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Abstract

Background: Recent reports have shown that microRNAs (miRNAs) regulate vital immunological processes and have
emerged as key regulators of immune system development and function. Therefore, it is important to determine miRNA
dysregulation and its pathogenic contribution in autoimmune diseases, an aspect not adequately addressed thus far.

Methodology/Principal Findings: In this study, we profiled miRNA expressions in splenic lymphocytes from three murine
lupus models (MRL-lpr, B6-lpr and NZB/WF1) with different genetic background by miRNA microarray assays and Real-time
RT-PCR. Despite the genetic differences among these three lupus stains, a common set of dysregulated miRNAs (miR-182-
96-183 cluster, miR-31, and miR-155) was identified in splenocytes when compared with age-matched control mice. The
association of these miRNAs with the disease was highlighted by our observation that this miRNA expression pattern was
evident in NZB/W mice only at an age when lupus disease is manifested. Further, we have shown that the miRNA
dysregulation in MRL-lpr mice was not simply due to the activation of splenocytes. By Real-time RT-PCR, we confirmed that
these miRNAs were upregulated in both purified splenic B and T cells from MRL-lpr mice. miR-127 and miR-379, which were
greatly upregulated in splenocytes from lpr mice, were moderately increased in diseased NZB/W mice. In addition, Real-time
RT-PCR revealed that miR-146a, miR-101a, and miR-17-92 were also markedly upregulated in splenic T, but not B cells from
MRL-lpr mice.

Conclusions/Significance: The identification of common lupus disease-associated miRNAs now forms the basis for the
further investigation of the pathogenic contribution of these miRNAs in autoimmune lupus, which will advance our
knowledge of the role of miRNAs in autoimmunity. Given that miRNAs are conserved, with regard to both evolution and
function, our observation of a common lupus disease-associated miRNA expression pattern in murine lupus models is likely
to have significant pathogenic, diagnostic, and/or therapeutic implications in human lupus.
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Introduction

Systemic lupus erythematosus (SLE) is a chronic, complex, and

debilitating systemic autoimmune disease. Patients often face a

lifetime of illness with no effective cures and cope with high

medical care costs. In past decades, the researchers have

extensively focused on the identification of the gene defects in

SLE. While there has been significant progress in the understand-

ing of SLE genetics, which includes mapping of multiple SLE

susceptibility loci/genes in the human and murine genome, to date

no single or combination of structural gene defect has been

identified as a principal pathogenic factor in inducing SLE [1,2,3].

Although genetic factors are important in SLE susceptibility,

attention has now been shifted to the contribution of the epigenetic

regulatory defects including abnormal DNA methylation, histone

modification, and more recently miRNA regulation to lupus

pathogenesis [2].

miRNAs are small (about 22 nucleotides), non-coding RNAs

that regulate gene expression at the post-transcriptional level.

miRNAs usually bind to the 39 untranslated region (39UTR) of

target mRNAs through partial sequence homology, which result in

either translation inhibition or degradation of target message

RNAs (mRNAs). Computational analyses indicate that miRNAs

constitute about 3% of the human genome and regulate at least
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30% of human mRNAs. Therefore, it is not surprising that

miRNAs have been shown to play essential regulatory roles in a

variety of biological processes including embryogenesis, develop-

ment, cell proliferation and apoptosis, and signaling transduction

[4,5,6]. Importantly, aberrant miRNA expression patterns have

been evident in various pathological conditions, which suggest the

pathogenic roles of miRNA in different human diseases [5,7]. A

flurry of recent reports has documented the critical roles of

miRNAs in regulating immune cell development, fine-tuning

immune responses, and maintaining immune homeostasis

[8,9,10,11]. The involvement of miRNA in immune tolerance

control and autoimmunity has also been suggested by recent

studies in which autoimmunity was induced in mice when miRNA

synthesis was selectively disrupted in regulatory T cells (Treg) or

when miR-17-92 was over expressed in lymphocytes [12,13,14].

Spontaneous genetically lupus-prone murine models including

NZBWF1/J (NZB/W), MRL/MpJ-Faslpr/J (MRL-lpr), and con-

genic lupus strain B6.MRL-Faslpr/J (B6-lpr) have been extensively

used in numerous published reports and have provided valuable

insight into lupus pathogenesis. These three strains share common

characteristics with regards to the induction of autoantibodies

against dsDNA and other nuclear components, but display

different disease severity, autoantibody profile, and clinical

manifestation, which are caused by the differences in the lupus-

related genetic susceptibility loci and/or the background genome

of these strains [1,3,15]. For example, although B6-lpr mice

produce serum rheumatoid factor and anti-DNA antibodies, they

do not develop obvious glomerulonephritis that is often noticed in

MRL-lpr mice. This observation indicated that Fas gene mutation

(lpr) alone is not sufficient for the development of glomerulone-

phritis. The interaction between lpr gene and MRL background

genome is required for the development of renal disease in MRL-

lpr mice [15,16]. Intriguingly, in the present study, we identify a

miRNA expression pattern in splenic lymphocytes that is common

to all three lupus strains with different genetic background, and

more importantly we demonstrate that this miRNA expression

pattern is associated with lupus disease development.

Results

Identification of a common lupus-associated miRNA
expression pattern in splenic lymphocytes from
genetically lupus-prone mice

To identify a lupus disease-associated miRNA expression

pattern in splenocytes, we performed miRNA microarray assays

to compare the miRNA expression profiles in splenocytes from

three different strains of genetically lupus-prone mice including

MRL-lpr, B6-lpr, and NZB/W mice and their respective control

mice. To maintain uniformity of age, all of the mice were

euthanized at 3-4 months of age. As indicated in figure 1, 49

miRNAs were differentially expressed in MRL-lpr mice when

compared to MRL mice (Fig. 1A); and 24 miRNAs were

differentially expressed in B6-lpr mice when compared to B6

mice (Fig. 1B). Among these dysregulated miRNAs, we noted that

15 miRNAs were common to both lpr strains (Fig. 1C and

Table 1). The permutation test revealed that the possibility of

randomly having an overlap of more than two miRNAs between

dysregulated miRNAs in MRL-lpr and B6-lpr mice is ,0.001.

This indicated that the overlap of 15 dysregulated miRNAs

observed in two lpr strains is significantly above the overlap by

random chance (p,0.001). Interestingly, microarray analysis of

NZB/W and NZW at 3–4 months of age, an age when overt lupus

disease is not evident in NZB/W mice, revealed that only one

miRNA, miR-148a, was significantly upregulated in NZB/W mice

(data not shown).

By Real-time RT-PCR analysis, we confirmed that the

expression levels of miR-182, miR-183, miR-31, miR-127, and

miR-379 were highly upregulated in splenocytes from both of

MRL-lpr and B6-lpr mice when compared to control MRL and

B6 mice, respectively (Fig. 2 A). A report has shown that miR-96 is

clustered with miR-182 and miR-183 in mouse chromosome 6

and is likely generated from the same transcript [17]. Although

microarray assay did not identify the change of miR-96 expression

level in lpr mice, Real-time RT-PCR analysis clearly showed that

miR-96 was markedly upregulated similar to two other members

(miR-182 and miR-183) in the cluster (Fig. 2A).

Given the cell-specific expression of miRNA and divergent roles of

a specific miRNA in different cell types, it is important to determine

the expression of miRNA in purified subsets of splenic lymphoid cells.

Therefore, we also analyzed the expression of miRNAs, which were

altered in whole splenocytes, in purified B cells and T cells from

MRL-lpr and control MRL mice using Real time RT-PCR.

Consistent with the data observed in whole splenocytes, the

expression of miR-182-96-183, miR-31, miR-127 and miR-379

was also significantly increased in purified splenic B cells and T cells

from MRL-lpr mice when compared to MRL mice (Fig. 2B).

Figure 1. miRNA microarray data analysis. (A, B) Heat map
representing the relative miRNA expression levels in splenocytes from
MRL and MRL-lpr (A), and from B6 and B6-lpr mice at 3–4 months of age
(B) (n = 4 each group). The miRNAs that demonstrated at least 3-fold
changes with p,0.1, or 2-fold with p,0.05 were selected for
hierarchical cluster analysis to generate the heat map. The color bar
depicts the color contrast level of the heat map. Red and green indicate
high and low expression levels, respectively. (C) Venn diagram
presentation of microarray data.
doi:10.1371/journal.pone.0014302.g001

miRNA Dysregulation in Lupus
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Selected miRNAs were differentially altered in splenic B
and T lymphocytes from lupus mice

A recent report revealed that miR-146a was decreased in

peripheral blood leukocytes from human lupus patients, which

contributed to the elevation of the type I interferon (IFN) pathway

in human lupus [18]. Other studies have also revealed that miR-

150, miR-155, miR-17-92, and miR-101a play roles in the

regulation of antibody responses, germinal center responses,

inflammatory responses, and/or autoimmunity [7,13,19,20,21].

Considering that miRNA microarray analysis is not as sensitive as

Real-time RT-PCR to detect the alteration of the above-

mentioned miRNAs in lupus mice, we performed Real-time RT-

PCR to analyze the expression of above miRNAs in splenic

lymphocytes. We found that miR-155 and miR-150 were

significantly altered in whole splenocytes, as well as in splenic B

and T cells from MRL-lpr mice when compared to MRL mice

(Fig. 3). The upregulation of miR-155 was also observed in

splenocytes from B6-lpr mice (data not shown). Impressively, we

found that although several members of the miR-17-92 cluster

(miR-17, miR-18a, miR-19a, miR-20a), miR-146a, and miR-101a

were not changed in purified splenic B cells, they were significantly

upregulated in splenic T cells (Fig. 3). However, miR-92, another

member of the miR-17-92 cluster was not changed in either

splenic B or T cells. Overall, our data revealed that the expression

changes in lupus-associated miRNAs such as miR-182-96-183,

miR-31, miR-127, miR-379, miR-155, and miR-150 that were

observed in splenocytes were also evident in purified splenic B and

T cells. However, some miRNAs including miR-17-92 cluster

members, miR-146a and miR-101a were selectively dysregulated

in splenic T cells, but not splenic B cells, suggesting an exclusive

role of these miRNAs in lupus T cells.

The dysregulation of miRNA expression in splenocytes is
associated with lupus disease development

As mentioned earlier, the miRNA changes observed in two lpr

strains were not evident in 3–4 month old NZB/W mice when

compared to age-matched NZW mice. It is important to note that

Table 1. Microarray analysis revealed differentially expressed miRNAs in both MRL-lpr and B6-lpr mice.

MRL-lpr/MRL B6-lpr/B6

miRNA ID p value fold p value fold

Upregulated mmu-miR-127 2.57E-06 6.87 1.86E-03 8.34

mmu-miR-182 9.86E-04 4.08 6.06E-02 4.35

mmu-miR-183 5.65E-06 7.57 5.84E-04 7.71

mmu-miR-300 2.29E-03 2.58 5.64E-02 3.64

mmu-miR-31 2.82E-07 16.22 1.87E-03 9.90

mmu-miR-379 1.02E-07 16.80 7.34E-06 24.37

mmu-miR-382 1.10E-03 3.66 1.90E-02 3.75

mmu-miR-433 1.68E-04 3.48 1.06E-02 4.29

Downregulated mmu-miR-200b 2.76E-02 -2.00 1.18E-02 -5.89

mmu-miR-29b 2.76E-02 -4.76 3.91E-03 -18.28

mmu-miR-29c 4.62E-02 -4.59 2.50E-02 -14.91

mmu-miR-340-5p 1.22E-02 -3.73 7.29E-03 -9.96

mmu-miR-467e 2.57E-06 -13.83 2.71E-02 -4.12

mmu-miR-7a* 4.62E-02 -3.01 4.03E-02 -4.13

mmu-miR-98 7.37E-03 -3.01 9.78E-02 -3.91

doi:10.1371/journal.pone.0014302.t001

Figure 2. Real-time RT-PCR validation of dysregulated miRNA
expression. (A) The graphs show miRNAs that were significantly
upregulated in splenocytes from MRL-lpr and B6-lpr mice when
compared to control MRL and B6 mice, respectively. (B) The graph
shows miRNAs that are upregulated in both purified splenic B and T
cells from MRL-lpr when compared to MRL mice. The graphs represent
the means 6 SEMs (n = 4 each). Student t-tests were performed. *, **,
and *** indicate p,0.05, p,0.01, and p,0.001, respectively.
doi:10.1371/journal.pone.0014302.g002

miRNA Dysregulation in Lupus
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at 3–4 months of age, lpr mice with Fas gene defects already

manifest lupus parameters such as the generation of anti-dsDNA

autoantibodies, an important hallmark of lupus disease. As shown

in figure 4A, the serum anti-dsDNA levels were significantly

increased in MRL-lpr mice and B6-lpr mice when compared to

control MRL and B6 mice, respectively. Nevertheless, these lpr

mice only had moderate mesangial hyperplasia/inflammation in

the glomerulus and did not produce proteinuria (data not shown).

There was no obvious anti-dsDNA production in either NZB/W

or NZW mice at 3–4 months of age (Fig. 4A). Therefore, we

utilized 9-month old NZB/W female mice, which had confirmed

high serum levels of anti-dsDNA autoantibodies (Fig. 4A) and

severe glomerulonephritis and proteinuria (data not shown), to

analyze whether miRNA changes observed in lpr lupus mice are

evident in 9-month old NZB/W mice. To avoid the potential

effect of age on miRNA expression, we also included 9-month old

NZW female mice as controls. Impressively, the expression levels

of miR-182-96-183, miR-31, and miR-155 were markedly

upregulated in 9-month old NZB/W mice when compared to

either 9-month old NZW or 3-4-month old NZB/W mice (Fig. 4B).

miR-127 and miR-379 were also significantly upregulated in 9-

month old NZB/W mice when compared to 3-4-month old NZB/

W. However, the upregulation of miR-127 and miR-379 in 9-

month old NZB/W is not significant when compared to 9-month

old NZW mice (Fig. 4B). These data strongly indicated that the

dysregulation of above miRNAs in splenic lymphocytes is common

in three lupus strains rather than specific to lpr mice.

To further determine whether the changes of lupus-associated

miRNAs are simply a result of activation of lymphocytes in lupus

mice or are associated with the lupus disease development, we

analyzed the expression of selected lupus-associated miRNAs in

freshly-isolated and lipopolysaccharide (LPS)-activated splenocytes

from younger MRL-lpr mice (approx. 1 month-old), an age when

these mice do not develop significant levels of serum anti-dsDNA

autoantibodies. We also included freshly-isolated splenocytes from

3–4 months old MRL-lpr mice, which manifest lupus as positive

controls. As shown in the figure 5, the expression levels of selected

lupus-associated miRNAs including miR-96, miR-31, miR-127,

miR-146a and miR-155 were significantly upregulated in freshly-

isolated splenocytes from 3-4-month old MRL-lpr mice when

compared to 1-month old MRL-lpr mice. This data further

suggested that the upregulation of these miRNAs in lupus mice

was associated with the lupus development. LPS stimulation

significantly increased the expression of miR-146a and miR-155,

which was consistent with the previously published reports in

which miR-146a and miR-155 were shown to be induced by LPS

[22,23]. However, LPS activation did not induce miR-96, miR-31

and miR-127 expression changes in splenocytes. Taken together,

our data strongly indicated that the common changes of miRNAs

in lpr and NZB/W mice are associated with lupus disease

development rather than a simply result of the activation of

lymphocytes in lupus mice.

Discussion

It is becoming apparent that miRNA plays an important role in

immune homeostasis and also in the development or prevention of

autoimmunity. Dysregulated miRNA expression has been evident

in several human autoimmune diseases including multiple sclerosis

(MS), rheumatoid arthritis (RA), and SLE [7,18,24,25,26,27,28].

However, the study of the role of miRNA in autoimmunity is still

in the beginning stage. The precise role of dysregulated miRNAs

as autoimmune disease biomarkers and the function of these

miRNAs in the autoimmune disease process need to be

determined.

Thus far, several reports have revealed abnormal miRNA

expression patterns in peripheral blood mononuclear cell (PBMC)

and renal biopsy samples from human lupus patients, respectively

[18,24,25,29,30]. Intriguingly, it seems that the dysregulated

miRNAs in lupus patients that were determined in one study are

not well reproduced in other studies. For example, the decrease of

miR-146a in PBMC from lupus patient was observed in the study

reported by Tang et al. [18], but not in other published lupus

studies [24,25,29]. The discrepancy of the data from different

human lupus miRNA studies may be due to the difference in the

type of samples, sensitivity of detection methods, and the diversity

in the medical history, disease severity and race of the lupus

patients. Considering that genetic factors contribute significantly

to lupus etiology and may affect miRNA expression, it will be

important to determine a miRNA expression pattern that is

Figure 3. Real-time RT-PCR analysis of selected miRNAs. The expression levels of selected miRNAs were altered specifically in purified splenic
T cells, but not B cells, from MRL-lpr when compared to MRL mice. The graphs represent the means 6 SEMs (n = 4 each). Student t-tests were
performed. *, **, and *** indicate p,0.05, p,0.01, and p,0.001, respectively.
doi:10.1371/journal.pone.0014302.g003
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associated with lupus disease, but is independent of the genetic

background of patients or animal models.

In this study, we reported a common lupus disease-associated

miRNA expression pattern in three murine lupus models with

different genetic backgrounds. The reported targets and immune

regulatory functions of the lupus disease-associated miRNAs suggest

the potential contribution of these miRNAs to immune tolerance

breakdown and altered B and T lymphocytes function in lupus mice

(Fig. 6). For example, miR-155 has been shown to regulate germinal

center cell responses and generation of high-affinity antibodies by

targeting Pu.1, a ETS family transcription factor playing critical role

in the development of lymphoid cells [21]. While overexpression of

miR-155 led to the enhanced germinal center responses and

antibody production, depletion of miR-155 inhibited germinal

center responses and reduced the number of memory B cells and

IgG class switched plasma cells [20,21]. Our findings of the up-

regulation miR-155 in splenic B cells may have relevance with the

reported abnormal B cell activation, enhanced germinal center

responses and antibody production in human and murine lupus

[31]. The upregulation of miR-31 in T cells may correlate with the

deficiency of Treg cell development/function in lupus since miR-31

targets Foxp3, a critical transcription factor for Treg cell

development and function [32].

Of particular interest here, we found that miR-182-96-183

cluster is remarkably upregulated in splenic lymphocytes (over 8

folds in lpr mice) from lupus-prone mice. Previous study has shown

that miR-182-96-183 cluster was primarily expressed in the retina,

and rarely detected in the spleen and other tissues from normal B6

mice [17]. Our findings are the first to show that this cluster is

selectively increased in splenocytes from lupus-prone mice, which

may have a potential immune regulatory role in autoimmune

mice. Of particular relevance, the published reports have shown

that miR-182 and miR-96 target transcription factors Foxo1,

Foxo3a, and microphthalmia-associated transcription factor

(MITF), which play critical roles in controlling T and B

lymphocyte homeostasis and tolerance, respectively [33,34,

35,36,37]. T cell-specific deletion of Foxo1 gene in mice led to

spontaneous T cell activation, higher percentage of IFNc, IL-17

secreting CD4+ T cells, anti-dsDNA autoantibody production, and

tissue inflammation [34]. Inactivation of Foxo3a in mice led to

NF-kB activation, hyperactivation of helper T cell with increased

Th1/Th2 cytokine production and autoimmune inflammation in

salivary gland, lung and kidney [33]. Moreover, inactivation of

MITF in mice induced spontaneous B cell activation and

autoantibody production by suppressing interferon regulatory

transcription factor (IRF)-4, which suggested a role of MITF in

Figure 4. The alteration of miRNAs in splenocytes was related to lupus disease development. (A) The graph shows the serum anti-dsDNA
autoantibody levels in different strains of lupus mice and their respective control mice (n = 4 each group). Student t-tests were performed. (B) Real-
time RT-PCR analysis of miRNA expression in splenocytes from NZB/W and NZW mice at 3–4 and 9 months of age, respectively. The graph shows the
means 6 SEMs (n = 4 each). One-way ANOVA and the Tukey-Kramer multiple comparisons tests were performed. For both graphs, ‘‘ns’’ denotes non
significant; *, **, and *** indicate p,0.05, p,0.01, and p,0.001, respectively.
doi:10.1371/journal.pone.0014302.g004
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maintaining B cell immune tolerance and prevention of autoim-

munity [35]. Therefore, the upregulation of miR-96-182-83 in

lupus lymphocytes may cause the decrease of Foxo1/3a and/or

MITF, which in turn leads to the hyperactivation of B and T

lymphocytes, immune tolerance breakdown and development of

autoimmunity. Consistent with this, there is decreased Foxo1

transcript in human SLE and inhibited Foxo3a expression and

activity in MRL-lpr mice ([33,38] and unpublished lab data).

In addition, we found that miR-101a, miR-146a and miR-17-

92 cluster (except miR-92) were upregulated in splenic T cells from

MRL-lpr mice. Further studies will be performed to determine

whether these miRNAs are also altered in splenic T cells from

other murine lupus models. The upregulation of miR-101a is

consistent with the previous finding that miR-101a is upregulated

in CD4+ T cells from sanroque mice, which develop lupus-like

autoimmune syndrome as a result of loss of Roquin mediated-

repression of the inducible T-cell co-stimulator (ICOS)[39].

Increased miR-17-92 in T cells may lead to T cell tolerance

breakdown in MRL-lpr mice since over expression of miR-17-92

miRNA cluster in lymphocytes promoted lymphocytes prolifera-

tion and induced autoimmunity by targeting Bim and Pten, two

molecules that play critical role in immune tolerance mechanism

[13]. Our finding that miR-146a was significantly upregulated in

splenic T cells from MRL-lpr mice is consistent with recent reports

that have shown miR-146a was increased in splenic CD4+ T cell

from MRL-lpr mice [40].

In this study, we are the first to report a common dysregulated

miRNA expression pattern in splenocytes from three murine lupus

models with different genetic background. Although we have

shown that the dysregulated miRNAs were associated with the

production of anti-dsDNA autoantibodies and the development of

the lupus, it still needs to be determined whether the dysregulated

expression of these miRNAs are exclusive to lupus (i.e. lupus-

specific). It is plausible that some of these miRNAs may also be

dysregulated in other autoimmune diseases. It is noteworthy that

MRL-lpr and NZB/W mice, in addition to serving as animal

models of human lupus, have also been extensively used as models

of other human autoimmune diseases such as RA or Sjögren’s

syndrome [41,42]. Therefore, the selected lupus-associated

miRNAs that were determined in these three lupus models may

also play a role in the pathogenesis of RA and/or Sjögren’s

syndrome. Indeed, miR-146a and miR-155 have been shown

upregulated in PBMC and CD4+ T cells from human patients

with RA and contributed to RA pathogenesis [43,44].

The identification of a common lupus disease-associated

miRNA expression pattern in splenic lymphocytes from different

lupus-prone mice now forms the basis of the further investigation

to mechanistically understand the pathogenic contribution of these

miRNAs in autoimmune lupus. In figure 6, we outlined the

potential contribution of the common lupus-associated miRNAs to

B and T lymphocyte-mediated lupus pathogenesis based on the

documented role of these miRNAs or their target genes in immune

system. We are currently conducting exhaustive in depth studies to

test these suppositions and to determine the direct contribution of

these miRNAs in lupus pathogenesis. Given that miRNAs are

evolutional conserved and that the murine lupus models used in

Figure 5. The dysregulation of lupus-associated miRNAs in lpr
mice is not simply due to the activation of splenocytes. The
expression levels of selected lupus-associated miRNAs (miR-96, miR-31,
miR-127, miR-146a, and miR-155) in freshly-isolated (MRL-lpr-1 month),
24 hrs of LPS activated (MRL-lpr-1 month-LPS) splenocytes from 1-
month old MRL-lpr mice, and freshly isolated splenocytes from 3-4
month old MRL-lpr mice (MRL-lpr-3-4 months) were analyzed by Real-
time RT-PCR. The graph shows means 6 SEM (n = 4 each). ns, non
significant, **, p,0.01, and ***, p,0.001, MRL-lpr-1 month vs. MRL-lpr-1
month-LPS (paired t test), MRL-lpr-1 month vs. MRL-lpr-3/4 months (two
tail t test).
doi:10.1371/journal.pone.0014302.g005

Figure 6. Outline of the potential contribution of the common lupus disease-associated miRNAs to B and T lymphocyte-mediated
lupus pathogenesis.
doi:10.1371/journal.pone.0014302.g006

miRNA Dysregulation in Lupus
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this study resemble the major characteristics of human lupus, we

believe that these studies will potentially open a new approach for

lupus diagnosis and develop novel strategy for treating of lupus

disease by altering lupus-specific miRNAs in lymphocytes.

Materials and Methods

Ethics
This study has been approved by the Virginia Tech Institutional

Animal Care and Use Committee under Protocol ID #08-124-

CVM.

Mice
Genetically lupus-prone female mice MRL-lpr, NZB/W, B6-

lpr, and their control mice MRL/MpJ (MRL), NZW/LacJ

(NZW), and C57BL/6J (B6) mice were purchased from The

Jackson Laboratory, ME, USA. All mice were housed in the

animal facility at the CMMID, Virginia-Maryland Regional

College of Veterinary Medicine, Virginia Tech. At 3–4 months

of age (a time point when lpr mice develop lupus), MRL-lpr, B6-

lpr, NZB/W and their control mice were euthanized and spleen

tissues were collected to isolate splenocytes. Since NZB/W mice

do not develop fulminant lupus at 3–4 months of age, additional

groups of NZB/W and control NZW mice were euthanized at 9

months of age, when NZB/W develop classic lupus symptoms. In

addition, a group of MRL-lpr mice at 1 month of age, an age

when MRL-lpr mice do not develop significant level of anti-

dsDNA autoantibodies, were also euthanized for the experiment.

Splenocyte preparation, splenic B and T cell purification
Whole splenocytes were isolated using standard procedures

described in detail previously [45,46]. Splenic T cells and B cells

were purified from freshly-isolated splenocytes sequentially using

CD90.2 and CD19 microbeads (Miltenyi Biotec), respectively by

positive selection per the manufacturer’s instruction. The purity of

isolated T cells and B cells was confirmed by flow cytometry after

staining the isolated cells with FITC-conjugated CD90.2 (Thy1.2)

and CD19 antibodies, respectively. For LPS stimulation, the

splenocytes from 1-month old MRL-lpr mice were adjusted to

56106 cells/ml, plated in 24-well plate, and then activated for

24 hrs by adding equal volumes of media containing LPS (Sigma,

1000 ng/ml) to seeded cells (final concentration at 500 ng/ml).

miRNA isolation and miRNA Microarray assay
Total RNA, containing miRNA, was isolated from whole

splenocytes and purified splenic B and T cells using mirVana

miRNA isolation kits (Ambion). The total RNA samples from

whole splenocytes were sent to LC Sciences (http://www.

lcsciences.com/) for the microarray assay as we described recently

[47]. A mParaflo microfluidic chip, which included 617 unique,

mature, mouse miRNA, based on the Sanger miRBase Release

12.0, was used for assay. The methods used for microarray data

processing have been described in detail previously [47]. The

miRNAs that demonstrated either at least 3-fold changes with

p,0.1 or at least 2-fold changes with p,0.05 were selected for

generation of the heat map and Venn diagram. The permutation

test was performed to determine that the overlap of the

dysregulated miRNAs observed in MRL-lpr and B6-lpr is a

significant event rather than a random event. Briefly, out of 617

miRNAs on the chip, 400 miRNAs and 347 miRNAs are

detectable in the samples of dataset MRL vs. MRL-lpr and dataset

B6 vs. B6-lpr, respectively. Among them, 49 out of 400 miRNAs

were differentially expressed in MRL-lpr mice when compared to

MRL mice, and 24 out of 347 miRNAs were differentially

expressed in B6-lpr mice when compared to B6 mice. The

permutation test was performed by random sampling of 49

miRNAs from 400 miRNAs that were detectable in dataset of

MRL vs. MRL-lpr and 24 miRNAs from 347 miRNAs that were

detectable in dataset of B6 vs. B6-lpr. The procedure was repeated

for 1000 times to determine the possibility of having an overlap of

miRNAs in the randomly generated datasets.

All the microarray data are MIAME compliant and the raw

data have been deposited in a MIAME compliant database (Gene

Expression Omnibus (GEO)) under the accession number

GSE22359.

Real-time RT-PCR analysis of miRNA expression
As we previously described [47], the Taqman miRNA assay

system (Applied Biosystems) was used to quantify miRNA

expression. The relative expression level of miRNA was

normalized to the endogenous small RNA control, snoRNA 202,

and calculated using the 22DDCt (Livak) method.

Analysis of autoimmune parameters
Anti-dsDNA autoantibody ELISA was used to determine serum

anti-dsDNA autoantibody levels as described previously [48].

Briefly, the Nunc MaxiSorp 96 well ELISA plates (Fisher

Scientific) were coated with calf thymus dsDNA (Sigma, 100 mg/

ml) overnight, blocked with PBS-1%BSA, incubated with series

diluted serum samples, and then HRP conjugated goat-anti mouse

IgG-gamma (Sigma). The signal was developed with TMB

substrate (KPL, Inc). The plate was read at 380 nm in a

VersaMax microplate reader (Molecular Devices). Proteinuria

was measured by dipstick analysis using Chemistrip-2GP (Roche).

The kidneys of mice were fixed in buffered formalin and subjected

to histopathological assessment of glomerulonephritis by a

pathologist (Dr. David Caudell) in a blind fashion as previously

reported [49].

Statistical Analysis
All values in the graphs are given as means 6 SEM. To assess

statistical significance, student t-tests or one-way ANOVA and the

Tukey-Kramer multiple comparisons tests were performed using

GraphPad InStat (version 3.0a for Macintosh).
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