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Abstract

We propose a novel, information-theoretic, characterisation of cascades within the spatiotemporal dynamics of swarms,
explicitly measuring the extent of collective communications. This is complemented by dynamic tracing of collective
memory, as another element of distributed computation, which represents capacity for swarm coherence. The approach
deals with both global and local information dynamics, ultimately discovering diverse ways in which an individual’s spatial
position is related to its information processing role. It also allows us to contrast cascades that propagate conflicting
information with waves of coordinated motion. Most importantly, our simulation experiments provide the first direct
information-theoretic evidence (verified in a simulation setting) for the long-held conjecture that the information cascades
occur in waves rippling through the swarm. Our experiments also exemplify how features of swarm dynamics, such as
cascades’ wavefronts, can be filtered and predicted. We observed that maximal information transfer tends to follow the
stage with maximal collective memory, and principles like this may be generalised in wider biological and social contexts.
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Introduction

Animal groups in nature often exhibit striking examples of

spatial aggregation, e.g. schools of fish, swarms of locusts, herds of

wildebeest, and flocks of birds [1–3]. Such aggregations may

provide individuals with protection, mate choices, foraging,

habitat assessment, migratory routes, etc. [4,5]. Complex large-

scale patterns and structures emerge within swarms through

individual decisions based on perception of local conditions. It has

been observed that small perturbations cascade through an entire

swarm in a wave-like manner [6], with these cascades conjectured

to embody information transfer [7]. Even a few individuals may

strongly bias the motion of an entire group. For instance, if a

certain number of fish in close proximity turn together, this may

result in a wave of turning across the whole group [8]. Formation

of waves is a widespread phenomenon observed in animal groups

[6,7,9], seeming to rapidly transfer information over long ranges.

Such waves are typically conjectured as information cascades [7],

and we aim to quantify these cascades in precise information-

theoretic terms.

In a seminal work, Bikhchandani et al. [10] defined an

‘‘informational cascade’’ as a phenomenon occurring ‘‘when it is

optimal for an individual, having observed the actions of those

ahead of him, to follow the behaviour of the preceding individual

without regard to his own information’’, i.e. via an independence

of an individual’s action from their private information signal.

They identified two social regularities that can be explained by

informational cascades: localised conformity of behaviour and

fragility of mass behaviours. Their approach was not information-

theoretic and did not quantify a precise information content

stored/acquired within a group or transferred by a cascade.

Information cascades in collective systems often result in a rapid

autocatalytic adaptive response to changing conditions [7]. This

heightened response allows the group to be extremely sensitive to

weak or ambiguous external stimuli, though retaining some

susceptibility to noise, incorrect decisions and false alarms [5,7,11].

Dall et al. [12] mentioned that public information favours group

cohesion, argued that information implies utility as well as

uncertainty reduction, and proposed an explicit statistical decision

theory framework. Their approach did not quantify either the

degree of swarm cohesiveness due to public information, or

information cascades per se. They pointed out that Shannon-

Weaver entropy and similar ideas focused on simple reductions of

uncertainty do not suffice in organismal biology. We argue that the

information dynamics model used in our study goes beyond these

simple ideas by utilising a directed measure (transfer entropy [13])

for information cascades, as well as localising average information-

theoretic quantities.

As pointed out by Katz et al. [14] important questions are how

animals integrate information from widely disparate sources in real

time [15] and how this nonlinear integration translates into

higher-order collective computational capabilities. There is an

emerging understanding that information is a crucial currency for

animals from both a behavioural and evolutionary perspective

[12,16]. In this work, we take an information-theoretic viewpoint

on distributed computation occurring within swarms, utilising a

recently introduced framework for local information dynamics.
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Coherence in the swarm is ultimately related to collective memory

(e.g. long range interaction) [15,17], which benefits individuals

locally and the ‘‘localised conformity of behaviour’’ becomes

efficient [10]. Thus our first hypothesis is that the collective

memory within the swarm that is used for computation is captured

by Active Information Storage (AIS) [18,19]. The local AIS of an agent

in the system is the amount of information in its past that is used in

predicting its next state. The overall swarm’s AIS is the average

over all individuals at any given time.

Information cascades, on the other hand, are manifestations of

long range communications that either dynamically reorganise the

swarm reducing the ‘‘fragility of mass behaviour’’ [10] or

propagate incorrect decisions [11]. Our second hypothesis is that

information cascades are captured by conditional Transfer Entropy

(TE) [20,21], which characterises the communication aspect of

distributed computation. The local information transfer between a

source and a destination agent is defined as the information

provided by the source about the destination’s next state that was

not contained in the past of the destination [13]. Importantly, TE

properly measures a directed, dynamic transfer of information.

At this stage we would like to contrast the measures of transfer

entropy and information flow. These measures must be used separately

to quantify information transfer and causal information flow

respectively.

Transfer entropy was introduced by Schreiber [13] and has seen

been applied in different settings. For instance, in computational

neuroscience, the study [22] presented a novel method for

interregional connectivity analysis, using multivariate extensions

to the mutual information and transfer entropy. The method

identified the underlying directed information structure between

brain regions, highlighting changes in the structure according to

behavioral conditions. The study also pointed out differences

between transfer entropy and Granger causality. The main

advantage is the capture of nonlinear relationships because

nonlinear coupling cannot be detected by linear methods (e.g.

Granger causality, nor with the non-directional mutual informa-

tion).

Other relevant neuroscientific studies include the work of

Wibral et al. [23] which utilized transfer entropy analysis of

magnetoencephalography (MEG) source-level signals in detecting

changes in cortical and subcortical networks between the different

auditory task types, the work of Chicharro and Ledberg [24]

which considers brain as a biological system consisting of multiple

interacting subsystems and shows that the influence of causal

connections on the natural dynamics of the system often cannot be

analysed in terms of the causal effect of one subsystem on another.

Information flow was proposed as a measure for causal informa-

tion flow by Ay and Polani [25], and it is important to realise a

crucial difference between (1) transfer entropy and (2) information

flow. As argued by Lizier and Prokopenko [26], predictive transfer

(measured with transfer entropy) refers to the amount of

information that a source variable adds to the next state of a

destination variable; i.e. ‘‘If I know the state of the source, how

much does that help to predict the state of the destination?’’. On

the other hand, causal effect (measured with information flow)

refers to the extent to which the source variable has a direct

influence on the next state of a destination variable, i.e. ‘‘If I

change the state of the source, to what extent does that alter the

state of the destination?’’.

The difference between transfer entropy as a method to capture

information transfer, and information flow as a measure to capture

causal effect/flow, is very important and may cast observations in

a different light. In this work, we stay completely within the

interpretation of predictive information transfer, and do not make

any claims on detecting causal information flows.

Memory typically refers to the storage of information by an

agent or process to be used in its future. It can be understood in a

wider (collective/distributed) context, where stigmergy is used as a

means to share information between agents via environment [18].

Grassé [27] introduced the term stigmergy (‘‘previous work directs

and triggers new building actions’’) to describe a decentralised

pathway of information flow in social insects. Stigmergy is a

mechanism of indirect coordination among agents acting in the

environment, where local traces left in the environment by

decentralised actions stimulate the performance of subsequent

actions by the same or a different agent. In a more applied sense,

Klyubin et al. [28] treated agent’s sensors as extracting information

and actuators as having the capability to ‘‘imprint’’ information on

the environment, thus viewing agents as creating, maintaining and

making use of various information ‘‘flows’’. For example, the

individuals within a swarm can put some information out into the

environment, then retrieve it at a later point in time by sensing ––

i.e., individuals do not have to keep all of the information

internally and can share a distributed collective memory through

interactions with the environment or other individuals.

One may take a causation approach to measuring memory by

computing causal information flows using interventionist approach

of Ay and Polani [25]. In other words, one would attempt to

impose on source variables and determine the changes in the

destinations brought about by these impositions. For instance, if a

swarm model is described by differential equations, one may

estimate the effects of interactions between individuals by

modifying terms of the model. In this work, however, we take a

simpler approach to measuring memory via information storage,

without causal flows.

To re-iterate, we hypothesise that AIS captures the active/

predictive collective memory within the swarm while TE measures

information cascades. To verify these hypotheses, we explore two

scenarios. Our first experiment checks how different local initial

perturbations affect a single swarm. The second experiment

introduces a different type of perturbations, brought about by

three separate but merging swarms. We use a Lagrangian model

for modelling and simulating aggregations of discrete individuals.

Each individual responds to its neighbours in three concentric

zones with repulsion, orientation, or attraction, respectively [29–

32]. The experiments quantitatively confirm our conjectures by

tracing AIS and TE over time. The observed local and global

maxima of these measures allow us to identify different elements of

swarm dynamics (see Movie S1, S2, S3, S4 for the videos).

Results

Initially, the individuals in the centre of the swarm are not

affected by changes at the swarm’s periphery. As the changes

propagate deeper, more and more individuals get engaged in

collective computation and the collective memory grows, creating

coordinated motion. When the majority of individuals are

dynamically coordinated, average AIS of the swarm reaches its

maximum (Fig. 1 at T~16:8).

Figures 1, 2 and Movie S1 trace information dynamics over

time, and show that local AIS can be positive and negative.

Positive local AIS indicates that the past informs about the next

state, while negative values indicate that the past misinforms about

the next state [18,21]. Negative local storage means that an

individual’s movement is unusually strongly influenced by other

individuals (via high transfer) at this time, given the past history of

that individual.

Information Cascades in Swarms

PLoS ONE | www.plosone.org 2 July 2012 | Volume 7 | Issue 7 | e40084



We argue that negative local AIS represents processing of new

data propagated from elsewhere. For example, in Fig. 2C some of

individuals in the centre are trying to compute their next state while

being influenced by competing signals from their neighbours. In

such situations, their past is misinformative about the next state.

This results in the overall AIS decrease from the maximum. This

decrease may be interrupted when the misinformed individuals are

outnumbered by the individuals moving coherently. However, as

the swarm synchronies to a steady motion, AIS (i.e. active collective

memory) converges to a positive constant near zero. This can be

seen by writing the joint probability p(xnz1,x(k)
n ) as

p(xnz1Dx(k)
n )p(x(k)

n ) according to Bayes’ Rule, making the log term

in Equation 6 equal to log2

p(xnz1Dx(k)
n )p(x(k)

n )

p(x
(k)
n )p(xnz1)

~ log2

p(xnz1Dx(k)
n )

p(xnz1)
.

When the swarm is in steady motion, p(xnz1Dx(k)
n )&p(xnz1),

making the log term approximately zero. The ‘bell’ shaped curve of

AIS is reminiscent of many complexity curves [33,34], indicating

Figure 1. Information storage and transfer over time for a swarm initially in a square configuration. Shown here are the average active
information storage (AIS) per particle and average transfer entropy (TE) per particle pair.
doi:10.1371/journal.pone.0040084.g001

Figure 2. Local information dynamics for a swarm initially in a square configuration. (Top) Local average information storage through the
swarm at key time steps. (Bottom) Local average information transfer in a swarm at key time steps. The individuals’ two-dimensional positions are
plotted on the x and y axes, and their colours represent the AIS and TE values in bits, as shown by the scale on the colour bar. Note that the axes
scales are adjusted, and the colours are scaled differently for positive and negative values.
doi:10.1371/journal.pone.0040084.g002
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that the most complex collective behaviour can be characterised

information-theoretically.

Now we turn our attention to the communication aspect of

computation, modelling information cascades by TE. As the

swarm begins to ‘absorb’ the initial changes originated at the

periphery, the first wave results in slightly increasing overall TE

(Tv10:0). The moment the wave reaches the centre, some

individuals there acquire high local TE, being strongly influenced

by their neighbours. Their new dynamics generates a new

information wave spreading outwards through the swarm,

achieving a local maximum at T~15:7 followed by a local

minimum when it dissipates at T~16:8. At this time AIS attained

its global maximum, and the computation is non-trivial involving

both memory and communication.

Local TE can also be positive or negative [20,21] (Fig. 2, bottom

row, and Movie S2). Positive local TE means that the source agent

is informative about the next state of the destination, given the

destination’s history (the movement is strongly affected by its

neighbours). Negative TE indicates that the source misleads an

observer (when the individual is either exhibiting strong indepen-

dent motion or is under the collective influence of several

neighbours rather than the coherent influence of a single

neighbour, e.g. T~19:0). These information dynamics suggest

that transfer alternates with storage. Indeed, Figure 2 shows in

most cases, areas of high local storage often have low or negative

local transfer and vice versa.

Individuals that begin to move coherently (i.e. have comparably

high local TE) form a front of a cascade as seen at T~20:2. At

that time, TE reaches its global maximum because the formed

cascades dominate incoherent individuals. Not surprisingly, this

stage has followed the time when memory (AIS) was highest.

Eventually, the cascades help to coordinate the swarm, creating a

steady configuration. TE decreases as the swarm ‘crystallises’.

Our second experiment (Fig. 3 & 4, and Movie S3 & Movie S4)

models three swarms that eventually start interacting with each

other. Thus, this experiment allows us to model different boundary

perturbations.

When the swarms start to interact and the individuals become

more dynamically coordinated, the overall local storage increases

until it reaches global maximum at T~76:0 (Figure 4A–C). This

is the moment when all three swarms merge into a single

coordinated entity, confined within a spatial extent that will not

change significantly past this point. Importantly, the majority of

individuals are dynamically coordinated at this instant, which is

followed by several ‘waves’ (Figure 4D–H) that interleave groups

of individuals with higher and lower local AIS. This process non-

monotonically reduces AIS, while the swarm converges to the state

of synchrony, with AIS being near zero (similar to the first

experiment).

Similar to the first experiment, as the swarms merge (Tƒ78:9),

the overall TE is mostly increasing because there are several

significant information cascades ‘rippling’ through the swarm.

This shows that as the swarm is merging into one group, the

specific individuals are under the most influence from their

neighbours. The maximum TE lags behind that of AIS

(analogously to the first experiment) again highlighting rich

computation in terms of both collective communication and

memory.

Tracing TE reveals some new features. Firstly, when the swarms

merge, while moving from left to right, we can observe asymmetry

in local values: a front of negative local TE on the left (where

individuals were ‘surprised’ because the direction of dominant

attraction was roughly opposite to the current direction of the

overall swarm motion), and a front of positive local TE on the

right (where these two directions concurred).

The second new feature is propagation of an initial asymmetry

in swarms. For example, negative local TE at T~82:0 (Fig. 4O)

are particularly visible. As the swarm progresses towards a steady

state, there are further local fluctuations reducing the overall

information storage and transfer values, showing that the

distributed computation declines.

Discussion

The reported results provide the first quantitative evidence

(verified in a simulation setting) with a direct measure of

information for the long-held conjecture that the information

cascades occur in waves rippling through the swarm. The cascades

can be observed via coherent changes in local TE, and are akin to

information cascades in other systems, e.g. gliders in cellular

automata [20]. Our characterisation deals with weak and

ambiguous external stimuli by incorporating both positive and

Figure 3. Information storage and transfer over time for a swarm initially consists of three squares in a checker configuration.
Shown here are the average active information storage (AIS) per particle and average transfer entropy (TE) per particle pair.
doi:10.1371/journal.pone.0040084.g003

Information Cascades in Swarms
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negative local TE. In contrast to previous studies, information

cascades are not just observed as changes in behaviours and

activities, but are rather rigorously determined and computed.

In addition, we introduced a novel information-theoretic character-

isation of swarm’s collective memory, which is identified with AIS.

Higher values of AIS are associated with higher levels of dynamic

coordination. This study reveals different ways in which a particle’s

spatial position is dynamically related to its information processing role.

Collective communication and memory are two necessary

elements of distributed computation (in addition to information

modification [21,35]). The information-theoretic approach clearly

separates different elements of distributed computation taking

place in swarms, filtering and predicting important hot spots (e.g. a

cascade’s wavefront, collective memory’s core, etc.). In addition,

this framework may reveal new biological/social principles that

govern coherent aggregation of living organisms (e.g. maximal

Figure 4. Local average information dynamics in a swarm at key time steps. A-H, active information storage, I-P, transfer entropy. The
swarm initially consists of three squares in a checker configuration. The individuals’ two-dimensional positions are plotted on the x and y axes, and
their colours represent the AIS and TE values in bits, as shown by the scale on the colour bar. Note that the axes scales are adjusted, and the colours
are scaled differently for positive and negative values.
doi:10.1371/journal.pone.0040084.g004
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information transfer tends to follow the stage with maximal

collective memory).

Methods

We use a three-zone swarming model that features continuous,

concentric circular and overlapping zones with smooth transitions.

In an appropriate limit corresponding to a swarm consisting of a

large number of individuals, the dynamics of the system is

governed by a system of partial differential equations describing

the density and velocity of the swarm [36]. To perform

simulations, the density and velocity fields are systematically

discretized into individuals with two-dimensional position vector

~ssi, velocity~vvi and acceleration (d=dt)~vvi. For this model, individuals

turn toward a desired direction,

d

dt
~vvi~k ~vvd,i{~vvið Þ, ð1Þ

where k is a turning rate parameter and~vvd,i is the desired direction

of the ith individual. The desired direction is a linear combination

of influences,

~vvd,i~~vvr,iz~vvo,izca~vva,i, ð2Þ

where ~vvr,i, ~vvo,i and ~vva,i are the influences from the zones of

repulsion, orientation and attraction, respectively and are given

by:

~vvr,i ~
XN

j ~ 1

{
1

8ps4
1

~ssij exp ({D~ssij D2=4s2
1), ð3Þ

~vva,i ~
XN

j ~ 1

1

64ps6
3

~ssij D~ssij D2 exp ({ D~ssij D2=4s2
3), ð4Þ

and

~vvo,i~

PN

j~1

1

4ps2
2

exp ({D~ssij D2=4s2
2)~vvj

PN

j~1

1

4ps2
2

exp ({D~ssij D2=4s2
2)

ð5Þ

where~ssij : ~~ssj{~ssi, the relative position of individuals i and j. The

lengths s1vs2vs3 represent the sizes of the repulsion, orienta-

tion and attraction zones, respectively. The parameter ca in

Equation 2 controls the relative importance of attraction over

repulsion. An individual will be influenced to move away from

other individuals that are within the innermost zone of repulsion,

to align with individuals in the central zone of orientation and to

move toward individuals in the outer zone of attraction. The

constant ca specifies the importance of attraction relative to

orientation and repulsion.

We integrated the individual trajectories using the scipy.inte-

grate.odeint Python package so that they are numerically resolved

to a relative error of 10{6. To construct time series, we

subsampled the trajectories at time intervals of dt. We start our

investigation with individuals in a square configuration 49|49 in

size, or individuals in three squares of checker configuration

initially, each square is 28|28 in size.

AIS for agent X is the local mutual information from its semi-

infinite past x(k)
n ~fxn,xn{1, . . . ,xn{kz1g (as k??) to its next

state xnz1 at time step nz1 [18]:

aX (nz1)~ lim
k??

log2

p(x(k)
n ,xnz1)

p(x
(k)
n )p(xnz1)

, ð6Þ

with aX (n,k) representing an approximation with finite history

length k. The overall AIS is the average AX (k)~SaX (n,k)T.

The local TE [20] from a source agent Y to a destination agent

X is the local mutual information between the previous state of the

source yn and the next state of the destination xnz1, conditioned on

the past of the destination x(k)
n . In this study, we also condition it

on another contributor W to form the conditional transfer entropy

[21]:

tY?X DW (nz1)~ lim
k??

log2

p(xnz1Dx(k)
n ,wn,yn)

p(xnz1Dx
(k)
n ,wn)

: ð7Þ

Again, tY?X DW (n,k) represents finite-k approximation, and the

overall TE is the average: TY?X DW (k)~StY?X DW (n,k)T.

To apply information dynamics to swarms, we accumulated the

observations across agents and measured the state transitions with

relative variables [37]. For local AIS, the variables in Eq. 6 are:

x(k)
n ~f~vvn

p{~vv
n{1
p ,DvDng, and xnz1~f~vvnz1

p {~vvn
p,DvDnz1g. For TE,

we do not take into account the speed in xnz1, and yn is the

relative positions and velocities between two individuals,

thus, yn~f~ssn
p{~ss

n
p’,~vv

n
p{~vv

n
p’g, wn~DvDn, x(k)

n ~~vvn
p{~vv

n{1
p , and

xnz1~~vv
nz1
p {~vvn

p.

For each individual, we compute local TE from all neighbours

within a certain radius and average these values into the local TE

for that individual. While each TE could be viewed as akin to a

vector, i.e. having magnitude and relative direction from the

source to the destination, these components are quite separate and

the total information transferred to an individual does not add

together in a simple vector-wise fashion. (Indeed, it adds together

properly by considering incrementally conditioned transfer entro-

py terms, see [21]). As such, it is more meaningful to consider the

average information received by the individual from each source.

The average TE for the swarm is the average of these averages.

For example, Figs. 2E–H show the local TE values for individuals

at different times, while Fig. 1 traces the swarm average over time.

Supporting Information

Movie S1 Local active information storage (AIS) of
swarm individuals over time for experiment 1. We start

the simulation with the swarm individuals in a square configura-

tion 49|49 in size. The top panel shows the average AIS per

individual as depicted in Figure 2 in the main text, with the

vertical line highlighting the specified time. The bottom panel

shows the swarm dynamics at the specified time, the individuals’

two-dimensional positions are plotted on the x and y axes. The

local AIS values for each individual is shown here in different

colours, according to the scale on the right. Note the colours are

scaled differently for positive and negative values.

(MOV)

Movie S2 Local transfer entropy (TE) of swarm indi-
viduals over time for experiment 1. We start the simulation

with the swarm individuals in a square configuration 49|49 in

size. The top panel shows the average TE per particle pair as

depicted in Figure 0 in the main text, with the vertical line

Information Cascades in Swarms
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highlighting the specified time. The bottom panel shows the

swarm dynamics at the specified time, the individuals’ two-

dimensional positions are plotted on the x and y axes. The local

TE values for each individual is shown here in different colours,

according to the scale on the right. Note the colours are scaled

differently for positive and negative values.

(MOV)

Movie S3 Local active information storage (AIS) of
swarm individuals over time for experiment 2. We start

the simulation with the swarm individuals in three squares of

checker configuration; each square is 28|28 in size. The top

panel shows the overall AIS as depicted in Figure 2 in the main

text, with the vertical line highlighting the specified time. The

bottom panel shows the swarm dynamics at the specified time, the

individuals’ two-dimensional positions are plotted on the x and y
axes, with the colours of each individual denoting the value of its

local AIS. The local AIS values for each individual is shown here

in different colours, according to the scale on the right. Note the

colours are scaled differently for positive and negative values.

(MOV)

Movie S4 Local transfer entropy (TE) of swarm indi-
viduals over time for experiment 2. We start the simulation

with the swarm individuals in three squares of checker

configuration; each square is 28|28 in size. The top panel shows

the overall TE as depicted in Figure 4 in the main text, with the

vertical line highlighting the specified time. The bottom panel

shows the swarm dynamics at the specified time, the individuals’

two-dimensional positions are plotted on the x and y axes, with the

colours of each individual denoting the value of its local AIS. The

local AIS values for each individual is shown here in different

colours, according to the scale on the right. Note the colours are

scaled differently for positive and negative values.

(MOV)
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