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Abstract

Alpha-helix based protein networks as they appear in intermediate filaments in the cell’s cytoskeleton and the nuclear
membrane robustly withstand large deformation of up to several hundred percent strain, despite the presence of structural
imperfections or flaws. This performance is not achieved by most synthetic materials, which typically fail at much smaller
deformation and show a great sensitivity to the existence of structural flaws. Here we report a series of molecular dynamics
simulations with a simple coarse-grained multi-scale model of alpha-helical protein domains, explaining the structural and
mechanistic basis for this observed behavior. We find that the characteristic properties of alpha-helix based protein
networks are due to the particular nanomechanical properties of their protein constituents, enabling the formation of large
dissipative yield regions around structural flaws, effectively protecting the protein network against catastrophic failure. We
show that the key for these self protecting properties is a geometric transformation of the crack shape that significantly
reduces the stress concentration at corners. Specifically, our analysis demonstrates that the failure strain of alpha-helix
based protein networks is insensitive to the presence of structural flaws in the protein network, only marginally affecting
their overall strength. Our findings may help to explain the ability of cells to undergo large deformation without
catastrophic failure while providing significant mechanical resistance.
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Introduction

Catastrophic phenomena that afflict millions of lives, ranging

from the failure of the Earth’s crust in earthquakes, to the collapse

of buildings, to the failure of bones due to injuries, all have one

common underlying theme: the breakdown of the basic constit-

uents of any material ultimately leads to the failure of its overall

structure and intended function. The failure and deformation of

engineering materials has been studied extensively and has

impacted our world by enabling the design of complex structures

and advanced devices. However, the mechanisms of failure in

biological systems are not well understood yet, thus presenting an

opportunity to generate novel concepts to initiate a new paradigm

of materials science. In order to provide a bottom-up description

of materials behavior from a fundamental perspective, here we

apply an atomistic multi-scale simulation approach that considers

the structure-process-property paradigm of materials science and

the architecture of proteins from the atomistic level up to the

overall structure.

The cell’s cytoskeleton plays a crucial role in determining the

overall cellular mechanical and biological properties. It consists of

three major protein networks, actin, microtubules and intermedi-

ate filaments (IFs). Thereby, actin filaments and microtubules,

both built from globular proteins, are responsible for cell dynamics

and motility as well as particle transport [1]. However, these

networks are rather ‘‘brittle’’ and break either at relatively low

stress or low strains lower than 50% [2]. The third component of

the cell’s cytoskeleton are alpha-helix based intermediate filament

protein networks. In contrast to actin filaments and microtubules,

intermediate filaments withstand much larger strains of up to

several hundred percent [3,4]. Thereby, they exhibit a highly

nonlinear stress-strain relationship, being rather soft and mechan-

ically ‘‘invisible’’ at small deformation, and become stiffer and

more resistant against rupture at large deformation. This behavior

is known as strain stiffening [5,6]. Intermediate filaments also form

the structural basis for lamin intermediate filaments, which

constitute an important part of the cell’s nuclear membrane

[7,8,9,10,11]. Similar to intermediate filaments in the cell’s

cytoskeleton, lamin intermediate filaments fulfill the roles of

defining the mechanical properties of the nuclear membrane and

participate in gene regulation [7,8,9,10,11]. Their mechanical role

has been demonstrated in several studies, which includes analyses

of disease mechanisms in the rapid aging disease progeria [12].

Due to the superior mechanical response to large deformation

and stress, it has been suggested in the biological literature that

intermediate filaments play the role of cells’ ‘‘security belts’’ by

providing structural support under rapid, large and severe

deformation [4,13]. The underlying protein motif that provides
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the constituents to build larger-scale networks of intermediate

filaments (which appear at scales of tens to hundreds of

nanometers) is the alpha-helical protein domain (see Figure 1A,

top part). Extended alpha-helical protein domains assemble into

larger-scale filaments that form mesh-like protein networks. A

snapshot of the lamin intermediate filament network is shown in

Figure 1B. It can be seen that whereas the network is rather

regular in some regions, structural imperfections appear through-

out. Figure 2 shows the effect of large uniaxial stretch on the

intermediate filament network in Madin-Darby canine kidney

(MDCK) cells, illustrating the ability of intermediate filament

network to undergo very large deformation without catastrophic

failure, where strain is distributed rather evenly throughout the

tissue and consequently through the intermediate filament

network.

The focus of this paper is on understanding the role of the

alpha-helical protein motif under mechanical deformation of

larger-scale protein networks, without and with structural

(geometric) imperfections. To achieve this, we consider the

deformation and rupture behavior of a simple model of an

alpha-helix based protein network, as shown in Figure 1C. Figure 3

shows the multi-level hierarchical structure of the alpha-helical

protein network considered here, involving five levels of

hierarchies. The plot illustrates how individual H-bonded alpha-

helical protein filaments are connected to form a macroscopic

mesh structure. We emphasize that the goal of our model is not to

Figure 1. Model formulation, geometry and setup. Subplot A shows a schematic of the coarse-graining procedure, replacing a full atomistic
representation of an alpha helical protein domain by a mesoscale bead model with bead distance r0. Subplot B shows a snapshot of a quasi-regular
lamin meshwork (scale bar 1 mm) as observed in experimental imaging of oocytes; where structural imperfections are highlighted in white. Image of
lamin meshwork reprinted with permission from Macmillan Publishers Ltd., from Nature [43], copyright � 1986. Subplot C depicts a schematic of the
coarse grained protein network geometry used in this study, with the applied mode I tensile boundary conditions. The size of the network equals to
24 nm624 nm, where each filament is represented by one alpha helix, as shown in the blow-up. A constant strain rate is applied in y-direction to
apply mode I tensile loading through displacing the outermost rows of beads. The crack represents a geometrical flaw or inhomogeneity as they
appear in vivo. Subplot D depicts characteristic force-strain curves for pulling individual alpha-helices as used in our mesoscale bead model. As
explained in Materials and Methods, this force-strain behavior is derived from full-atomistic simulations and theoretical analysis, and has been
validated against experimental studies. The labels a, b and c identify the three major regimes of deformation.
doi:10.1371/journal.pone.0006015.g001

Alpha-Helical Protein Networks

PLoS ONE | www.plosone.org 2 June 2009 | Volume 4 | Issue 6 | e6015



accurately reflect a particular type of a protein structure. Rather, it

is formulated deliberately as a general model to probe fundamen-

tal properties of a broader class of protein materials in which

alpha-helix based protein filaments connect to form larger-scale

networks. Despite its simplicity, our model captures the essential

physical properties of individual alpha-helical protein filaments as

identified in earlier theoretical and experimental studies. Through

simulation of a larger-scale network, our model enables us to

provide an important link between single molecule properties and

mechanisms and the overall material behavior at much larger

length-scales. (Details about the model formulation are included in

the ‘‘Materials and Methods’’ section.)

In the literature, alpha-helical protein materials have been

studied either from a macroscale perspective or from a single-

molecule level, but not from an intermediate ‘‘mesoscale’’

viewpoint. For example, alpha-helix based intermediate filament

networks have been investigated through shear experiments of

protein gels [2] as well as through in situ studies with particle

tracking rheology [14], where their material properties have been

explored from a macroscopic perspective. On the other hand, the

mechanical properties of the elementary nanoscale alpha-helical

building blocks were studied extensively, and several publications

have reported advances in the understanding of their nanome-

chanical behavior from both experimental [15,16] and theoretical

[17,18,19,20,21] perspectives.

Up until now the properties of alpha-helical protein networks

specifically at the mesoscale have not yet been investigated, and no

analysis of the rupture behavior of these networks was reported,

despite their widely accepted significance of the mechanical

performance and integrity. This has thus far hindered the

formulation of bottom-up models that describe the structure-

property relationships in protein networks under large deforma-

tion, which may explain their characteristic mechanical behavior.

In particular, it remains unknown what the mechanism is by which

these protein networks can sustain such large deformation of

several hundred percent without catastrophic failure. This is an

intriguing question since protein networks typically feature

structural irregularities and flaws in their network makeup, as

highlighted in Figure 1B. In synthetic materials (such as polymers,

metals or ceramics), flaws typically lead to catastrophic failure at

relatively small strains (often less than a few percent), preventing a

material from undergoing very large deformation, reliably. This is

because crack-like imperfections are generally responsible for

initiating catastrophic failure [22], because they lead to very large

stress concentrations at the corner of the cracks.

Results and Discussion

We begin our analysis with carrying a tensile deformation test of

an alpha-helical protein network, by using the geometry and

Figure 2. Effect of large uniaxial stretch on the intermediate filament network in MDCK cells, illustrating the ability of intermediate
filament network to undergo very large deformation without catastrophic failure. The cells were grown on collagen-coated silastic
membranes and stretched using a custom cell stretcher that was mounted on a confocal microscope. Cells were fixed and stained for
immunofluorescence (red = keratin IFs, blue = DNA). Subplot A: Control cells were processed on a relaxed silastic membrane. Subplot B: Stretched
cells were fixed, stained and imaged on membranes that were held in the stretched state. The approximate uniaxial strain in stretched cells is 75%.
Scale bar is approximately 25 mm. Images reprinted with permission of John Wiley & Sons, Inc. from reference [46], Biomechanical properties of
intermediate filaments: from tissues to single filaments and back, Vol. 29, No. 1, 2007, pp. 26–35, copyright � 2007 John Wiley & Sons, Inc.
doi:10.1371/journal.pone.0006015.g002
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loading condition as shown in Figure 1C. We consider two

geometric arrangements, as depicted in Figure 4 (lower part). First,

a perfect protein network without a structural flaw. Second, a

protein network with a structural flaw, here modeled as a crack-

like inclusion. The goal of this analysis is to identify how an alpha-

helical protein network responds to mechanical deformation under

the presence of the crack.

We stretch both systems by displacing the outermost rows of the

protein network and measure the stress-strain response of this

material, until failure occurs. Figure 4 depicts stress-strain curves

of the protein network with and without a crack, and for two

different relative crack sizes (where the relative crack size is defined

as ratio of crack length j divided by the system size in the x-

direction L, defined as x = j /L). We consider a case x = 20%

(the length of the crack is 20% of the size of the structure in the x-

direction) and x = 50% (the crack reaches half way through the

structure). The purpose of considering different crack sizes is to

measure the effect of the size of the structural imperfection on the

mechanical properties. For all cases considered we observe two

major regimes in the stress-strain response, (I–III) a very flat

increase in stress until approximately 100 MPa, followed (III–IV)

by an increasingly steep increase of the stress, which lasts up to

stresses close to 600 MPa (IV). Eventually, strong bonds between

different alpha-helical protein chains break, and the entire system

fails catastrophically. The increase of the stress in regimes (III–IV)

is reminiscent of a phenomenon referred to as strain hardening.

The systems with cracks fail at a slightly lower stress and lower

strain than the perfect system. However, all three systems reach a

remarkable strain to failure in excess of 135%. This means that the

material can be extended by a factor of 2.35 times its initial length

without breaking.

Figure 5A plots the failure strain as a function of the relative

crack size, for a wide range of values of x . Interestingly, the failure

strain does not vary much among all systems, and even for a crack

size of 80%, the material reaches a failure strain that exceeds

130%. This data shows that despite the presence of a flaw inside

the protein network, the overall mechanical behavior remains

intact and is not severely compromised by the structural

imperfection. We find that the maximum stress depends more

strongly on the size of the crack as shown in Figure 5B. However,

even the system with 80% crack size still reaches 57% of the

strength of a perfect structure without any defects. This

performance is unmatched in most synthetic materials, where

even small cracks can lead to a reduction of the strength by orders

of magnitudes.

Figure 3. Hierarchical structure of the alpha-helical protein
network considered here. The plot shows a schematic of five levels
of hierarchies (H0..H4). Intrabackbone H-bonds provide the basic
structural building block (H0). A cluster of 3–4 H-bonds stabilize the
basic building block of alpha-helices, a alpha-helical convolution (H1).
The linear arrangement of many convolutions leads to an alpha-helix
filament (H2). The squared arrangement of several alpha-helix filament
(H3) provides the basic structure of the network level (H4). The structure
at the network level (H4) may also contain structural defects, as
illustrated in Figure 1C.
doi:10.1371/journal.pone.0006015.g003

Figure 4. Mechanical response of the alpha-helical protein
network. The graph shows stress-strain curves of a protein network,
with and without a crack, as well as for two different crack sizes. The
relative crack size is given as ratio of crack length j divided by the
system size L, defined as x = j / L. We observe two major regimes, (I–III)
a very flat increase in stress until approximately 100 MPa, followed (III–
IV) by a very steep increase in stress due to strain hardening of the
protein backbone up to strains of close to 140..150%. Eventually, strong
bonds between different alpha-helical protein chains break, and the
entire system fails catastrophically. Interestingly, there exists only little
difference in terms of the failure strain between all three systems,
indicating the fault tolerance of the studied structure. The perfect
system (without a crack) has a strength of <600 MPa.
doi:10.1371/journal.pone.0006015.g004
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To explain this behavior, we carry out a detailed analysis of the

deformation mechanism, as shown in Figure 6, where the color of

the alpha-helical filaments indicates how much it has been

deformed (specifically identifying: the elastic regime a – stretching

of the alpha-helix without H-bond breaking; the plateau regime b
– uncoiling of the alpha-helix through breaking of H-bonds; and

the covalent stretching regime c – the regime where the protein

backbone is being stretched). We find that the deformation

mechanism of the network is characterized by molecular unfolding

of the alpha-helical protein domains, leading to the formation of

very large yield regions (Figure 6B, snapshots II–IV; where the

yield regions appear first in yellow and then in red color). These

yield regions represent an energy dissipation mechanism to resist

catastrophic failure of the system (we thus refer to them as

‘‘dissipative yield regions’’ in the following). Rather than

dissipating mechanical energy by breaking of strong molecular

bonds, the particular structure of alpha-helical proteins makes it

possible that mechanical energy is dissipated via a benign and

reversible mechanism, the breaking of H-bonds. Catastrophic

failure of the structure does not occur until a very large region of

the structure has been stretched so significantly that the strong

bonds within and between alpha-helical protein filaments begin to

fail. As shown in Figure 6B through the highlighted crack shape,

we observe that the formation of yield regions enables a significant

change of the shape of the crack, from an initial ellipsoidal shape

where the longest axis points in the x-direction (Figure 6C, part I)

to an ellipsoidal shape where the longest axis points in the y-

direction (Figure 6C, part II). This microscopic change of the

crack shape induced by the macroscopic applied load is an

interesting cross-scale phenomenon with important implications

on the failure behavior of the system, as will be discussed shortly.

Figure 7 shows a detailed view into structure at crack tip for two

different strain levels. Figure 7A shows results associated with

Figure 6B, snapshot III. Figure 7B shows results associated with

Figure 6B, snapshot IV. The same color code as shown in

Figure 6A applies for the visualizations shown in Figure 7. The

results shown in Figure 7A reveal that the filaments are relaxed in

the x-direction (orthogonal to loading), and are highly stretched in

the y-direction (the direction of loading). There is a slight stress

concentration at the tip of the crack, as can be seen by the red

color indicating stretching of the protein filament’s covalent

backbone (whereas filaments in the immediate vicinity are strained

less). In Figure 7B, the entire domain to the right (and left) of the

crack has been unfolded and the backbone is stretched, whereas

the center part of the system has just began to unfold.

In comparison with conventional materials, the protein based

material considered here features intriguing fracture properties.

To facilitate a systematic analysis we first calculate the fracture

surface energy, an important quantity used to quantify the

resistance of materials against failure [22]. With W as the energy

necessary to permanently break one alpha-helix (through rupture

of strong backbone bonds), the fracture surface energy is defined as

c~W=A, where A is the cross-sectional area associated with a

single mesh element. Since W = 1.63610217 J (obtained from the

integral over the force-displacement curve of an alpha-helical

element until breaking of the covalent backbone; it equals the area

under the curve shown in Figure 1D), and A = 1.2610217 m2

(length: 1261029 m, width: 10610210 m) the fracture surface

energy is given by c~1:36J
�

m2. This is a value that is comparable

to the fracture surface energy of silicon, which features

c~1:14J=m
2

along the ,111. crystal plane, albeit silicon has a

much greater elastic modulus of E = 243 GPa [23].

According to Griffith’s theory (also referred to as the ‘‘Linear

Elastic Fracture Model’’, LEFM) – a model often applied to

describe fracture of conventional solids – the failure strain for a

‘‘central panel’’ through thickness crack inside a homogeneous

material as the one considered here is given by

e0,f ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c

EL tan j
L

p=2
� �

s
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c

EL tan xp=2ð Þ

s
*

ffiffiffiffi
c

E

r
, ð1Þ

where j is the crack length, L is the system width in the x-direction,

and x = j /L (see lower part of Figure 4 for the geometry and

definition of variables). The scaling of e with respect to the elastic

modulus E and the fracture surface energy c in eq. (1) partly

explains the difference in failure strain observed in the alpha-

helical protein network compared with materials such as silicon,

which typically fail at less than a few percent strain. Due to the

much lower modulus (approximately 3 GPa for alpha-helices in

regime I–II, versus 243 GPa for silicon) but comparable fracture

surface energy, the resulting failure strain is expected to be

significantly enhanced in the protein material.

Figure 5. Failure strain and failure stress as a function of crack
size and comparison with theoretical model. Panel A: Systematic
analysis of the failure strain of the system, showing the failure strain
over the relative crack size x. The simulation results show that the
failure strain is largely insensitive to the presence and size of cracks.
Further, the plot includes the prediction based on eq. (2), correspond-
ing to a scaling as e0,f *

ffiffiffiffiffiffiffiffi
1=x

p
. This behavior reflects that the scaling

parameters are much different (20.0362 vs. 20.5), and that linear elastic
fracture mechanics (LEFM) fails to describe the fracture behavior of this
material. Panel B: Analysis of the failure stress of the system as function
of x. The analysis also shows a deviation from the prediction of LEFM.
The blunted crack-tip model is also shown for comparison (dashed line),
providing an overall better fit than LEFM through the scaling law s0,f ,
1/(1+Cx). Note that for relative crack sizes ,5% the maximum strain and
stress in panels A and B, respectively, does not change as the material
has reached a complete insensitivity with respect to imperfections (data
not shown in graph).
doi:10.1371/journal.pone.0006015.g005
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Figure 6. Snapshots of the protein network deformation. Panel A shows a schematic of the characteristic force-extension curve of a single
alpha helix (consisting of three regimes) to provide the color code for the snapshots shown below. Panel B shows snapshots of the network with
crack at different laterally applied strains (snapshot numbering refers to points shown in Figure 4). The deformation mechanism of the network is
characterized by molecular unfolding of the alpha-helical protein domains, leading to the formation of very large plastic yield regions. These plastic
yield regions represent an energy dissipation mechanism to resist catastrophic failure of the system. Once the entire structure reaches the rupture
strain the crack propagates, leading to catastrophic failure, characterized by breaking of backbone atomic bonds as shown in the circled areas I and II.
The white ellipsoids in the first and the last snapshot highlight the crack shape transformation that occurs during deformation (they show the surface
geometry of the crack). The blowups show the nanoscale structural arrangements of the alpha-helical protein filaments under different levels of
strain. The a structure is an intact helix, with 3–4 H-bonds per turn (yellowish thick lines). The b structure is a partially unfolded alpha-helix, with some
of the H-bonds broken along the filament axis whereas others are still intact. The c structure shows a completely unfolded alpha-helix, where the
protein’s backbone is being stretched. These three structures correspond to the color codes blue, yellow and red, respectively. Panel C shows the
change of the crack geometry under macroscale deformation (crack shapes correspond to the white ellipses in panel B).
doi:10.1371/journal.pone.0006015.g006
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Furthermore, in conventional solids, the occurrence of singular

stress concentrations is the reason for rapid catastrophic failure

under deformation, as chemical bonds at the corners of cracks are

stretched significantly and immensely exceed the deformation and

stress imposed at the boundaries of the system. This type of

behavior is not observed in the alpha-helical protein network. This

is because each of the filaments is able to dissipate a significant

amount of energy while they are able to independently stretch

without affecting neighboring bonds, as illustrated in Figure 7C.

This is possible since there are no immediate interactions between

individual filaments in the network that prevent microscopic

rotations and shear (aside from cross-links between filaments

present at node points of the mesh). Therefore, these networks do

not display a strong stress concentration at corners of cracks. In

light of this observation, the relatively low density of protein

filaments with open space between individual constituting

elements, as well as their relatively small bending stiffness play a

crucial role in defining the characteristic mechanical properties of

the overall network.

In addition to the particular geometric arrangement in open

networks, the properties of individual alpha-helical protein

domains are decisive to explain this behavior. The high energy

dissipation ability of individual alpha-helical protein filaments is

achieved through the particular structure of alpha-helical proteins

in combining a large array of small groups of H-bonds, which

unfold concurrently in groups of 3–4 at relatively small force levels

[21,24,25], providing a strongly nonlinear material behavior at the

filament level as shown in Figure 1D. Notably, the utilization of H-

bonds renders the structure self-healing, since H-bonds can reform

at moderate temperature (e.g. body temperature) and thereby

restore the initial alpha-helical structure even after severe

deformation (provided that no strong bonds have been broken).

In particular, since in the early relatively flat regime H-bonds are

broken that can be reformed rather quickly, the formation of the

yield zone that protects the integrity of the structure is effectively

reversible upon relaxation of applied load at physiologically

relevant time-scales.

We proceed with an analysis of the results in light of fracture

models. Figure 5A displays an analysis of the failure strain of the

system, plotting the failure strain over the relative crack size x for

both, the values measured from the simulation and the predictions

from LEFM. The LEFM prediction for the scaling behavior of

failure strain versus relative crack size is given by

e0,f ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c

EL tan j
L

p=2
� �

s
*

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

tan xð Þ

s
*

ffiffiffi
1

x

s
, ð2Þ

suggesting a strong dependence of e0,f on x. However, the

simulation results clearly show that the failure strain is largely

insensitive to the presence and the relative size of cracks. A power

law fit of the form e0,f *xa to the simulation data reveals that the

failure strain e0,f *1:3275x{0:0362. The prediction based on eq. (2)

corresponds to a scaling as e0,f *
ffiffiffiffiffiffiffiffi
1=x

p
~x{0:5. This analysis

reveals that the scaling parameter a of e0,f versus x are much

different (20.0362 vs. 20.5), and that the conventional LEFM

model fails to describe the failure behavior of this system. A similar

analysis is shown in Figure 5B for the failure stress, comparing the

prediction from LEFM to the measured dependence. Similarly as

for the failure strain, the analysis shows that the failure stress

remains significantly higher than the corresponding LEFM

prediction even at very large relative crack sizes. However, the

decay of failure stress is more rapid than the behavior found for

the strain.

The behavior of the failure stress on the crack size is investigated

further considering earlier solutions for cracks in elastomers [26],

which have been developed specifically for the behavior of systems

that show strong nonlinear (hyperelastic) and large-deformation

elasticity. The maximum strength of the protein network

(<600 MPa) is about 11 times larger than the small-strain elastic

Figure 7. Detailed view into structure at crack tip for two distinct strain levels, and illustration of microscopic deformation
mechanism. Panel A shows results associated with Figure 4, snapshot III. Panel B shows results associated with Figure 6, snapshot IV. The same color
code as shown in Figure 6A applies here. The results depicted in panel A reveal that the filaments are relaxed in the x-direction (orthogonal to
loading), and are highly stretched in the y-direction (direction of loading). There is a slight stress concentration at the tip of the crack, as can be seen
by the red color indicating stretching of the protein filament’s covalent backbone. In panel B, alpha-helices of the entire domain to the right (and left)
of the crack are unfolded and the alpha helix protein backbones are stretched, whereas only the center part of the system has unfolded. This
indicates that stress localization does not appear; instead, the entire network carries the load. This could explain the different behavior compared
with conventional LEFM (see Figures 5). Panel C illustrates a possible microscopic deformation mechanism (as seen similarly in the circled area in
panel B). The particular geometry of the square-lattice structure provides the structural basis for filaments to independently stretch without affecting
neighboring bonds, since there are no immediate interactions between individual filaments in the network that prevent microscopic rotations and
shear. This facilitates extremely large strain gradients at low energy cost (<2x1011%/Å).
doi:10.1371/journal.pone.0006015.g007
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modulus (<56 MPa). This satisfies the criteria for elastic crack tip

blunting as discussed in [26]. In agreement with the prediction put

forth in [26], large blunting of the tip before failure is observed in

the mesoscale experiments (see Figures 6 and 7). However, the

model for fracture initiation for elastomers put forth in [26] is not

directly applicable to our case, since the mechanisms such as void

formation or microcracking are not observed in the alpha-helical

protein network.

To overcome this limitation we present a simple analysis specific

to our case, used here to develop a failure criterion for the alpha-

helix protein network. The starting point is the observation that

the crack shape significantly changes under the applied load and

forms an elliptical geometry before the final stage of deformation

associated with the higher stiffness, leading to an elliptical crack

shape with a blunted crack tip (Figure 6C). A simple approxima-

tion of stress fields at a blunted crack tip can be obtained using the

Inglis solution for elliptical cracks [27] (see schematic in Figure 8

with explanation of variables), where the crack tip stress is given by

stip~s0 1z2
j’
d’

� �
: ð3Þ

In eq. (3), stip ~syy at the crack tip
� �

and s0 are the stresses at

the tip and the far-field respectively, and j’ and d’ are the x and y-

axes lengths of the elliptical crack shape before failure. Specifically,

the parameters j’ and d’ describe the transformed crack geometry

after blunting has occurred through formation of large yield

regions mediated by protein filament stretching, but before the

final stage of deformation has begun (i.e., before stage II–III shown

in Figure 4). We note that the parameters j and d describe the

initial crack geometry at the beginning of the simulation, before

the transformation has occurred.

Equation (3) can be used to make a few interesting points. The

equation provides a simple model for the reduction of stress

magnification at corners due to structural transformation as

discussed above. For an ellipsoidal crack shape where the longest

axis points in the x-direction, the ratio j’=d’ww1 (Figure 6C, part

I), the stress at the tip is much larger stipwws0

� �
than for an

ellipsoidal crack shape where the longest axis points in the x-

direction, the ratio j’=d’v1 (Figure 6C, part II), where stip is only

slightly larger than s0. For example, for the geometry shown in

Figure 6 the initial ratio j=d&5, leading to stip~11s0. After the

crack shape transformation has occurred, j’=d’&0:3, leading to

stip~1:9s0, reduced by a factor 5.7.

We may also use eq. (3) to develop a simple model to predict the

failure stress as a function of the crack size, accounting for crack

blunting. The parameters j0and d0 are related to the x and y-axes

lengths of the undeformed initial elliptical crack j and d. By

assuming a first order linear relation j0~C1j and d0~C2d to

describe the geometric transformation, we find that

stip~s0 1z2
C1j

C2d

� �
: ð4Þ

We note that x~j=L is used to express j~xL, and therefore

stip~s0 1z2
C1L

C2d
x

� �
~s0 1zCxð Þ: ð5Þ

The parameters C1andC2are generally functions of the applied

strain. However, noting that failure strain is almost constant

independent of crack size (see Figure 5A), we assume that C1

AndC2 take the same respective value for different crack sizes at

failure. It is noted that eq. (5) contains a constant prefactor

2C1L= C2dð Þ~ : C. The crack will start to propagate when the

condition stip~smax is satisfied, where smax is the failure strength

of a perfect alpha-helical network (since there are no other failure

mechanisms such as void or microcrack formation [26,28] present

here). Combining these assumptions with eq. (5), we arrive at:

s0,f ~
smax

1zCx
*

1

1zCx
: ð6Þ

Equation (6) is a similar scaling law as proposed in eq. (2), but

features an unknown parameter C that effectively describes the

geometric change of the blunted crack tip under elastic

deformation. This parameter can be identified by carrying out a

least-squares curve fit for C to the range of geometries considered

in our computational experiments, leading to C = 1.102. The

results are shown in Figure 5B, revealing a much better agreement

with the simulation data; albeit the model itself is empirical due to

the existence of a fitting parameter that must be determined from

experimental measurements. However, the model is useful as a

constitutive equation to predict the strength of alpha-helical

protein networks that can be used in larger-scale simulation

methods (e.g. finite element models) to describe the strength

behavior of such materials. It might also be used as a design tool to

construct systems with optimized values of C that provide less

Figure 8. Change of the microscopic crack shape as the protein
network undergoes macroscopic mode I tensile deformation.
Panel A shows shape of the initial crack (an elliptical geometry where
the length in the x-direction is much greater than the extension in the
y-direction). Panel B shows shape of the final crack before onset of
failure, representing an elliptical geometry where the length in the y-
direction is much greater than the extension in the x-direction. The
plots also indicate the distribution of stresses for both cases (the
solution for the stress field is symmetric, but shown here only for the
right half). The crack shapes reflect those measured in the simulations
shown in Figure 6 (there highlighted in white color). The initial
geometry and crack shape is shown in panel B (left part) in dashed lines
to illustrate the significant transformation.
doi:10.1371/journal.pone.0006015.g008
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sensitivity to the crack size x (where possible changes to the

geometries at different hierarchical levels as shown in Figure 3

could be used as design variables). Possible improvements of the

model might be obtained using quantized fracture mechanics

models [29] or the development of formulations that account for

the specific elastic properties of the system considered here.

It is noted that the definition of ‘‘failure’’ as considered here

involves breaking of strong backbone bonds in the network. Under

typical physiological conditions this may not occur, since

deformation is largely limited to reversible processes at smaller

stresses. However, the analysis put forth here provides a worst case

scenario to identify the limit of mechanical deformation, which

shows that even at modest stresses extremely large deformation

can be accommodated without causing any harm to the network

integrity. Further, failure modes that may be observed in other

systems entail intermolecular sliding of filaments [30,31,32]. The

analysis discussed here still holds; with the distinction that sliding

prevents immediate catastrophic failure of the system but instead

leads to the formation of a ‘‘plastic zone’’, formed by the domain

in which filaments have begun sliding. This plastic zone provides

further resistance against catastrophic breakdown. Indeed, sliding

mechanisms have been suggested for intermediate filament protein

structures [30,31,32].

Conclusion
The main result put forth in this paper is that it is due to the

particular structure and properties of alpha-helical protein

constituents that enable the formation of large dissipative yield

regions and a severe structural transformation of the crack shape,

which effectively protects alpha-helical protein network against

catastrophic failure (Figure 6). These yield regions provide a

means to dissipate mechanical energy before strong bonds are

being stretched and broken, and enables the system to undergo

deformation well beyond 130% strain even when cracks are

present that stretch of up to 80% of the system size. As a result of

formation of dissipative yield regions, the alpha-helical protein

networks are largely insensitive to structural flaws, which is

reflected in the diminutive influence of the crack size on the failure

strain (Figure 5A) and the failure stress (Figure 5B). This behavior

is referred to as flaw tolerance.

The comparison with the scaling behavior predicted from

conventional fracture models as summarized in Figure 5, and the

characteristic failure mechanisms highlighted in Figures 6–8

illustrates the distinct behavior of alpha-helical protein materials.

Table 1 provides a summary of the roles and mechanisms of

individual levels of structural hierarchies shown in Figure 3 for the

overall system behavior, illustrating that each hierarchical level

plays a key role in achieving the overall system performance. The

dominating unit deformation mechanism f alpha-helical protein

networks is protein unfolding mediated by continuous rupture of

clusters of H-bonds, as shown in Figures 6. The detailed fracture

mechanism is summarized as follows:

N Initially, the system is loaded in mode I (tensile load), with the

load applied vertically to the long axis of the crack. In solids,

this represents the most critical mode of loading with respect to

inducing high local stresses in the vicinity of the crack tip.

N As load is applied, the protein filaments start to unfold, as H-

bonds begin to rupture and the alpha-helical proteins uncoil

(see blowups shown in Figure 6B).

N The system elongates in the loading direction, and the shape

(morphology) of the crack undergoes a dramatic transforma-

tion from mode I, to a circular hole, to finally an elongated

crack aligned with the direction of loading (see schematic

depicted in Figure 6C and Figure 8). This transformation is

caused by the continuous unfolding of the individual proteins

around the crack, which can proceed largely independently

from their neighbors.

N As discussed in the crack blunting model shown in Figure 8,

the elongated crack features rather small stresses in the vicinity

of the crack. The transformation of the crack shape is thus

reminiscent of an intrinsic ability of this material to provide

self-protection.

N The almost identical strain at fracture (Figure 5A) is due to the

similar stretching mechanism and unfolding of the proteins at

the initial stages of loading. Due to the self-protection

mechanism and the related change of the crack shape (that

is, the alignment along the stress direction) the crack becomes

almost invisible, even if dominating large parts of the cross-

sectional area, and has little adverse effect on the overall

system performance.

To the best of our knowledge, the studies reported here for

alpha-helical protein networks are the first of its kind, providing

Table 1. Role and mechanism of individual levels of structural hierarchies for overall system behavior, illustrating that each
hierarchical level plays a key role in achieving the overall system performance.

Hierarchy level Hn Description Key mechanism(s)

H0 Level of chemistry; Intrabackbone H-bond; Basic chemical
bonding, enabled by particular polypeptide structure

H-bonds form at moderate temperatures; Drive self-assembly of alpha-helices

H1 Alpha-helix turn defined by cluster of 3–4 H-bonds; Basic
building block of alpha-helix filament

Clusters of 3–4 H-bonds provide optimal resistance against mechanical failure
[25] (3–4 H-bonds break concurrently, providing maximum possible mechanical
strength at minimal material cost)

H2 Alpha-helix filament; Basic building block of square lattice Particular geometry with linear array of turns provides structural basis for large
extensibility of .150% strain via repeated rupture of turns (see Figure 1D)

H3 Square lattice unit cell; Microstructural geometry of
network level

Distance between filaments provides structural basis to independently stretch
without affecting neighboring bonds, since there are no immediate interactions
between individual filaments in the network that prevent microscopic rotations
and shear (see Figure 7C); Facilitates extreme strain gradients at low energy cost
(<261011 %/Å)

H4 Network; Macroscopic functional scale (e.g. nuclear
envelope for mechanical integrity)

Structural transformation of crack-like defects (see Figure 6C and 8) to mitigate
stress concentrations

doi:10.1371/journal.pone.0006015.t001
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insight into the fundamental deformation and failure mechanisms

of an abundant class of biological materials that feature networks

of similar protein filaments. Our results may further explain the

ability of cells to undergo very large deformation (see, e.g. Figure 2)

despite irregularities in the structural makeup of the protein

network. This represents an intriguing ability of this class of

materials to self-protect themselves against adverse effects of

structural irregularities. Avoiding such structural irregularities in

the material makeup would require a high energetic cost (e.g.

through the need for strong bonding as it appears in crystalline

solids). Biological materials solve this challenge by adapting a

structure that is intrinsically capable of mitigating structural

irregularities or flaws while maintaining high performance,

representing a built-in capability to tolerate defects. These

properties effectively result in self-protecting and flaw-tolerant

materials.

Further investigation could be carried out to provide a more

realistic description of the protein network. Our approach does not

precisely reflect the specific nanostructure in lamin intermediate

filaments as it was designed to provide a rather simple, generic

description (see discussion above). Our assumption of a square

lattice network of alpha-helical proteins does not accurately reflect

the structure of many biological materials, and future investiga-

tions could be focused on describing the effects of the differences

due to different nanostructural geometries. In these cases,

additional levels of hierarchies would enter the structure shown

in Figure 3, resulting in additional mechanisms of deformation and

failure beyond those listed in Table 1. For example, sliding

between alpha-helical constituents (e.g. in tetramers or larger-scale

protein assemblies) could be an important failure mechanism,

which would prevent the immediate drop of the stress to zero as

assumed here once this failure mode begins to operate. The

possibility of sliding as a deformation mode might explain the

slightly lower maximum stress and a deviation from continuous

stiffening as seen in experimental analysis of intermediate filament

nentworks [32] (despite an overall agreement the stress-strain

curve shape between experiment and simulation results; where

there is a deviation at large stresses). A detailed analysis of the

network in dependence of these effects, as well as a quantitative

comparison is left to future studies. However, it is pointed out that

the mechanisms of self-protection and flaw-tolerance as observed

here still hold, because the basic characteristics of the protein

network makeup remains similar. The focus on a simple model

system as reported here - in the spirit of a model material [33,34] -

provides a clean and well-defined approach to elucidate

fundamental mechanisms of failure initiation. If we had focused

on attempting to model the particularities of a specific material we

would not have been able to identify generic failure mechanisms.

Studies of the mechanical performance of alpha-helical based

protein networks as reported here are crucial for advancing our

understanding about the deformability, strength and failure

behavior of protein materials in general, as well as for our ability

to create de novo synthetic nanomaterials for application in

biotechnology and synthetic biology. We speculate that our results

may also explain the mechanical properties of other biopolymers

such as spider silk, where analogous dissipation mechanisms might

contribute to these materials’ extreme strength and robustness

against large deformation. Future studies will be necessary to

explore effects specific to these materials. Our findings are also

reminiscent of the sacrificial bond concept discussed earlier in the

context of bone and other biopolymers [35,36,37,38], albeit the

sacrificial bond model has not yet been explored in the context of

crack-like imperfections and its impact on mechanical perfor-

mance. Earlier studies of the mineral crystal phase in bone have

also pointed out flaw-tolerant behavior, which was linked to

nanoscale confinement of mineral platelets [39].

In summary, our analysis, together with earlier studies of single

molecule behavior of alpha-helical proteins, improves our

understanding of deformation and failure mechanisms of struc-

turally flawed protein networks by providing an integrative model

to bring together single molecule properties and larger-scale

material behavior through an integrated, consistent multi-scale

perspective. A computational approach as put forth here is a

promising method that complements experimental investigations.

It can also be used to enable a systematic design of materials, by

systematically expanding the structural levels shown in Figure 3

and by designing novel mechanisms beyond those listed in Table 1.

This may one day provide a computational engineering approach

similar to what is used in the design of cars, buildings and

machines today, applied to the integrated approach that bridges

multiple material levels in the design of materials and structures.

The field of genomics is concerned with the study of genes and

their effects on macroscopic functions, and has led to considerable

medical advances. Genomics, however, does not elucidate material

properties, nor the mechanistic relation of hierarchical multi-scale

structures and their resulting properties. The multi-scale behavior

of protein assemblies with the goal of elucidating the relation

between structure and material properties represents a grand

challenge at the interface of materials science and biology. This

gap in understanding can be closed by systematically studying the

material properties of hierarchical protein structures and their

effect on the macroscopic properties, an approach part of a larger

effort to study the role of materials in biology, referred to as

materiomics [40]. Here we have focused on the properties of

alpha-helical protein networks by screening their mechanical

performance under variations of their structural makeup across

multiple hierarchical levels.

Materials and Methods

Model formulation
The basis for the network model is a coarse-grained description

of an alpha-helical protein structure, referred to as a mesoscale

bead model. In our model, the entire sequence of amino acids that

makes up the alpha-helix structure is replaced by a collection of

beads (see schematic in Figure 1A), where each bead represents

hundreds of atoms in explicit solvent. This approach is adapted

since it significantly reduces the computational cost of simulating a

large protein network, enabling us to describe a large lattice-like

network of strongly bonded alpha-helices (Figure 1B) (these bonds

may be formed through intermolecular cross-links or strong

electrostatic bonding). The beads in the mesoscale model interact

according to an intermolecular multi-body potential, developed to

reflect the key physical properties of individual alpha-helical

protein domains including adhesion, stretching and bending. The

total energy of the system is given by

U R
?� �

~UTzUB, ð6Þ

where R
!

denotes the positions of all particles. The total energy is

given by the sum over all pair-wise (that is, UT) and all three-body

interactions (that is, UB), where

UT~
X
pairs

wT rð Þ and UB~
X

angles

wB Qð Þ: ð7Þ

Specific interparticle potential energy expressions are defined for
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each of the contributions given in eq. (4). We approximate the

nonlinear force-extension behavior of alpha-helical proteins under

tension by a multi-linear model. This multi-linear model is a

combination of four spring constants k
ið Þ

T i~1::4ð Þ, which are

turned on at specific values of molecular stretch. A similar model

has been used successfully in earlier studies of fracture in

crystalline model materials [33,34] and provides an effective way

to describe the nonlinear constitutive behavior based on

computationally effective, simple piecewise harmonic potential

functions. Based on this model, the tensile force between two bead

particles is described as:

FT rð Þ~{LwT rð Þ=Lr, ð8Þ

(the energy function UT is given by integrating the force FT rð Þ
over the radial distance), where

LwT

Lr
rð Þ~H rbreak{rð Þ

k
1ð Þ

T r{r0ð Þ r1wr

R1zk
2ð Þ

T r{r1ð Þ r1ƒrvr2

R2zR1zk
3ð Þ

T r{r2ð Þ r2ƒrvr3

R3zR2zR1zk
4ð Þ

T r{r3ð Þ r3ƒr

8>>>>><
>>>>>:

:ð9Þ

In eq. (6), H r{rbreakð Þ is the Heaviside function H að Þ, which is

defined to be zero for av0, and one for a§0: The parameters

R1~k
1ð Þ

T r1{r0ð Þ, R2~k
2ð Þ

T r2{r1ð Þ andR3~k
3ð Þ

T r3{r2ð Þ are

calculated from force continuity conditions. The bending energy

of a triplet of three bead particles is given by

wB Qð Þ~ 1

2
KB Q{Q0ð Þ2 ð10Þ

with KB relating to the bending stiffness of the molecule EI
through KB~3=2EI=r0:

Model parameter identification
All parameters in the mesoscale bead model are determined

from full atomistic simulation results and theoretical studies, based

on careful studies reported in earlier publications that involve

experimental validation [17,18,41]. We choose r0 = 0.5 nm per

bead, providing significant computational speedup while main-

taining a sufficiently fine discretization of the alpha-helical protein

(leading to a bead particle mass m = 400 amu). All parameters in

eq. (6) are fitted to reproduce the nanomechanical behavior

obtained using the full atomistic model with the molecular

formulation [18]. In particular, the stiffness in regime a (in

Figure 1D) k
1ð Þ

T is identified from these simulations [18]. Further, a

detailed analysis of the alpha helix behavior in dependence of the

deformation rate was carried out in previous studies, where it was

shown that for vanishing pulling rates the force at end of the first

(see regime a in Figure 1D) and the beginning of the second

regime (see regime b in Figure 1D) reaches an asymptotic value of

<200 pN [21]. It was also shown that this value agrees with

experimental measurements (as discussed in [21]) and we thus

consider this in the formulation of our bead model to mimic quasi

static deformation at vanishing pulling rates as relevant for

physiological and experimental deformation speeds. This enables

us to identify the onset point for the second regime, r1. The

stiffness in regime b k
2ð Þ

T is identified from atomistic simulations

[18]. The onset of regime c in Figure 1D, described by parameter

r2. is identified from atomistic simulation as well [41], which

includes specifically the extraction of the transition strain and the

stiffness parameters in regime c (that is, k
3ð Þ

T and k
4ð Þ

T as well as r3).

Bond rupture of the protein polypeptide backbone is modeled at

forces of <5,500 pN, which provides the value for rbreak. This is

based on earlier ReaxFF reactive force field results [41] (here we

use a slightly smaller value for the rupture force than reported in

[41] to reflect the behavior at vanishing pulling rates). The bond

strength of several nN for strong bonds as used here is a value

widely accepted in the literature and has also been measured

experimentally [42]. Figure 1D depicts the force-strain curve for

alpha-helices as reproduced by the mesoscale bead model. The

bending stiffness is obtained from bending deformation calcula-

tions of alpha-helical molecules, as described in earlier publica-

tions [17,41] (values are validated by comparison with the

experimentally measured persistence length on the order of a

few nanometers). The time step is chosen to be 15 fs. The entire

set of parameters of the mesoscale model is summarized in Table 2.

System definition, geometry and boundary conditions
We create a network with a mesh side length of 12 nm (in

square shape), which equals to 24 beads since r0 = 0.5 nm per bead

(see Figure 1A–B). The linkers between the perpendicular

filaments are modeled as beads that are freely deformable in both

directions without any angular restraints. This mimics the

existence of cross-links between individual alpha-helical filaments

(facilitated e.g. through side-chain mediated bonds, such as

disulfide bonding). As shown in Figure 1C, we create a square

meshed protein network out of individual filaments, where each

filament consists of a single alpha helix. The orthogonal

arrangement of protein filaments roughly mimics an intermediate

filament protein network as for example observed in lamins in the

nuclear membrane of oocytes (see Figure 1B) [43]. We note that

the choice of a single alpha helix per filament represents a

limitation compared with the actual structure of intermediate

filaments in vivo, which typically contains multiple alpha-helices

arranged in parallel. However, the purpose of the present study is

not to exactly model the structure of lamin, but rather provide a

generic study on the behavior of alpha helical protein networks

without and with defects. We deliberately avoid the attempt to

model a specific protein filament. We consider a system with

20 filaments (each composed of 24 beads as discussed above);

with an overall network size of 24 nm624 nm. Pulling is applied

in y-direction in mode I tensile loading, as indicated in Figure 1B.

Thereby the first two rows of beads at the bottom are fixed.

Displacement boundary conditions are applied to the upper three

Table 2. Summary of the parameters used in the mesoscopic
molecular model, chosen based on full atomistic modeling of
alpha-helical molecules (note that 1 kcal/mol/Å = 69.479 pN).

Parameter and units
Numerical
value

Equilibrium bead distance r0 (in Å) 5.00

Critical distances r1 , r2 and r3 (in Å) 5.30, 11.50, 13.0

Tensile stiffness parameters k
1ð Þ

T , k
2ð Þ

T , k
3ð Þ

T , k
4ð Þ

T

(all in kcal/mol/Å2)

9.70, 0.56,
32.20, 54.60

Bond breaking distance rbreak (in Å) 13.35

Equilibrium angle Q0 (in degrees) 180.00

Bending stiffness parameter kB (in kcal/mol/rad2) 3.44

Mass of each mesoscale particle (in amu) 400.0

doi:10.1371/journal.pone.0006015.t002
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rows of beads, so that the upper three rows of beads are moved

continuously following a prescribed strain rate. A strain rate of

e
~

4:17|106s{1 is used for all studies (studies with varying strain

rates were carried out and it was confirmed that the system

undergoes deformation near equilibrium at the strain rate chosen).

All simulations are carried out at 300 K in a NVT ensemble

(constant temperature, constant volume, and constant number of

particles). The overall length scales reached in this study (several

tens of nanometers) shows a sufficiently high level of repetition of

individual meshes so that boundary effects can be neglected.

Larger systems do not change the overall behavior described in

this paper.

Crack modeling
To model the crack-like inclusion, protein filaments across the

crack surface are not connected from the beginning of the

simulation (and can not reform). This approach effectively models

the existence of a structural imperfection in the protein network

through the existence of an elliptical flaw. By controlling how

many protein filaments are broken at the beginning of the

simulation we control the size of the crack.

Stress and strain calculation
For calculation of stress the virial stress approach was applied

[44]. The failure stress is measured at the point when filaments

begin to fail (usually identified through a rapid drop of the stress).

The failure stress data shown in Figure 4 is obtained through an

average over the entire simulation domain. The stress at failure

shown in Figure 5B is defined as the remotely applied stress; which

is different than the measured average stress shown in Figure 4. It

is calculated by taking the applied strain (due to a particular

prescribed displacement) and computing the associated stress

following the stress-strain response of a perfect crack-free system

(see Figure 4, curve marked with N). The strain is defined by

e~DLy

�
Ly ( = engineering strain), where DLy is the applied

displacement and Ly is the length of the system in the y-direction

(the pulling direction).

Simulation implementation
The mesoscale simulations following an MD scheme are

implemented in the simulation package LAMMPS (Large-scale

Atomic/Molecular Massively Parallel Simulator) [45]. For visual-

ization we use the OpenDX package. The simulation model

implementation in LAMMPS is available upon request. All

simulations have been carried out at MIT’s Laboratory for

Atomistic and Molecular Mechanics on a Dell linux computing

cluster with Intel Xeon dual core CPUs. One simulation takes

approximately 24 hours to complete.
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