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Background. Hundreds of studies have evaluated the diagnostic accuracy of nucleic-acid amplification tests (NAATs) for
tuberculosis (TB). Commercial tests have been shown to give more consistent results than in-house assays. Previous meta-
analyses have found high specificity but low and highly variable estimates of sensitivity. However, reasons for variability in
study results have not been adequately explored. We performed a meta-analysis on the accuracy of commercial NAATs to
diagnose pulmonary TB and meta-regression to identify factors that are associated with higher accuracy. Methodology/

Principal Findings. We identified 2948 citations from searching the literature. We found 402 articles that met our eligibility
criteria. In the final analysis, 125 separate studies from 105 articles that reported NAAT results from respiratory specimens were
included. The pooled sensitivity was 0.85 (range 0.36–1.00) and the pooled specificity was 0.97 (range 0.54–1.00). However,
both measures were significantly heterogeneous (p,.001). We performed subgroup and meta-regression analyses to identify
sources of heterogeneity. Even after stratifying by type of commercial test, we could not account for the variability. In the
meta-regression, the threshold effect was significant (p = .01) and the use of other respiratory specimens besides sputum was
associated with higher accuracy. Conclusions/Significance. The sensitivity and specificity estimates for commercial NAATs in
respiratory specimens were highly variable, with sensitivity lower and more inconsistent than specificity. Thus, summary
measures of diagnostic accuracy are not clinically meaningful. The use of different cut-off values and the use of specimens
other than sputum could explain some of the observed heterogeneity. Based on these observations, commercial NAATs alone
cannot be recommended to replace conventional tests for diagnosing pulmonary TB. Improvements in diagnostic accuracy,
particularly sensitivity, need to be made in order for this expensive technology to be worthwhile and beneficial in low-resource
countries.
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INTRODUCTION
Tuberculosis (TB) is a major global health problem. Each year, 8

to 9 million people develop disease, and 2 million die [1].

Pulmonary TB is the most common form of the disease [2].

Diagnosis of TB relies on the detection of acid-fast bacilli by

microscopy (smear) and culture. Microscopy is rapid, specific, and

inexpensive but has low sensitivity [3,4]. Culture is more sensitive,

but results can take several weeks. In addition, culture may be

falsely-negative in 10–20% of cases [5]. Better efforts to control TB

require faster and more accurate diagnostic tests [6–8]. Nucleic

acid amplification tests (NAATs), which can give results in 3–

6 hours, have been developed to address these issues [9].

The polymerase chain reaction (PCR) is the most common

NAAT. Tests include those that are ‘‘in-house’’, when they are

based on a protocol developed in a non-commercial laboratory

(‘‘home-brew’’), or commercial kits. Several commercial NAATs

exist, and each uses a different method to amplify specific nucleic-

acid regions in the Mycobacterium tuberculosis complex. These kits

include: the GenProbe Amplified M. tuberculosis Direct test

(AMTD), the Roche Amplicor MTB test, the Cobas Amplicor

test, the Abbott LCx test, and the BD-ProbeTec (SDA) test.

Another NAAT has been recently developed—the Loop-mediated

Isothermal Amplification (LAMP) test, but research experience is

limited with this test [10]. Table 1 provides a summary of the

different commercial tests. The LCx kit is no longer in use, and

Becton Dickinson has produced an enhanced version of the SDA

test (BD-ProbeTec-ET). The Food and Drug Administration

(FDA) has approved the use of select commercial NAATs for only

respiratory specimens. In addition, the AMTD and Amplicor tests

are licensed for testing smear-positive specimens, while the FDA

recently approved a 2nd-generation AMTD (E-AMTD) test for

smear-negative specimens [11]. The LCx, BD-ProbeTec-ET, and

LAMP tests are currently not FDA-approved.

Systematic reviews of previous studies have suggested that the

diagnostic accuracy of NAATs varies more among in-house

NAATs than commercial tests [12,13]. A meta-analysis on the use

of in-house PCR assays for testing sputum samples found

significant heterogeneity and could not summarize the measures

of diagnostic accuracy (i.e. sensitivity and specificity) [14]. Several
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meta-analyses have evaluated the accuracy of commercial NAATs

in both pulmonary and extrapulmonary TB [12,13,15–17]. Most

of them have reported high and consistent specificity but low and

inconsistent estimates of sensitivity [12,13,15]. Smear-negative

patients may be the most likely group to benefit from the use of

NAATs. If the NAAT result is positive, a faster diagnosis can lead

to an earlier initiation of therapy [11]. However, studies have

shown that sensitivity is lower for smear-negative TB compared to

smear-positive TB [12,13,15,18]. One meta-analysis on the use of

commercial NAATs for only smear-negative patients found that

the sensitivity estimates were too low and variable to be used for

confirming diagnosis in this group [16]. Another recent meta-

analysis evaluated diagnostic accuracy for pulmonary TB stratified

by smear status [18]. It concluded that the low sensitivity of smear-

negative patients precludes the use of commercial NAATs for

ruling out TB. Its high specificity in this group of patients,

however, is useful for ruling in TB. The same study also noted that

the high sensitivity in smear-positive samples could be helpful in

ruling out a diagnosis of pulmonary TB due to infection by non-

tuberculous mycobacteria (NTM) [18]. In our meta-analysis, we

used a comprehensive search strategy to determine the accuracy of

commercial NAATs for diagnosing pulmonary TB in combined

smear-positive and smear-negative respiratory specimens. We

further explore factors that may be accountable for differences

among studies by meta-regression analysis.

METHODS

Search strategy
We systematically searched the literature using predetermined

inclusion criteria [19]. Criteria included: use of commercial

NAATs on respiratory specimens for diagnosing pulmonary TB,

comparison of NAAT result with culture as reference standard,

information to calculate sensitivity and specificity, and minimum

sample size of 50 to avoid selection bias [20]. We searched

PUBMED (1985–2006), EMBASE (1988–2002), Web of Science

(1990–2002), BIOSIS (1993–2002), Cochrane Library (2002; Issue

2), and LILACS (1990–2002). In addition, we reviewed the

reference lists of several previously published reviews on NAATs

[12–16,18]. Further, we hand-searched the Journal of Clinical

Microbiology, a high-yield journal for this review topic. Search terms

included ‘‘tuberculosis, mycobacterium tuberculosis, nucleic acid

amplification techniques, direct amplification test, polymerase

chain reaction, ligase chain reaction, Amplicor, Cobas, Roche,

Gen-Probe, Abbott, BD-ProbeTec, molecular diagnostic tech-

niques, sensitivity and specificity, accuracy, and predictive value’’.

Reference lists from included studies were also searched. In

addition, experts and commercial NAAT manufacturers were

contacted for additional studies. This search criteria has been

reported in previous meta-analyses [12–14].

Study selection
We identified 2948 citations from the initial search. After

screening titles and abstracts, 471 English and Spanish articles

were eligible for full-text review. Of these, 69 articles were

excluded, and 402 articles on the use of commercial NAATs for all

forms of TB were included (screening done by two reviewers). A

total of 142 articles focused on respiratory specimens [sputa,

bronchial aspirates, bronchoalveolar lavages (BAL), and tracheal

aspirates] for the diagnosis of pulmonary TB. Some articles

considered gastric aspirates as respiratory specimens. They were

accepted if the number of gastric aspirates was less than 5% of the

total sample size. A total of 37 articles were further excluded from

data extraction, and 105 articles were included in our meta-

analysis [21–125]. Several articles compared more than one

NAAT against the same reference standard in head-to-head trials,

in which case each comparison was considered as a separate study.

Thus, the total number of studies in the final analysis was 125.

Figure 1 displays how the studies were selected.

Data extraction
We created and piloted a data extraction form with a subset of

eligible studies. Based upon experience gained in the pilot study,

the data extraction form was finalized. The final set of studies was

assessed with the standardized form by two reviewers (DIL and

LLF), and any differences were resolved by consensus. Many

articles compared NAAT results to more than one reference

standard, and we used a hierarchical approach to choose one

comparison from each study: (1) culture result plus clinical data

(most preferred reference standard) (2) culture result alone and (3)

clinical data alone (least preferred reference standard). We used

the specimen as the unit of analysis when possible. We also chose

to use data that were not subject to discrepant analyses (i.e.

unresolved data) when available, since resolved data after

discrepant analyses are a potential source of bias and result in

higher estimates of accuracy [126]. In addition, NTM and

inhibited specimens were excluded if possible.

Assessment of study quality
We assessed the quality of studies using the following criteria,

suggested as important for diagnostic studies [127]: (1) Was there a

comparison of the commercial NAAT with an independent,

appropriate reference standard? (2) Was the NAAT result

interpreted without knowledge of the results of the reference

standard (blinded interpretation) and vice-versa? (3) Did the whole

sample or a randomly selected subset of the sample receive

verification using the reference standard? and (4) Did the study

prospectively recruit consecutive patients suspected of having

pulmonary tuberculosis (i.e. cross-sectional vs case-control design)?

Table 1. Summary of Commercial Nucleic-Acid Amplification Tests (NAAT) for TB
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NAAT Manufacturer Method

Amplified M. tuberculosis Direct Test (AMTD) Gen-Probe Inc. San Diego, CA Transcription-mediated amplification of rRNA

Amplicor MTB Roche Molecular Systems Branchburg, NJ PCR amplification of 16s rRNA

Cobas Amplicor Roche Diagnostic Systems Mannheim, GERMANY PCR amplification of 16s rRNA

LCx (discontinued) Abbott Laboratories Abbott Park, IL Ligase chain reaction amplication of 38kDa protein

BD-ProbeTec Direct (SDA) Becton Dickinson Diagnostic Systems Sparks, MD Strand displacement amplification of IS6110 and 16s rRNA

Loop-mediated Isothermal Amplification (LAMP) Eiken Chemical Co. Ltd. Tokyo, JAPAN Isothermal amplification and visual readout with UV
fluorescence
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Data synthesis and meta-analysis
Data were analyzed using Meta-Disc (version 1.4) software [128].

We pooled the data with the DerSimonian-Laird random effects

model (REM) [20,129–131]. The REM gives more conservative

estimates with wider confidence intervals because it assumes that

the meta-analysis includes only a sample of all possible studies

[19,132,133]. In addition, the REM accounts for both within-

study variability (random error) and between-study variability

(heterogeneity). Accuracy measures include: sensitivity, specificity,

positive likelihood ratio (LR+), negative likelihood ratio (LR-), and

the diagnostic odds ratio (DOR). Sensitivity is the proportion of

positive test results among those with the target disease. Specificity is

the proportion of negative test results among those without the

disease. In a clinical setting, likelihood ratios are considered useful.

The LR+ measures how much more frequent a positive test is found

in diseased versus non-diseased individuals. On the other hand, the

LR- measures how more likely a negative result is found in diseased

versus non-diseased individuals. The DOR, or the odds of a positive

result in diseased individuals compared to the odds of a positive result

in non-diseased individuals, combines both likelihood ratios and is a

global measure of test performance [134]. A value of 1 would

indicate that the test cannot discriminate between people with and

without disease. The DOR is calculated by LR+/LR2 or [sensitivity/

(1-specificity)]/[(1-sensitivity)/specificity] [134].

Each study in the meta-analysis contributed a pair of numbers:

sensitivity and specificity. Since these measures tend to be strongly

correlated and vary with the thresholds (cut-off values for

determining test positives) used across the individual studies, it is

standard practice to analyze sensitivity and specificity proportions

as pairs, and to also explore the effect of the threshold on study

results. To do this, we performed the summary receiver operating

characteristic (SROC) curve analysis [131,135]. The SROC

displays each study’s sensitivity and specificity estimates within

the ROC space. A regression curve is fitted through the

distribution of pairs of sensitivity and specificity. A shoulder-like

curve indicates that the variability between studies may be due to

the threshold effect (i.e. variation in cut-off values used across

studies) and that an underlying common DOR exists that does not

change with the threshold [130,135,136]. A non shoulder-like

curve shows that sensitivity and specificity are not correlated. The

area under the regression curve also measures the overall accuracy

of diagnostic tests. If the area under the curve (AUC) is 100%, then

the test differentiates perfectly between diseased and non-diseased

individuals. An AUC of 50% indicates poor diagnostic accuracy

[130,135,136].

Meta-regression
Heterogeneity in meta-analysis refers to a high degree of

variability in study results (e.g. variability in sensitivity estimates).

Such heterogeneity could be due to variability in thresholds (cut-

off values), disease spectrum and populations studied, variations in

NAAT protocols, and study quality across studies. When

significant heterogeneity is present, summary estimates from

meta-analyses are hard to interpret. We investigated heterogeneity

using subgroup (stratified) analysis and meta-regression analysis

[137]. In the subgroup analysis, we computed pooled DOR

estimates in various strata to determine if accuracy is higher in

specific subgroups.

Figure 1. Study selection process.
doi:10.1371/journal.pone.0001536.g001
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The meta-regression analysis is an extension of the SROC

model [135]. In this linear regression model, studies are the units

of analysis. The DOR is the outcome (dependent) variable. The

independent variables are the covariates that might be associated

with the variability in the DOR. Based on previous meta-analyses

[12–14], potentially relevant covariates for our meta-regression

model included: prospective or retrospective study direction,

recruitment method, blinded interpretation, type of test, specimen

type, reference standard, and data resolution. There were

insufficient numbers to compare categories of differing study

design, degree of verification, and smear status.

The meta-regression model generates relative diagnostic odds

ratios (RDOR) as the output [134,137]. An RDOR is a ratio of

two DORs. An RDOR of 1.0 indicates that a particular covariate

(e.g. blinded study design) does not affect the overall DOR. An

RDOR .1.0 indicates that studies with a particular characteristic

(e.g. those that employed a specific target sequence in the PCR)

have a higher DOR than studies without this characteristic. For a

RDOR ,1.0, the reverse holds.

RESULTS
The average sample size of the included studies was 715 (range 57–

7539). With the exception of one study, all of our studies were cross-

sectional. A majority (86%) of the studies were prospective in design.

A total of 45 (36%) studies used consecutive or random sampling,

while 29 (23%) studies recruited patients using some convenient

sampling. The convenient sample was chosen from a bigger group of

patients or was selected from a screening program. All but two

studies reported complete verification of NAAT results with the same

reference standard. Most of the studies (96%) collected both smear-

positive and smear-negative specimens, and 84% compared NAAT

results to culture as the reference standard. Ninety-five (76%) studies

tested respiratory specimens, while 30 (24%) studies only used

sputum specimens. We were able to analyze unresolved data (i.e. not

subjected to discrepant analyses) in 88 (70%) studies. Past evidence

has shown that investigators do not report all the study components

in their publications [6,138]. In our analysis, 103 (82%) studies did

not report blinding status, and 51 (41%) studies did not explicitly

report the method of patient recruitment. Table 2 gives the

characteristics of the studies in our meta-analysis.

The overall sensitivity and specificity estimates were 0.85 (range

0.36–1.00) and 0.97 (range 0.54–1.00), respectively. Figures 2 and

3 show the accuracy measures from all the studies in a forest plot.

Specificity appears to be more consistent than sensitivity. Thirteen

of 125 studies (10%) gave specificity estimates less than 90%. Most

of them included either patients on treatment or who had history

of prior disease. The overall LR+ was 32.74 (95% CI: 26.02,

41.22), and the overall LR- was 0.14 (95% CI: 0.12, 0.16). The

pooled DOR was 268.88 (95% CI: 212.07, 340.9). We used Chi-

square analysis to detect heterogeneity in the summary results. All

of them showed highly significant heterogeneity (p,.001). Thus,

pooled measures of the tests’ diagnostic accuracy are not

meaningful and do not adequately describe the data. Table 3

displays the accuracy measures and their corresponding statistics

for the Chi-square test of heterogeneity.

Heterogeneity is a common concern for diagnostic meta-

analyses. This variability may result from the threshold effect or

differences in test methods and study characteristics [135]. Figure 4

shows the SROC plot with studies weighted by their inverse

variance. The shoulder-like curve indicates that the threshold

effect exists in our meta-analysis. There is a trade-off between

sensitivity and specificity among the studies. Subgroup analysis is

also used to identify other sources of variability by stratifying data

into relatively more homogeneous strata [137]. Table 4 compares

the DOR estimates for the study characteristics. The heterogeneity

could be explained in some strata, but they consisted of small

numbers. We stratified by type of commercial kit since they have

standardized protocols. The variability in LR- did not persist for

the SDA test (Table 5). The SDA test amplifies IS6110, which is

usually present in high number of copies in MTB and may

increase sensitivity. However, only 6 studies evaluated the SDA

Table 2. Characteristics of NAAT Studies Included in the
Review (N = 125)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Characteristic Frequency (%)

STUDY DIRECTION

Prospective 108 (86)

Retrospective 9 (7)

Both 8 (6)

STUDY DESIGN

Cross-Sectional 124 (99)

RECRUITMENT

Consecutive 43 (34)

Random 2 (2)

Convenient 24 (19)

Consecutive and Convenient 5 (4)

Not Reported 51 (41)

VERIFICATION

Complete 123 (98)

BLINDING

Both (double blind) 8 (6)

NAAT blinded to reference standard 7 (6)

Reference standard blinded to NAAT 5 (4)

None 2 (2)

Not Reported 103 (82)

NAAT

Amplicor 34 (27)

Cobas Amplicor 18 (14)

AMTD 31 (25)

E-AMTD 9 (7)

LCx 18 (14)

BD-ProbeTec 6 (5)

BD-ProbeTec-ET 9 (7)

SPECIMEN

Respiratory 95 (76)

Sputum 30 (24)

REFERENCE STANDARD

Culture 105 (84)

Clinical Data 3 (2)

Culture and Clinical Data 17 (14)

SMEAR STATUS

Both (positive and negative smears) 120 (96)

Negative 2 (2)

Not Reported 3 (2)

DATA

Resolved (after discrepant analysis) 37 (30)

Not Resolved (discrepant analysis not done) 88 (70)

doi:10.1371/journal.pone.0001536.t002..
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test, and significant heterogeneity remained for the other

commercial NAATs.

A meta-regression analysis was performed to help explain the

variation even after subgroup analysis. Table 6 shows the RDOR

estimates from the meta-regression analysis using the Restricted

Maximum Likelihood (REML) method to measure between-study

variance. The threshold effect (S) = 20.21 was significant

(p = 0.01) in accordance with the SROC plot. The ‘‘S’’ coefficient

is a way to measure the effect of different thresholds on the DOR

Figure 2. Forest plot of sensitivity estimates and 95% CI. Point
estimates of sensitivity from each study are shown as solid circles. The
solid lines represent the 95% confidence intervals (CI). Circles are
proportional to study size. The pooled estimate is denoted by the
diamond at the bottom.
doi:10.1371/journal.pone.0001536.g002

Figure 3. Forest plot of specificity estimates and 95% CI. Point
estimates of specificity from each study are shown as solid circles. The
solid lines represent the 95% confidence intervals (CI). Circles are
proportional to study size. The pooled estimate is denoted by the
diamond at the bottom.
doi:10.1371/journal.pone.0001536.g003
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among studies, and the negative value indicates that the thresholds

increase specificity at the expense of sensitivity [16]. Thus, the

heterogeneity found in our meta-analysis could be explained in

part by the use of different cut-off values in the studies. In addition,

studies that evaluated respiratory specimens had almost a two-fold

increase in DOR compared to studies that used only sputum.

None of the other covariates in the model reached statistical

significance. Previous meta-analyses have shown that including

bronchial specimens gave higher accuracy estimates compared to

studies that only collected sputum [16,18].

DISCUSSION

Principal findings
Lack of rapid and accurate diagnostics for TB has been a major

concern for global TB control. NAATs were introduced as

promising novel tests for TB, and several commercial assays were

introduced into the market. However, their actual performance

has been less than optimal [12–18]. Since hundreds of studies have

been published on NAATs, there is now the opportunity to

perform meta-analyses and meta-regression to explore factors that

influence NAAT performance.

In this meta-analysis, we performed extensive literature searches

and identified a total of 125 separate studies from 105 articles that

reported NAAT results from respiratory specimens. The results

showed that sensitivity and specificity estimates for commercial

NAATs in respiratory specimens were highly variable, with sensitivity

lower and more inconsistent than specificity. Thus, summary

measures of diagnostic accuracy are not clinically meaningful. The

use of different cut-off values and the use of specimens other than

sputum could explain some of the observed heterogeneity.

Implications of the findings
The most notable advantage of commercial NAATs is their rapid

turn-around time, which may have important implications for

Table 3. Pooled Summary Estimates of 125 Commercial NAAT Studies (adding 0.5 to all cells of studies with 0 values)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Accuracy Measure Accuracy Estimate (95% Confidence Interval) Chi2 test of heterogeneity P value for heterogeneity

Sensitivity 0.85 (0.847, 0.86) 1121.69 ,.001

Specificity 0.968 (0.967, 0.969) 3748.64 ,.001

Positive Likelihood Ratio (LR+) 32.74 (26.01, 41.22) 3831.86 ,.001

Negative Likelihood Ratio (LR-) 0.14 (0.12, 0.16) 1495.00 ,.001

Diagnostic Odds Ratio (DOR) 268.88 (212.07, 340.9) 869.46 ,.001

doi:10.1371/journal.pone.0001536.t003..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.

Figure 4. SROC plot with best-fitting asymmetric curve. Each solid circle represents each study in the meta-analysis. The curve is the regression line
that summarizes the overall diagnostic accuracy. SROC = summary receiver operating characteristic; AUC = area under the curve; SE(AUC) = standard
error of AUC; Q* = an index defined by the point on the SROC curve where the sensitivity and specificity are equal, which is the point closest to the
top-left corner of the ROC space; SE(Q*) = standard error of Q* index.
doi:10.1371/journal.pone.0001536.g004
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patient management and TB control. However, they appear to be

impacted by a trade-off between sensitivity and specificity—

specificity appears maximized at the cost of sensitivity. Reasons to

account for their low sensitivity include low concentration of bacilli

(i.e. paucibacillary specimens), such as smear-negative sputum

specimens, or the presence of inhibitory substances [139]. We did

not find high rates of inhibition in the studies reviewed (range 1%–

7.5%). In addition, the small volumes of specimen (template) used

in each commercial test may offer additional explanations. A

recent meta-analysis on NAATs for TB lymphadenitis found that

studies which used volumes of template .20 ml were more

accurate than studies that used lesser template volumes [17].

Furthermore, study results may be influenced by the reference

standard used to compare test results. It is well known that culture

is not 100% sensitive and can give false-negative results. The lack

of a diagnostic gold standard remains one of the biggest obstacles

for evaluating new diagnostics, especially in HIV-infected persons

and in paucibacillary disease (e.g. extrapulmonary TB and

pediatric disease). The true accuracy of commercial NAATs may

actually be higher than reported when using an imperfect

reference standard [140].

Our results show a high degree of variability in accuracy across

studies. The increased power of a meta-analysis can determine a

test’s overall diagnostic ability, but a summary measure is

misleading in the presence of significant heterogeneity. In previous

meta-analyses [12–14], subgroup analyses did not fully explain the

variability found in NAAT results across studies. Even when

stratifying by commercial test, our results remained heterogeneous.

Other setting-specific factors, such as background TB prevalence

rates or laboratory experience, could help account for this variation.

Aside from the threshold effect, meta-regression analysis found that

studies which collected several types of respiratory specimens were

associated with higher diagnostic accuracy, possibly since the

induction of aspirates yields a higher recovery of bacteria. Our

findings agree with previous meta-analyses that suggest commercial

NAATs cannot replace culture and microscopy but should be

interpreted along with conventional tests and clinical data for

diagnosing TB [12,13,15]. NAATs are also not useful for monitoring

treatment progress since they can detect non-viable bacteria and give

false-positive results [141]. However, they can distinguish M.

tuberculosis from NTM [9]. This may be helpful in high-NTM

populations, such as HIV/AIDS patients.

Limitations of NAAT studies
Systematic reviews and meta-analyses are critical for evidence-based

clinical practice [131,142]. However, they are only as good as the

quality of the studies that they include. There is growing concern

that primary research on TB diagnostics are not methodologically

rigorous [143,144]. In a review of 12 recent meta-analyses of various

TB tests, studies were plagued by limitations such as lack of blinding,

use of a case-control design, and lack of random or consecutive

patient sampling methodology [6]. One review of 31 meta-analyses

on several diseases found higher accuracy measures associated with

studies that used non-consecutive sampling methods [138]. In our

meta-regression, the use of some convenience sampling gave a DOR

that was 1.5-fold higher than the DOR for studies that used random

or consecutive sampling. This finding was almost significant

(p = 0.15). In addition, 41% of our studies did not report how their

patients were recruited. Thus, besides poor methodological quality,

poor reporting of study components is another problem [6]. In our

meta-analysis, 82% of the studies did not report blinding status. Not

blinding investigators to reference standard results when interpreting

the NAAT test has been shown to overestimate the DOR

[13,16,145]. Another limitation of existing NAAT studies is lack of

data on whether NAATs actually have an impact on patient

outcomes and how much value NAATs contribute, over and above

the information already obtained by conventional testing. Most

studies only provided information on sensitivity and specificity.

Table 4. Diagnostic Odds Ratio (DOR) Estimates from
Subgroup Analysis

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Study Characteristic
(n) DOR

Chi2 test of
heterogeneity

P value for
heterogeneity

DIRECTION

Prospective (108) 255.63 (199.23, 328.01) 678.67 ,.001

Retrospective (9) 315.65 (99.68, 999.57) 150.21 ,.001

Both (8) 371.42 (161.83, 852.49) 31.40 ,.001

STUDY DESIGN

Cross Sectional
(124)

269.56 (212.30, 342.26) 869.08 ,.001

RECRUITMENT

Consecutive (43) 220.90 (154.41, 316.00) 180.24 ,.001

Convenient (24) 347.98 (225.63, 536.67) 91.71 ,.001

Both (5) 298.50 (90.72, 982.18) 40.54 ,.001

Random (2) 278.72 (3.12, 24901.4) 9.73 0.002

Not Reported (51) 284.91 (184.02, 441.13) 529.38 ,.001

VERIFICATION

Complete (123) 264.79 (208.66, 336) 863.88 ,.001

BLINDING

Both (8) 163.93 (69.91, 384.42) 25.49 0.001

NAAT blinded (7) 446.86 (45.83, 4357.6) 106.41 ,.001

Reference test
blinded (5)

136.79 (76.13, 245.75) 4.55 0.337

Not Blinded (2) 84.26 (5.99, 1184.50) 5.39 0.020

Not Reported (103) 286.86 (223.72, 367.82) 681.83 ,.001

NAAT

Amplicor (34) 174.92 (120.77, 253.35) 198.52 ,.001

Cobas Amplicor (18) 399.07 (238.32, 668.25) 83.93 ,.001

AMTD (31) 298.05 (155.13, 572.62) 332.38 ,.001

E-AMTD (9) 822.72 (194.22, 3485.1) 55.72 ,.001

LCx (18) 215.60 (145.98, 318.44) 40.41 0.001

BD-ProbeTec (6) 424.45 (174.15, 1034.5) 10.96 0.052

BD-ProbeTec-ET (9) 266.86 (110.04, 647.19) 46.93 ,.001

SPECIMEN

Respiratory (95) 319.21 (247.88, 411.07) 546.49 ,.001

Sputum (30) 138.91 (86.26, 223.70) 197.27 ,.001

REFERENCE STANDARD

Culture (105) 271.30 (211.67, 347.73) 688.15 ,.001

Clinical Data (3) 70.30 (4.04, 1224.60) 40.06 ,.001

Culture and Clinical
(17)

300.84 (163.1, 554.92) 70.57 ,.001

SMEAR STATUS

Both (120) 270.79 (212.77, 344.63)
61.79 (17.83, 214.14)

837.09 ,.001

Negative (2) 828.06 (317.8, 2157.6) 3.14 0.076

Not Reported (3) 0.04 0.982

DATA

Resolved (37) 254.01 (177.34, 363.81) 200.87 ,.001

Not Resolved (88) 278.33 (203.79, 380.13) 668.45 ,.001

doi:10.1371/journal.pone.0001536.t004..
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Strengths and limitations of the systematic review
Our systematic review had several strengths. First, we used a

comprehensive search strategy with various overlapping approach-

es. This enabled us to retrieve a large number of studies.

Moreover, two reviewers independently completed screening,

study selection, and data extraction. Finally, we analyzed data

within specific subgroups to lessen the effect of heterogeneity and

used meta-regression to identify factors associated with higher

accuracy. Our review had limitations as well. Despite searching

several sources, it is possible that we may have missed some eligible

studies. Further, we could only extract data from English language

studies, and this could have introduced bias in our results. Lastly,

despite using subgroup analysis and meta-regression methods,

considerable heterogeneity remained unexplained.

Even if sensitivity were to be improved, an important issue that

will remain is the implementation of these new tools in developing

countries. Commercial kits, whose prices range from US$25–50

per test, are popular in the US and other developed countries

[9,11]. The US Center for Disease Control and Prevention (CDC)

has reported that commercial NAATs are used mostly in hospitals,

health departments, and independent laboratories in the US

[146]. However, many developing countries still use in-house PCR

assays, which only cost about $15 per test [147]. Ironically, the

poorest countries are often the ones burdened by the highest

number of cases and therefore unlikely to benefit from expensive

technologies. Realizing this, agencies such as the Foundation for

Innovative New Diagnostics (FIND), the WHO, and the Stop TB

Working Group for New Diagnostics have launched initiatives to

make technologies for detecting TB and other neglected diseases

affordable and accessible for developing countries [148].
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