previous attempt to discover the

ER motif in this dataset had been unsuccessful [5]. A seeded

analysis with rGADEM (see Methods), using the ESR1 motif from

JASPAR, identified an ER motif (Figure S15) with only 723 sites.

These results suggest that ER requires FOXA1, but that the

converse is not true, which is consistent with the above literature.

Additionally, only 7% of the ER sites identified in the ER-enriched

regions overlapped with a FOXA1-enriched region. For this

calculation we used MotIV to export the ER sites as a RangedData

object and used the countOverlaps function of the IRanges package

to count the number of such sites that overlapped a FOXA1

enriched regions.

We examined the predicted interaction between STAT1 and

AP-1 (Table 1 and Figure 3). Cytokine stimulation induces

Figure 3. Pairwise distance distributions between the STAT1, AP-1 and CTCF motifs identified by rGADEM from the STAT1 data.
doi:10.1371/journal.pone.0016432.g003
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members of the STAT transcription factor family, Stat1 and Stat3,

to ‘dock’ onto receptor phosphotyrosines, enabling their own

tyrosine phosphorylation [39–41]. Subsequently, STAT proteins

translocate to the nucleus and bind to conserved genomic

regulatory sequences to rapidly activate gene transcription

[42,43]. The cytokines also activate components of other

intracellular signaling pathways, including Ras, mitogen-activated

protein kinase (MAPK), and the Fos-Jun (AP-1) transcription

factors [44–46], and activate direct interaction between STAT1

and AP-1 [47]. This supports our AP-1 motif detected by

rGADEM in the STAT1 enriched regions.

We analyzed the predicted interaction between CTCF and Myf

(Table 1). Wilson and al. [48] suggested that CTCF binding is

required for MyoD-induced IGF-2 gene activity in muscle.

Moreover, Myf and CTCF can co-localize in the same cellular

fraction during cellular process [49]. In this case the literature is

not as supportive but does suggest a potential co-operation

between CTCF and Myf.

Finally, we found no strong evidence in the literature for an

interaction between CTCF and STAT1. Given this, we again used

MotIV to export the CTCF sites as a RangedData object and used

the countOverlaps function of the IRanges package determine that

28% of such sites overlapped a CTCF enriched region, even

though the two experiments used different cellular systems. A

similar analysis showed that 31% of the FOXA1 sites identified in

the ER-enriched regions overlapped with a FOXA1-enriched

region. Note that such intersections of genomic intervals can easily

be carried out using the RangedData class and methods provided by

the IRanges package, illustrating how Bioconductor and R can be

used to extend our pipeline.

Comparison with other methods
In order to assess the performance of our pipeline, we compared

other motif/CRM identification tools on the above four datasets,

using PICS for peak calling and MotIV for validation.

CisFinder and Cluster-Buster took less than a minute on 15000

sequences, while Weeder and FlexModule took several days. Using

8-core multithreading, rGADEM completed these runs in a few

hours. MEME’s computational requirements allowed us to process

only the top 5000 sequences for all datasets, even when using the

parallel version running on 24 CPUs. HMS and ChIPMunk

return a single motif from a run, and so are less directly applicable

for work involving combinations of motifs. As well, while they are

scalable, they are slower than rGADEM; for motif discovery on

15000 400-bp sequences, HMS (100 iterations) and ChIPMunk

took approximately 24 h on a 1662.4 Ghz server.

The number of motifs identified varied greatly between the de

novo motif analysis tool (Table 1). As expected, each method

returned the primary or expected motif from each dataset, and the

methods compared agreed relatively well for these motifs (Figures

S16, S17, S18, S19). The de novo tools differed in the secondary

motifs and modules identified (Table 1). Weeder and CisFinder

systematically returned the lowest number of motifs, while

rGADEM and MEME tended to identify larger numbers of

secondary motifs. rGADEM identified the most secondary motifs

that could all be supported from the literature.

Cluster-Buster identified, in average, 1587 clusters containing

12 motifs for ER, 4558 clusters containing 15 motifs for CTCF,

1484 clusters containing 12 motifs for STAT1 and finally 1501

clusters containing 16 motifs for FOXA1. Such large numbers of

motifs and clusters are difficult to interpret, and complicates

comparison with other methods. While Cluster-Buster identified

the same motif combinations as our pipeline in some of its clusters,

these were mixed with tens of other motifs in thousands of clusters,

validation of which would clearly be difficult. Additionally,

cisFinder and Cluster-Buster used the input PWMs to scan for

motif occurrences, and so assume that these motifs are sufficiently

representative. In contrast, MotIV uses PWMs only for ‘labeling’

motifs.

Discussion

We have developed a pipeline for analyzing ChIP-Seq data for

transcription factors, the core of which consists of three

complementary R packages: PICS, rGADEM and MotIV. Using

four published human datasets, we showed that the pipeline

compares favorably to other de novo motif tools and CRM

clustering tools. For example, it identified co-occurring pairs of

motifs that were consistent with the literature and were not

detected by other methods.

Other integrated pipelines for ChIP-Seq data are available, for

example, MICSA [17], CEAS [50], and Sole-Search [51]. Issues

that should be considered in assessing such systems are reviewed

by [52]. MICSA [17] was largely designed to improve ChIP-Seq

data analysis by prioritizing enriched sequences that contained a

motif logo for the expected motif. In MICSA, the authors use

MEME on the top few hundred sequences to detect de novo motifs,

and then scan the remaining sequences with the identified logos.

While this can improve the speed of motif discovery, its biased

subsampling of input sequences may compromise detecting

secondary motifs. CEAS [50] and SoleSearch [51] are largely

annotation systems that offer less functionality and are less flexible

than our pipeline. We briefly tried to compare CEAS to our

pipeline, but, as with Cluster-Buster, found this difficult because of

the lack of control over the output.

The R pipeline described here offers functionality that is not

available in CEAS, cisGenome, MICSA and Sole-Search, e.g.

distance distribution plots, pairwise distance plots and motif

filtering. Filtering is efficient in removing artifactual and

Table 1. Motifs identified by all compared methods.

CTCF ER FOXA1 STAT1

rGADEM CTCF (0) ER (0) FOXA1 (2e-12) STAT1 (3e-13)

Myf (4e-8) FOXA1 (5e-12) AP1 (6e-10) CTCF (0)

ETS-like (1e-8) ETS-like (9e-7)

AP1 (3e-7) AP1 (6e-10)

cisFinder CTCF (0) ER (0) FOXA1 (4e-13) STAT1 (2e-10)

ETS-like (9e-8) AP1 (9e-8)

AP1 (8e-3)

Flexmodule CTCF (0) ER (0) FOXA1 (3e-11) STAT1 (4e-11)

FOXA1 (1e-13) AP1 (4e-8) SRF (1e-8)

AP1 (3e-8)

Weeder CTCF (2e-11) ER (1e-14) FOXA1 (1e-12) STAT1 (2e-11)

AP1 (1e-10)

ETS-like (2e-8)

MEME CTCF (0) ER (0) FOXA1 (2e-15) STAT1 (5e-9)

AP1 (3e-4) ETS-like (1e-5)

AP1 (4e-4)

Motifs identified by all compared methods in the selected PICS enriched
regions. The number given between parenthesis is the E-value match to the
corresponding JASPAR motif.
doi:10.1371/journal.pone.0016432.t001
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background motifs based on combinations of E-values and

distance distributions. For this reason, for our pipeline it is

unnecessary to mask sequence repeats, which is recommended for

CEAS and MICSA. As such masking could remove informative

motifs, an unmasked approach may be preferable. Other

approaches (e.g. cisGenome [6,53]) use relative enrichment

computed using control regions to discriminate relevant motifs

from irrelevant ones. rGADEM reports a fold enrichment for each

motif, and the pipeline complements this metric with information

on distance distributions and pairwise separation distributions.

Although the methodology behind PICS, and an earlier

command line version of GADEM have been published and

demonstrated elsewhere, MotIV was developed for the pipeline,

and the PICS and rGADEM R packages are new and implement

improved versions of the respective algorithms. All novel

computational aspects of rGADEM are described in Supplemen-

tary Material S1. While for the work reported here we focused on

ChIP-Seq experiments, rGADEM and MotIV can also be used

with ChIP-chip data. The pipeline provides our rMAT package

[54], which is well integrated with rGADEM and MotIV, in that

rMAT can export enriched regions as RangedData objects that can

directly be input into rGADEM. The pipeline’s modularity makes

it straightforward to replace PICS with an alternative peak caller,

and rGADEM with an alternative motif finder. Because our

implementation is open-source, anyone with a basic knowledge of

R can make such modifications.

Finally, we emphasize that our pipeline can leverage other

Bioconductor packages so that a user can develop, repeat and share

advanced analyses. We have described some of these packages, but

there are many more libraries that could be used with our pipeline.

For example, Figure 4 makes use of the rtracklayer package [55] to

interact with the UCSC genome browser. Other packages that can

be used include: SeqLogo for visualization of PWM, Genome-

Graphs [56] for further graphics functionality, BiomaRt for

retrieving annotations, IRanges and GenomicRanges for interval

manipulations, Biostrings for sequence manipulations, etc. Many

other relevant packages are listed on the Bioconductor website. We

anticipate that the characteristics of the R environment, including

its extensibility, will help to make the pipeline useful for a wide range

of ChIP-Seq datasets.

Materials and Methods

The analysis pipeline consists of three main steps (see Figure 5):

peak calling, motif discovery, and motif postprocessing and

validation. These steps are handled by three R packages: PICS,

rGADEM and MotIV, which have been designed to work together

and interact with other Bioconductor packages.

Figure 4. PICS peak calling. The example shows a FOXA1-enriched region in which PICS discriminates two closely adjacent binding events, each of
which contains a rGADEM de novo FOXA-like motif (black squares); these are separated by less than 300 bps. In contrast, MACS outputs a single
enriched regions. For clarity, the aligned reads (blue/red bars) and the combined forward/reverse PICS density profiles are also shown.
doi:10.1371/journal.pone.0016432.g004

R Pipeline for Transcription Factor ChIP-Seq Data
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Peak calling: PICS
The first step consists of identifying, from the aligned ChIP-

Seq reads, regions that represent protein-DNA association. For

this step, we rely on our method, PICS [57]. PICS is based on a

Bayesian hierarchical truncated t-mixture model, and integrates

four important components. It jointly models local concentra-

tions of directional reads. It uses mixture models to distinguish

closely-spaced adjacent binding events. It incorporates prior

information for the length distribution of immunoprecipitated

DNA to help resolve closely adjacent binding events (see Fig. 4),

and identifies enriched regions that have atypical fragment

lengths. Finally, it uses pre-calculated whole-genome read

‘‘mappability’’ profiles to adjust local read densities that are

missing due to genome repetitiveness (see Fig. 6 and ‘‘Avail-

ability’’, below). When a negative control sample is available

(e.g. input DNA), PICS returns an enrichment score that is

relative to the control sample for each binding event. Given a

control sample, PICS can also estimate a false discovery rate

(FDR) as a function of the enrichment score, which can be used

to select a threshold score for segmenting (calling) enriched

regions. Because PICS is based on a formal statistical model that

requires an EM algorithm for estimating the unknown

parameters, we have designed the R package PICS to be

computationally efficient enough to process large sets of ChIP-

Seq reads. The core of the algorithm is coded in C, and a user

can easily take advantage of parallel processing via R’s snowfall

[58] and multicore packages.

Figure 6 illustrates the read mappability correction in a genomic

region from the FOXA1 data. With the correction, the estimated

PICS binding site was within the PICS 95% approximate

confidence interval for the FOXA1 binding site location identified

by rGADEM; when no correction was done, the de novo motif

was outside of this interval. Figure 4 also shows that PICS can

discriminate closely adjacent binding events. Two binding sites are

separated into two disjoint enriched regions by PICS, whereas

MACS [5] combined these two sites into a single region. Such

features make PICS particularly attractive for subsequent motif-

based analyses.

Figure 5. The ChIP-Seq processing pipeline. Short sequence reads are first mapped onto a reference genome, and the mapping results are
loaded into R. The pipeline core consists of the three dark blue rectangles. Enriched regions are identified by PICS and passed to rGADEM for de novo
motif discovery, and motifs and motif occurrences are passed to MotIV for postprocessing.
doi:10.1371/journal.pone.0016432.g005
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de novo motif discovery: rGADEM
From the list of enriched regions returned by PICS, the next

step involves discovering over-represented DNA motifs. Probabil-

ity model-based de novo motif finding algorithms like MEME can

be sensitive [59,60], but may be too slow when thousands to tens

of thousands of enriched regions need to be analyzed.

We have developed an open-source R package rGADEM,

based on the GADEM software [20]. GADEM is an efficient and

scalable de novo motif discovery tool that combines spaced dyads

and an expectation-maximization (EM) algorithm. A genetic

algorithm (GA) guides the formation of a ‘‘population’’ of spaced

dyads. Each spaced dyad is converted into a letter probability

matrix, which is optimized by an EM algorithm. The optimized

PWM is then used to scan for binding sites in the data. A

subsequence of the length of the PWM is declared a binding site

when the p-value of its PWM score is less than or equal to a preset

threshold value. The logarithm of the E-value [61–63] is used as

the fitness score for the spaced dyad from which the motif is

derived. The resulting unique motifs with fitness values less than or

equal to a pre-specified cutoff are reported, and corresponding

binding sites in the original sequences are masked. This procedure

is repeated until no further motifs can be found that satisfy the run

parameters.

rGADEM is an R package containing an extended version of

the original GADEM C code. For ChIP-Seq data, a key

improvement is that, on multicore computers, it can take

advantage of multithreading via Grand Central Dispatch on

Mac OS X 10.6 and above, and openMP on other Unix platforms,

to sharply reduce run times.

A second important extension, shared by both R and the current

command line versions, is an optional ‘seeded’ analysis run mode. In

this mode, rGADEM does not generate the starting PWMs through

spaced dyads, but instead initializes the optimization with a user-

specified PWM. This PWM guides motif discovery, but is used only

for initialization and not during the EM-based PWM updating. A

seeded analysis has two important advantages. It is approximately

ten times faster than an standard run. Further, the prior knowledge

helps address both signal-to-noise issues [64] and problematic (e.g.

short) motifs. In our experience, seeded runs are also useful for

ChIP-chip data, where the signal is less clear and expected motifs

can be more difficult to recover.

rGADEM can also prioritize sequences with large ChIP

enrichments and includes novel prior distributions that prioritize

for motif occurrences that are nearer to sequence (peak) centers.

Such prior settings can potentially improve the detection of

primary motifs at the cost of missing secondary motifs that can be

present at low enrichment and/or further away for the center. For

these reasons, we prefer to use the default uniform prior and use

our post processing tools to detect biologically relevant motif

combinations.

Figure 6. PICS read mappability correction in a FOXA1 binding region with missing reads due to genome repetitiveness. A non-
mappable region (i.e. a region into which short reads cannot be uniquely mapped) is shown as a grey rectangle. Forward and reverse aligned reads
are respectively shown as black and red arrowheads. Forward and reverse PICS read density profiles are respectively shown in black and red, with
solid/dashed lines representing t distributions with/without the mappability correction. The rGADEM -estimated FOXA1 binding site is shown by a
vertical black line. When PICS corrects for read mappability, the de novo motif is within the confidence interval of the site location that it predicts, but
it is outside of the interval when the correction is not used. The spatial error, i.e. the distance between binding site location and the PICS prediction, is
15 bps with the correction and 47 bps without the correction.
doi:10.1371/journal.pone.0016432.g006
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All novel computational aspects of rGADEM are described in

Supplementary Material S1. Because the C code has been

wrapped in R, the overall interface is accessible and the package

contains functions to ease manipulation and visualization of the

input and output.

Post-processing and motif interpretation: MotIV
To identify a subset of potentially biologically relevant de novo

motifs, we have developed a simple, efficient post-processing tool,

MotIV. Based on STAMP [21], it compares and annotates motifs,

and supports identifying candidate motif modules. MotIV accepts

as input an R object returned by rGADEM, a PWM output file

from the command-line version of GADEM, or a PWM in

TRANSFAC format [23]. MotIV can be used to compare a list of

input motifs against a reference motif database. It contains the

JASPAR 2010 database, with pre-computed stimulated profiles

that are used to determine the likelihood or E-value of a motif

similarity score (see [21] for details). User-supplied PWM

databases and can easily be used, and scores computed. Because

MotIV uses the STAMP source code, it provides a range of

options for alignment calculations (see the documentation for the

R package and/or STAMP).

MotIV also provides several new visualization functionalities for

sequence logos, motif occurrence distributions and pairwise

distance distributions, which are available in grid layouts (Figures

S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15). The first

type of plot displays the alignment as logos with motif similarity E-

values for the top 5 matches (this number can be changed).

Because sequence repeats in artifactual enriched regions (e.g.

regions that have high fractional overlaps with simple tandem

repeats [65]) can lead to the detection of motifs with good E-value

matches, MotIV provides several options for identifying and

filtering such artifactual motifs. For example, MotIV allows one to

plot the distribution of the motif occurrences within our enriched

regions. A biologically relevant motif should have a distribution

that is peaked around the center of the region; conversely, the

spatial distribution for a less relevant motif will typically be flatter.

Finally, in order to identify co-occurring combinations of motifs,

MotIV can display motif pairwise distance distributions. In such a

plot, one can quickly quantify both co-occurring motif pairs and

assess the distribution of the inter-motif distances. To our

knowledge, no other method provides such functionality. Once

interesting motifs have been identified, motifs and motif

occurrences can easily be filtered and exported for further analysis.

Note that for motif occurrence and pairwise distributions, the use

of a database is not required, and novel motifs can be discovered

based on their spatial distributions alone.

Software availability and architecture
In the three packages, the source code is written in C for speed,

and wrapped in R code for accessibility. All packages use object-

oriented programming with classes and methods, which supports

usability as well as integration with other R/Bioconductor

packages [66], making it straightforward for a user to construct

advanced analyses. For example, PICS and MotIV support

exporting enriched regions and MotIV occurrences as RangedData

objects which can directly be used by other packages such as

ChIPpeakAnno [67], BSgenome and rtracklayer [55].

PICS, rGADEM and MotIV are available from the Biocon-

ductor web site at http://bioconductor.org. They run on Linux,

OS X ad MS-Windows. The packages are distributed under the

terms of the Artistic License 2.0. Each contains a detailed manual

and vignette with examples. Frequently asked questions, additional

tutorials, and further installation instructions can be found at

http://wiki.rglab.org. In addition, we offer pre-generated mapp-

ability profiles for common genomes and read lengths, as well as a

‘‘proMap’’ pipeline that can be installed locally for generating such

profiles (http://wiki.rglab.org/index.php?title = Public:Mappability_

Profile). The profiles are based on aligning read-length segments of a

reference genome back to that reference genome, using the same

aligner (BWA, [68]) and parameters that we use for ChIP-seq

data.

Data sets
To demonstrate the power and resolution of analyses supported

by our pipeline we used four recently published ChIP-Seq data for

human transcription factors: CTCF (CCCTC-binding factor) in

CD4+ T cells [5], STAT1 in interferon stimulated (IFN-gamma)

HeLa S3 cells [69], and FOXA1 [5] and Estogen Receptor in the

MCF-7 breast cancer cell line [70]. The CTCF data contains

2.95M reads, the STAT1 data contains 26.7M treatment reads

and 23.4M input control reads, the FOXA1 data consists of 3.9M

treatment reads and 5.2M input control reads, and finally the ER

data contains 3.6M treatment reads and 5.2M input control reads.

Comparison to other methods
Because we have already shown that PICS compares favourably

to other peak finders [57], we considered only steps 2 and 3 for

comparing to other de novo motif tools. Because STAMP is widely

used for motif postprocessing and MotIV extends STAMP, we used

MotIV for step 3. Essentially, then, we were largely comparing

rGADEM with other de novo discovery tools, for which we used

MEME, cisFinder [71], FlexModule [6] and Weeder [72], which

are widely used and perform well. For module discovery we

compared our pipeline to Cluster-Buster [30]. Each application was

used with its default parameters, according to the instructions given

in the manuals. All computations were performed on a Mac Pro

with dual 3.2 Ghz Quad-Core CPU processors and 16 GB RAM.

Supporting Information

Figure S1 Estimated FDR as a function of the enrich-
ment score for the ER data. The number of enriched regions

for the corresponding score is given at the top.

(EPS)

Figure S2 Estimated FDR as a function of the enrich-
ment score for the FOXA1 data. The number of enriched

regions for the corresponding score is given at the top.

(EPS)

Figure S3 Estimated FDR as a function of the enrich-
ment score for the STAT1 data. The number of enriched

regions for the corresponding score is given at the top.

(EPS)

Figure S4 Motifs identified by rGADEM and visualized
with MotIV from the CTCF data. The motif matches and

associated E-values are based on the JASPAR database included in

MotIV. For clarity only motifs with E-value less than 1024 are

retained.

(TIFF)

Figure S5 Motifs identified by rGADEM and visualized
with MotIV from the ER data. The motif matches and

associated E-values are based on the JASPAR database included in

MotIV. For clarity only motifs with E-value less than 1024 are

retained.

(TIFF)
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Figure S6 Motifs identified by rGADEM and visualized
with MotIV from the FOXA1 data. The motif matches and

associated E-values are based on the JASPAR database included in

MotIV. For clarity only motifs with E-value less than 1024 are

retained.

(EPS)

Figure S7 Motifs identified by rGADEM and visualized
with MotIV from the STAT1 data. The motif matches and

associated E-values are based on the JASPAR database included in

MotIV. For clarity only motifs with E-value less than 1024 are

retained.

(EPS)

Figure S8 Distance distribution between the rGADEM
motif occurrences and the PICS predictions for all
motifs identified in the CTCF data. For clarity only motifs

with E-value less than 1024 are retained.

(EPS)

Figure S9 Distance distribution between the rGADEM
motif occurrences and the PICS predictions for all
motifs identified in the ER data. For clarity only motifs

with E-value less than 1024 are retained.

(EPS)

Figure S10 Distance distribution between the rGADEM
motif occurrences and the PICS predictions for all
motifs identified in the FOXA1 data. For clarity only motifs

with E-value less than 1024 are retained.

(EPS)

Figure S11 Distance distribution between the rGADEM
motif occurrences and the PICS predictions for all
motifs identified in the STAT1 data. For clarity only motifs

with E-value less than 1024 are retained.

(EPS)

Figure S12 Pairwise distance distributions between the
CTCF, Myf motifs identified from the CTCF data.
(EPS)

Figure S13 Pairwise distance distributions between the
ER, FOXA1 and AP-1 motifs identified from the ER data.
(EPS)

Figure S14 Pairwise distance distributions between the
FOXA1 and AP-1 motifs identified from the ER data.
(EPS)

Figure S15 ER motif identified by rGADEM and visual-
ized with MotIV from the FOXA1 data. The motif matches

and associated E-values are based on the JASPAR database

included in MotIV.

(EPS)

Figure S16 Venn diagram for the number of overlapped
occurrences of FOXA1 primary motifs.

(EPS)

Figure S17 Venn diagram for the number of overlapped
occurrences of ER primary motifs.

(EPS)

Figure S18 Venn diagram for the number of overlapped
occurrences of CTCF primary motifs.

(EPS)

Figure S19 Venn diagram for the number of overlapped
occurrences of STAT1 primary motifs.

(EPS)

Figure S20 Example of a MotIV alignment output based
on the FOXA1 data.

(EPS)

Table S1 GO Analysis for the ER data.

(PDF)

Table S2 GO Analysis for the FOXA1 data.

(PDF)

Table S3 GO Analysis for the CTCF data.

(PDF)

Table S4 GO Analysis for the STAT1 data.

(PDF)
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