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Interaction Technology-Center of Excellence, Bielefeld University, Bielefeld, Germany, 3 Center for Computational Neuroscience and Cognitive Robotics and School of

Psychology, University of Birmingham, Edgbaston, Birmingham, United Kingdom, 4 Bernstein Center for Computational Neuroscience, Tübingen, Germany

Abstract

Often multisensory information is integrated in a statistically optimal fashion where each sensory source is weighted
according to its precision. This integration scheme is statistically optimal because it theoretically results in unbiased
perceptual estimates with the highest precision possible. There is a current lack of consensus about how the nervous
system processes multiple sensory cues to elapsed time. In order to shed light upon this, we adopt a computational
approach to pinpoint the integration strategy underlying duration estimation of audio/visual stimuli. One of the
assumptions of our computational approach is that the multisensory signals redundantly specify the same stimulus
property. Our results clearly show that despite claims to the contrary, perceived duration is the result of an optimal
weighting process, similar to that adopted for estimates of space. That is, participants weight the audio and visual
information to arrive at the most precise, single duration estimate possible. The work also disentangles how different
integration strategies – i.e. considering the time of onset/offset of signals - might alter the final estimate. As such we
provide the first concrete evidence of an optimal integration strategy in human duration estimates.
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Introduction

Imagine you are attending a cellist concert. As the cellist drags

the bow across the strings you try to guess how long that resonant

note lasted by using two sources of sensory information: the

duration of the sound and that of the bow movement. From these

two partially conflicting sources of information (i.e. because of

residual arm movements and room acoustics), your brain is

attempting to obtain one unique estimate of duration. Duration

can help structure, among other things, the rhythm of the music.

From simple characteristics such as the duration of a musical note,

to complex behaviours of anticipation, duration estimates of

intervals in the millisecond-to-second range guide our perception

of, and interactions with the environment (e.g., [1][2]). Yet, the

mechanisms accomplishing estimates of duration remain a

contentious issue ([3]; [4]; [5]). Most information about the

external world provides multiple sensory signals to your nervous

system. These signals can be used independently to estimate

properties of the environment – as such they are redundant. The

present study addresses the question of how redundant auditory

and visual cues specifying interval duration are integrated into a

unique audiovisual estimate.

The integrated estimate of a redundantly specified property e.g.,

location or size, is known to be the result of a weighted average of

the individual component estimates

S~
X

i

wiSi, ð1Þ

where the weights are proportional to reliability of the estimates

according to:

wi~
rjP

i~1...j...N ri

: ð2Þ

[6] where the reliability r is inverse variance of the estimates. With

such weights, the integrated estimate has the highest possible

reliability r and the integration is said to be ‘‘statistically optimal’’ -

but with an extreme weight assigned to one sensory component

there will be minimal benefit from integration. The model assumes

that the estimates are unbiased with normally distributed noise

that is statistically independent across estimates. This is the

Maximum Likelihood Estimate (MLE) model [7]:

r~
X

i

ri: ð3Þ

Previous research suggests that estimates of elapsed time do not

obey this integration strategy (e.g., [8]; [9]). Why should duration

information be different from all the other cases where optimal
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integration has been observed? Duration estimates cannot be

made while the information remains sensorially available as

duration is defined only once the event has ended, and thus

sensory information is no longer available. As such, duration

estimates are post-hoc [10]. It has been hypothesized that this

might be the reason why multisensory duration estimation would

be suboptimal ([8]; [9]). The question is whether these suboptimal

findings are specific to these studies or whether they highlight a

general feature of duration estimation.

In previous studies (i.e. [8]; [11]), temporal intervals were

defined by the time elapsed between two short stimuli (defined as

markers) which could be auditory, visual, or audiovisual. The

signal was only present at interval onset and offset not during the

judged interval itself. Such a stimulus can be defined as an ‘‘empty

interval’’ ([12]; [13]). This stimulus type is ambiguous regarding

which temporal property is redundantly specified (i.e., S in

Equation 1): the time points defined by the onset and offset

markers or the duration in between those markers. It is therefore

unclear which property undergoes multisensory integration. That

is, one strategy to process the information is for participants to

estimate duration of unisensory intervals separately and subse-

quently integrate them into a unified percept (we define this case as

‘‘redundant duration’’). Alternatively, they could first combine

audio and visual onset and offset markers, respectively and then

estimate the duration between these two integrated time points

(this is the ‘‘redundant time points’’ case). The mismatch between

previous studies and an optimal strategy, might be due to this

ambiguity: The MLE predictions from previous research have

been based on the assumption that visual and auditory duration

estimates are integrated, however, the empirical integration results

could have been derived from estimates of the integrated markers.

Using filled intervals, we show, for the first time that duration

estimation follows an optimal integration rule and therefore we

suggest that previously reported suboptimal behaviour may be the

result of different mechanisms underlying the problem of obtaining

duration from empty intervals, not the strategy used by the

nervous system per se.

Methods

2.1 Participants
Eight volunteers, all reporting normal hearing and normal or

corrected-to-normal vision took part in the entire experiment. All

participants were naı̈ve to the purposes of the study. Participants

gave their written, informed consent prior to the experiment and

were naive to the purpose of the study. They received J8 per hour

for their participation. The Ethics committee of the University of

Tübingen gave approval for the study and for the consent form

used to obtain written consent. The study was conducted in

accordance with the Ethical guidelines expressed in the Declara-

tion of Helsinki. Eleven participants began the experiment. Three

participants’ were excluded due to their inability to perform the

uni-sensory discrimination task above chance (average Weber

Fractions across all conditions exceed 3*s from the mean Weber

Fraction of all participants i.e. chance performance). If participants

cannot perform in the uni-sensory task investigating integration is

not useful. This left us with 8 participants who conducted the

complete experiment.

2.2 Stimuli
Stimuli were produced using a custom-built device generating

co-located sound and light signals (see [14]). Participants sat in a

dimly lit, sound attenuated room with their chins on a chinrest,

approximately 60 cm from the device. Audio signals were

broadband noise where the peak intensity was 60 dB SPL. Visual

signals were generated by a 765 red LED array, with aluminance

of 41 cd/m2. The average signal duration, across trials, was

500 ms, with a 5 ms onset/offset.

In order to alter the reliability of the audio signals we embedded

the noise burst (signal) in continuous background noise and

manipulated the intensity of this background noise (0.1, 0.6, and

1.2 times signal level, see Figure 1B). The audio background noise

was presented throughout the trial randomly spanning between

200 and 450 ms before and after stimulus presentation. No noise

was added to the visual signal.

2.3 Procedure
We used a two-interval, forced-choice procedure. Each trial

consisted of the sequential presentation of two intervals both

defined either by audio, visual, or audiovisual signals. Participants

indicated which interval lasted perceptually longer (Figure 1c).

They received no feedback concerning their response. The inter-

stimulus interval (ISI) varied randomly between 500 and 900 ms.

The duration of the standard stimulus interval in unisensory trials

(i.e. audition alone or vision alone) could be one of three durations:

450 ms, 500 ms or 550 ms; and for the comparison interval, the

duration could be 65, 10, 20, or 40% of the standard interval in

that trial, varied according to the method of constant stimuli. The

order of standard and comparison was randomized.

In the audiovisual trials, participants compared two intervals

where visual and audio signals (with one of three noise levels) were

present in both intervals. In these trials the procedure was identical

Figure 1. Experiment setup and design. (A) Audio and visual
signals defining a filled audiovisual interval. (B) Signal-to-noise
manipulation of the audio signal. (C) The three possible trial types:
audio, visual, and audiovisual intervals. In each trial one standard and
one comparison interval are presented in random order (in the depicted
case Interval 1 is the standard as it contains a discrepancy between the
audio and visual signals).
doi:10.1371/journal.pone.0089339.g001
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to that implemented in the unisensory trials, only the duration of

the audio and visual stimuli of the standard interval contained a

small conflict and thus could be different by D= 0, 250, +50 ms.

The signals were aligned at the temporal midpoint such that the

discrepancy was distributed equally at either end of the stimulus.

The conflict was introduced in order to measure how each sensory

input was updated during integration and to verify if the conflict

was resolved according to the unisensosry signal weights. As such

the conflicts were implemented to test the weighting predictions of

the MLE model. Trials with standard intervals having different

discrepancies were presented interleaved in random order.

Each comparison was repeated 16 times. Responses were fit

with a cumulative Gaussian from which the points of subjective

equality (PSE) and the just noticeable difference (JND) were

obtained. The PSE corresponded to the duration at which the

proportion of responses ‘comparison appears longer’ reached the

0.50 level – thus comparison and standard interval were perceived

as equally long. JND was derived by taking the difference in

duration between standard and comparison signals necessary to

increase discrimination performance from 0.50 to 0.84. The

Weber Fraction (WF) was calculated for each condition such that

WF = JND/DS where DS is the duration of the standard interval.

In this way it was possible to collapse across the three standard

durations we tested. For audiovisual stimuli, we took the mean

between DSV and DSA as a measure of DS. Thus, the WF indicated

the inverse of the precision of the duration judgment in the

discrimination process. Trials with unisensory and audiovisual

stimuli were interleaved throughout the experiment. From the

unisensory trials we derived predictions for optimal performance

in the multisensory condition according to the MLE Equations

(Equations 1–3). This allows us to compare the empirical

performance on audiovisual trials with the one predicted from

the performance obtained with unisensory stimuli. In the following

we will first describe the unisensory results followed by a

comparison between the MLE model predictions and empirical

findings for the audiovisual trials.

Results

Figure 2A shows unisensory visual and auditory WF data for

participant MDJ, a representative participant. Audio noise was

added to the auditory signal (low, medium, or high noise levels, see

Figure 1B) thus modulating the signal-to-noise ratio, but the visual

condition was always noise free. For audio stimuli, duration

discrimination thresholds increase with increasing noise levels.

Visual estimates are approximately as precise as the auditory

estimate in the middle noise condition (Figure 2A). Unisensory WF

data for all participants are presented in the histograms of

Figure 2B–E. The mean auditory WF goes from 19% to 54% as

the noise level of the audio stimulus increases. A one-way

Repeated Measures (RM) ANOVA comparing the WF for the

three different noise levels revealed a significant effect of noise level

on WF, F(2,7) = 35, p,0.001, g= 0.83. The average visual WF is

29%.

Individual WFs for the unisensory inputs are used to predict

performance under multisensory conditions according to the MLE

model. For this, Equations 1–3can be applied to the integration of

redundant duration information, indicating that perceived dura-

tion of audiovisual stimuli DAV should be a weighted average of

the audio and visual components such that:

D̂DAV ~wV D̂DV zwAD̂DA, ð4Þ

where the weights of the unisensory estimates of duration are

calculated using the individual WFs according to

wv~
WF2

A

WF2
AzWF 2

V

: ð5Þ

This weight leads to a maximal decrease in uncertainty for

multisensory estimates of duration where the Weber fraction in the

multisensory conditions can be calculated from the unisensory

ones

WF2
AV~

WF2
V WF2

A

WF2
V zWF2

A

ƒmin WF 2
V ,WF2

A

� �
: ð6Þ

Such predicted reduction of WF in the multisensory condition is

verified for participant MDJ in Figure 3A and in Figure 3B-

Cacross participants. A 3 (noise level) times 2 (empirical vs.

predicted) RM 2-way ANOVA on the WF values does not indicate

significant deviations from predictions for empirical values alone

(estimate type: empirical vs. predicted: F(1,7) = 1.6 p = 0.24,

g= 0.28) nor in conjunction with the noise level (estimate type

and noise level: F(2,14) = 0.5 p = 0.61, g= .15). The natural

interpretation of this would be that there is no difference between

the empirical and predicted WFs. However finding no significant

difference between the predicted and empirical values is not

necessarily evidence that they come from the same population. In

order to verify this we used the Bayes Factor (BF; see [15]) and

quantified the probability that the null hypothesis (no difference

between MLE predicted values and multisensory estimates)

described the relationship between the two variables. The BF of

3.58 suggests that there is support for the null and therefore that

performance in the multisensory condition is well predicted by

MLE. Such coherence is also present at the individual level as

evidenced by the similarity between predicted and audiovisual

observed WF (Figure 3C). A regression line fitted to the data has a

slope of 0.76 (95% C.I. = 0.58–0.94) and an intercept of 0.007

(C.I. = 0.02–0.13) with R2 = 0.78 (p,0.001) indicating that the

MLE model successfully predicts the individual performance

improvement due to multisensory integration. Moreover, the MLE

model predicts that the combined cue estimate is more precise

than the best unisensory WF estimate and such an advantage

increases when the reliability of the unisensory estimates is

comparable. Although previous studies did not find support for

this claim (e.g., [8]), here a paired-sample t-test reveals that the

best unisensory WF estimate is significantly higher than the

multisensory WF for the intermediate noise level (one-tailed

paired-sample t-test, t(7) = 3.7 p = 0.007, BF = 0.1175). In the other

two noise conditions the difference in reliability between the

auditory and the visual duration estimates is substantial, thus the

predicted improvement in the multisensory condition is small

compared to the best unisensory estimate (t(7) = 1.4 p = 0.19,

BF = 1.726 and t(7) = 1.9 p = 0.10, BF = 0.992, for the lowest and

highest noise level conditions respectively). This behavior is as

predicted by the model: an extreme weight assigned to a sensory

component leads to minimal performance advantage. In sum, the

decrease in variance associated with audiovisual duration estimates

observed in the intermediate noise condition indicates statistically

optimal integration for duration.

According to MLE predictions, as the noise in the audio signal

increases, participants should rely more on visual information.

This can be seen in Equation 5 as the weight (wA) assigned to the

audio component decreases. The values of PSEAV, representing

the perceived duration of audiovisual stimuli containing a

Audiovisual Duration Is Statistically Optimal
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temporal conflict, can be used to calculate the empirical weights

for each participant and verify this prediction. A comparison

between predicted and empirical weights at the different noise

levels is shown in Figure 3D for participant MDJ and for the

average across participants (Figure 3E). As predicted, with

increasing audio noise the estimate of duration appears to rely

more and more on visual information (the weight given to the

audio component decreases). The correlation between predicted

and empirical weights is visible in Figure 3F (R2 = 0.65 p,0.001),

which shows a strong correlation between empirical and observed,

given that the regression line does not statistically deviate from the

line of equality (slope = 1.1, C.I. = 0.77–1.5, intercept = 20.07,

C.I. = 20.02–0.10).

Taken together, the results for our variance estimate (WF) and

weighting behavior indicate that participants optimally integrate

the audio and visual components to obtain a single estimate of

multisensory duration.

Discussion

Here we show how the nervous system might obtain an

integrated estimate of interval duration for intervals redundantly

specified by multisensory signals. We investigated whether such an

integrated estimate is statistically optimal, despite the fact that

perceived duration of an event can only be obtained post-hoc, i.e.,

when the sensory information is no longer available. The crucial

finding is that redundant audiovisual duration information is

integrated in a statistically optimal fashion. That is, multisensory

duration estimates are obtained through a weighted average of the

unisensory estimates with weights proportional to their reliabilities.

This is in contrast with other studies that claimed suboptimal

integration of multisensory temporal estimates, particularly for

duration ([8]; [9]; [11]). Why this conflict? To gain insight into

why, let us consider what information is available for estimating

duration in the different studies. All other studies that looked at

multisensory integration in the time domain have used short onset

and offset markers ([8]; [9]; [16]; [11]). Duration was therefore

defined by an ‘‘empty interval’’ between those markers (cf.[9]).

Given the empty interval stimulus, multisensory duration estimates

could be obtained in one of two ways as suggested in the

introduction of this paper (cf. Figure 4). Here we formalize these

two options:

Figure 2. Weber fraction data as a function of noise level. (A) Example participant MDJ’s unisensory psychometric functions for the three
audio noise levels and for vision. (B) Distribution of Weber fraction values across the 8 participants for the visual condition. (C–E) Distribution of
Weber fraction values for the three auditory noise conditions.
doi:10.1371/journal.pone.0089339.g002
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1) The nervous system could either obtain an estimate of

duration for the audio and visual channels independently

from the auditory and visual empty interval, respectively. The

two redundant estimates of duration could then be integrated

into a unified estimate of multisensory duration. We named

this case ‘‘redundant duration’’ to distinguish it from the

alternative way integration could have been achieved, which

we termed ‘‘redundant time point’’. For ‘‘redundant dura-

tion’’ multisensory duration estimation performance should be

predictable from the unisensory duration estimates following

Equations 4–6.

2) Alternatively, for the short multisensory onset and offset

markers defining the empty interval, it could be that the

multisensory signals demarcating the markers are first

integrated into a multisensory estimate of the time points

marking the beginning and the end of the interval. Duration

judgments could then be made based on these integrated

onset and offset markers and not on integrating two

redundant duration estimates. In such a case, predictions

cannot be made using Equations 4–6, rather they follow a

different scheme as described below.

Figure 3. Weber fraction and pse data for the different conditions tested. (A) Example participant MDJ Weber Fraction values for unisensory
and, multisensory conditions and MLE predictions. Error bars correspond to the CI from the fitting procedure. (B) Mean unisensory, multisensory, and
MLE predicted WF values across participants. Unisensory WF data is obtained from the distributions represented in Figure 2B–E. Predicted values are
instead obtained from Equation 7. (C) Relation between empirical and predicted Weber fraction values across participants. For optimal integration,
the mapping between observed and predicted should be a 1-to-1 relationship. The line of best fit is consistent with such a mapping. (D) Example
participant MDJ’s values of PSEAV in multisensory conflict conditions expressed in terms of visual weight. Error bars correspond to the CI from the
fitting procedure. MLE predictions indicate that as the noise in the audio signal increases the visual weight should increases correspondingly. (E)
Average values of visual weight in multisensory conflict conditions. (F) Individual visual weights showing the correlation between empirical values
and predictions for the three noise conditions. The regression line shows the mapping between the predicted and observed weights.
doi:10.1371/journal.pone.0089339.g003
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Let us compare the performance that can be achieved in

duration judgments with the two proposed models that involve

either integration of duration information, or of time points

provided by the markers. In either case, the precision of a duration

estimate is limited by two noise sources, one due to the signals

marking start and end of the interval and one source due to

storage of the temporal information from onset until offset. The

latter component represents a noise source in the duration

estimate that is coming from memory and which makes longer

durations more difficult to discriminate than short ones. The

variance s2
D of a duration judgment can be then expressed as

s2
D ~s2

ONzs2
OFFzs2

S~2s2
Mzs2

S ð7Þ

where it is assumed that the variances associated with the onset

and offset are equal (s2
ON~s2

OFF~s2
S ).

1) If integration occurred according to the ‘‘redundant

duration’’ model the variability of the integrated estimate

s2
D,AV can be expressed as a function of the variability of the

unisensory estimates s2
D,A and s2

D,V following Equation6:

s2
D,AV ~

s2
D,As2

D,V

s2
D,Azs2

D,V

: ð8Þ

Substituting the unisensory variances s2
DA and s2

DV with Equation7

(and assuming that s2
s is equal in the two modalities) expands to:

s2
D,AV~

2s2
M,Azs2

S

� �
2s2

M,Vzs2
S

� �

2s2
M,Az2s2

M,V z2s2
S

: ð9Þ

The same substitution can be done for Equation5 to obtain the

weight assigned to the unisensory estimates as a function of

markers and storage noise

wA~
1= 2s2

M,AzVS

� �

1= 2s2
M,AzVS

� �
z1= 2s2

M,V zVS

� � ð10Þ

The single line superscripts in Equations 8–10 indicate estimates

according to the ‘‘redundant duration’’ model to distinguish them

from the ‘‘redundant time point’’ model.

2) If instead integration occurred according to the ‘‘redundant

time point’’ model, the audio and visual markers are first

integrated and duration is then estimated from their difference.

Thus, the variability of the onset and offset markers becomes

s2
M,AV ~

s2
M,As2

M,V

s2
M,Azs2

M,V

ð11Þ

and the weight given to the two markers is instead a function of the

marker’s reliabilities according to

wA ~
1=s2

M,A

1=s2
M,Az1=s2

M,V

: ð12Þ

The two-line superscript indicates estimates according to the

‘‘redundant time point’’ model. This leads to a variability of the

duration estimate of audiovisual conditions that is expressed by

s2
D,AV ~2

s2
M,As2

M,V

s2
M,Azs2

M,V

zs2
S: ð13Þ

If we now compare the two models, it is easy to demonstrate

that if the storage of temporal information does not cause a

decrease in performance for multisensory duration judgments (i.e.,

if s2
S~0), then there is no difference in the two methods of

integration both in terms of variability (Equation 9 is equal to

Equation 13) and weighting of the audio and visual components

(Equation 10 is equal to Equation 12). However, if s2
Sw0 then the

variability of duration judgments based on integrated markers

described by Equation13 is necessarily larger than the one

obtained through integration of redundant duration information

expressed by Equation 9. This means that with this additional

term the integration of time point information leads to less reliable

duration estimate than the integration of duration information

(Figure 4). The reason for this imbalance is that when the estimate

of time points is treated as redundant, the duration estimate is

derived from an integrated time point thus the noise term

associated with the memory storage component s2
S appears as an

additional factor in variance (Equation 13), but it is not considered

in the weighting (Equation 12) leading to suboptimal integration.

In fact, the variances determined for the time estimate of the

makers may differ from the variances of the duration estimate

because of the additional memory storage term. That is, the

variance of the duration estimate is determined by more than just

the variance of the markers (there must be an additional noise

source in the duration estimate which decreases the absolute

precision of duration estimates as duration increases). However,

the precision in determining a point in time for the onset and offset

alone should be largely independent of the duration that passes

Figure 4. Depiction of a single audiovisual empty interval (i.e.,
as used by [8]). Short audio and visual onset and offset markers
delineate the interval whose duration is to be estimated. If participants
integrate redundant unisensory estimates of the interval duration, this
would lead to the prediction given in the box titled ‘‘redundant
duration’’. However, it is also possible participants integrate the
unisensory estimate of time for the onset and offset markers giving
rise to the box titled ‘‘redundant time point’’. In this second case, the
audio and visual markers are first integrated and only at a later stage
the duration estimate is made on the integrated markers.
doi:10.1371/journal.pone.0089339.g004
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between those markers. As a consequence, if the variance

associated with the two modalities is not equal, the weight

assigned to the most reliable component (in the time domain, this

is normally the auditory modality) is higher for the ‘‘redundant

time point’’ model than for the ‘‘redundant duration’’ model.

Therefore, integrating information from markers rather than for

duration would be associated with overweight of the auditory

modality and for an associated higher variance for the overall

duration judgment. This could explain the apparent contradiction

between our result showing optimal integration and the ones of

Burr et al. [8] that shows overweighting of auditory information. It

must also be noted that the current study employs intervals that

are defined by the continuous presence of stimuli. Integration at

the level of marker time points with this kind of stimuli is difficult

to conceive, and we argue that this is the reason why we correctly

predicted optimal performance whereas others employing empty

intervals did not.

Duration estimation differs from all the other dimensions

investigated for redundant cue combination for which optimal

integration has been found, in that it is a post-hoc estimate. That

is, the perceptual judgment cannot be made while the sensory

information is still available. Duration can only be judged after the

event has terminated. Being optimal in integrating multisensory

event duration therefore means that the integration mechanism

operates on the stored representation of event duration and its

associated variance.

Recent findings highlight the importance of models of duration

reproduction (see [17]; [18]) where it has been suggested that both

humans [18] and rats [19] are able to learn distributions of

duration and, in a ready-set-go task, reproduce the go duration

optimally. Jazayeri and Shadlen [18] showed that prior informa-

tion about the experienced duration distribution is used in

reproducing temporal intervals. They asked participants to

reproduce time intervals that were sampled from different

underlying distributions (including sub-second intervals). The

resulting reproductions of target intervals were observed to regress

to the mean according to a Bayesian model that included a cost

function and a prior distribution of the range of duration

presented. These findings have been more recently confirmed

with different populations (i.e., showing a lesser influence of the

prior for musicians, [17]) and they are in line with the current

results as they demonstrate that both duration estimation and

reproduction of a temporal interval lead to statistical optimality

according to Bayesian inference models that include a prior

distribution (i.e., [18]; [17]) or that rely solely on likelihood

functions as in this study.

Evidence of optimal integration for perceived duration is further

intriguing as it provides insight into the current debate of how

neural timekeeping mechanisms are implemented in the nervous

system. Duration estimation has been used to understand how

temporal information is coded and processed in humans and

animals a like [20]; [21]; [1]). The prevailing view is that temporal

judgments rely on a centralized internal clock or pacemaker

feeding into an accumulator ([22]; [23]). More recent models,

however, consider distributed timing networks, with different

mechanisms timing different interval lengths ([2]; [1]; [24]; [25]).

Heron et al. [25] used an adaptation procedure and suggested that

there are multiple channels tuned to specific bandwidths of

duration. Such channel models are well established albeit

contentious for properties such as spatial frequency ([26]; [27];

[28]). Since MLE successfully describes the increase in perfor-

mance, this indicates that redundant multisensory components are

statistically independent. If this was not the case, lower perfor-

mance should have been obtained [29]. The current findings are

thus incompatible with the notion that duration estimation may be

obtained through a unique or partially dependent duration

mechanism and is thus in agreement with independent channel

models(i.e., [25]; [30]).

Estimating elapsed time is a critical ability for many other

perceptual and cognitive functions (e.g., [31]). It is known that

perceived duration is modulated by the emotional state of the

observer [32], by voluntary actions [33] or by making a saccade

([34]; [35]; [36]). We demonstrate that perceived duration of

audiovisual events depends upon the reliability of the information

the nervous system is sampling. Others have shown that perceived

time is altered by the magnitude of the signal, which could affect

its reliability, though this was not measured [37]. We would

suggest that it therefore highlights the plasticity of a candidate

timing mechanism. However, our results suggest that a pace-

maker accumulator implementation that would involve a different

clock for each modality is not the most parsimonious description.

When experiencing elapsed time in the ms-sec range the perceived

duration appears to be modulated by signal statistics more than

modality specific constraints.

Conclusion
The nervous system can integrate redundant information about

the temporal extent of a multisensory event so as to reduce the

uncertainty in its perceptual estimate of duration. The perfor-

mance is close to optimal when information about unisensory

duration is integrated, in contrast to the case when the time points

defining the interval are integrated. For duration estimates the

nervous system integrates redundant information in a manner

similar to spatial estimates, despite the fact that the information is

no longer available when the estimate is made. It makes sense that

estimating properties of the environment would involve a variance

minimization process where possible. So, next time you go to a

concert, make sure you watch and listen!
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