
Accuracy and Reliability of Automated Gray Matter
Segmentation Pathways on Real and Simulated
Structural Magnetic Resonance Images of the Human
Brain
Lucas D. Eggert1*, Jens Sommer2, Andreas Jansen2, Tilo Kircher2, Carsten Konrad2

1 Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany, 2Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg,

Germany

Abstract

Automated gray matter segmentation of magnetic resonance imaging data is essential for morphometric analyses of the
brain, particularly when large sample sizes are investigated. However, although detection of small structural brain
differences may fundamentally depend on the method used, both accuracy and reliability of different automated
segmentation algorithms have rarely been compared. Here, performance of the segmentation algorithms provided by
SPM8, VBM8, FSL and FreeSurfer was quantified on simulated and real magnetic resonance imaging data. First, accuracy was
assessed by comparing segmentations of twenty simulated and 18 real T1 images with corresponding ground truth images.
Second, reliability was determined in ten T1 images from the same subject and in ten T1 images of different subjects
scanned twice. Third, the impact of preprocessing steps on segmentation accuracy was investigated. VBM8 showed a very
high accuracy and a very high reliability. FSL achieved the highest accuracy but demonstrated poor reliability and FreeSurfer
showed the lowest accuracy, but high reliability. An universally valid recommendation on how to implement morphometric
analyses is not warranted due to the vast number of scanning and analysis parameters. However, our analysis suggests that
researchers can optimize their individual processing procedures with respect to final segmentation quality and exemplifies
adequate performance criteria.
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Introduction

Automated brain segmentation algorithms segment a structural

magnetic resonance imaging (MRI) image into different tissue

classes. In general, a MRI image is segmented into gray matter,

white matter, and cerebrospinal fluid. Based on this segmentation,

methods are available to calculate several neuroanatomical

measures, for example gray matter volume, gray matter density,

cortical thickness, or cortical curvature. Researchers use these

measures to investigate differences in brain structure between

groups or to investigate changes in brain structure over time.

Phenomena that are investigated include learning processes [1],

language lateralization [2], psychosis [3], mild cognitive impair-

ment [4,5], aphasia [6], alexithymia [7], post-traumatic stress

disorder [8], Huntington disease [9,10], depression [11], autism

[12,13], and schizophrenia [14]. The use of automated segmentation

algorithms is desirable, as these algorithms are (i) much faster than

manual segmentations and (ii) user independent, that is, they do

not depend on expert knowledge in neuroanatomy. However,

significant challenges exist as differences in brain structure

between groups, or changes within subjects are often very subtle

(please see, e.g., [15,16]). Therefore, it is crucially important that

(i) automated segmentation algorithms are able to precisely

determine the exact amount of, for example, gray matter tissue

in an MRI image (cf. accuracy), and that (ii) they produce similar

results, when applied to different images of the same person (cf.

reliability). At the moment, however, too little is known about the

accuracy and reliability of current automated segmentation

algorithms.

Clark et al. [17] addressed the problem of reliability of different

automated segmentation algorithms. Combining different algo-

rithms for intensity correction, skull-stripping and segmentation,

Clark et al. [17] produced a large number of different processing

pathways and tested these pathways on twenty MRI images taken

from the same subject. They found that the most ‘‘optimal’’

processing pathway yielded volume estimates that were on average

three times less variable than those estimates calculated by less

‘‘optimal’’ pathways. They also demonstrated that the choice of

the segmentation algorithm had the greatest impact on the

variability of the final segmentation, whereas intensity correction

and skull-stripping algorithms had little effect on the overall tissue

segmentation reliability. In contrast to those findings, Fein et al.

[18] showed that skull-stripping may greatly improve the power of

structural brain analysis. Acosta-Cabronero et al. [19] evaluated

the impact of skull-stripping and intensity correction algorithms on

the subsequent segmentation. In accordance with the findings of

PLOS ONE | www.plosone.org 1 September 2012 | Volume 7 | Issue 9 | e45081



Fein et al. [18], they reported a large influence of those

preprocessing steps.

In 2009, Klauschen et al. [20] conducted a systematic

evaluation of different segmentation algorithms. They used

simulated brain data that were generated based on varying brain

anatomy and varying image quality, as well as real images from

nine different individuals and test-retest images of 48 individuals.

They tested the performance of three commonly used segmenta-

tion algorithms, provided by software packages SPM5, FSL, and

FreeSurfer. Within-segmenter analyses revealed volume differ-

ences greater than 15%. Between-segmenter comparisons showed

an average discrepancy of 24% for real MRI images. The results

of Klauschen et al. [20] suggested that automated brain

segmentation algorithms might be seriously limited in the fine

discrimination of tissue classes. Most importantly, their study

casted serious doubts on the capability of automated segmentation

algorithms to detect changes in brain structure in longitudinal

studies.

To provide information to the community regarding which gray

matter segmentation procedure they can build upon, we present

a systematic evaluation of accuracy and reliability of standard gray

matter segmentation algorithms. Whereas Clark et al. [17]

emphasized the comparison of different processing pipelines with

permuting preprocessing steps, and whereas Klauschen et al. [20]

tested within and between-segmenter reliability and accuracy of

three software packages, our investigation expands the work by

Clark et al. and Klauschen et al. by providing a comprehensive

investigation of both segmentation pipelines and within and

between-segmenter accuracy and reliability using the latest versions

of commonly used segmentation algorithms. Importantly, we

provide measures of accuracy obtained from real T1 MRI images.

To our knowledge this has not been done before in a systematical

manner. The fact that we tested the latest versions of available

segmentations procedures is also of particular importance,

because, up to now, all studies concerned with the evaluation of

automated segmentation [17,20] used segmentation algorithms

that were subjected to substantial development since.

In the current study, we evaluated the segmentation algorithms

provided by (i) SPM8, (ii) VBM8, (iii) FSL, and (iv) FreeSurfer

separately and in combination with algorithms for intensity

correction and skull-stripping. We determined accuracy in terms

of the Dice coefficient computed for the comparison of ground

truth images and corresponding gray matter segmentations in

simulated and real T1 brain images. We evaluated reliability in

terms of standard deviation, coefficient of variation, and reliability

coefficient of gray matter segmentations on real T1 images. In

comparison to previous studies, our focus was on the simultaneous

investigation of accuracy and reliability in combination with

a systematic evaluation of the influence of each processing step on

segmentation quality. Thus, we were able to examine (a) which

processing step has the largest influence on segmentation accuracy

both in simulated and real T1 MRI images, (b) how accuracy and

reliability are linked, (c) how results from simulated and real T1

images differ, and (d) how preprocessing steps and segmentation

algorithms interact.

Materials and Methods

Data Sets
To investigate the accuracy of different segmentation pathways

we used (i) twenty simulated T1-weighted MRI images and

corresponding discrete anatomical models provided by the

Simulated Brain Database (http://mouldy.bic.mni.mcgill.ca/

brainweb/; ‘‘BrainWeb data set’’) and (ii) 18 real T1-weighted

MRI images with expert segmentations of 43 individual structures

from the Internet Brain Segmentation Repository (‘‘IBSR data

set’’). The latter images and their manual segmentations were

provided by the center for Morphometric Analysis at Massachu-

setts General Hospital and are available at http://www.cma.mgh.

harvard.edu/ibsr/(IBSR version 2.0).

The BrainWeb data set is based on digital phantoms that were

made from twenty healthy adults [21,22,23,24]. The images are

T1-weighted simulated data with the following parameters: spoiled

FLASH sequence, TR=22 ms, TE= 9.2 ms, flip angle = 30u,
1 mm isotropic voxel size (3% noise, 0% intensity-inhomogeneity).

The corresponding discrete anatomical models consist of an

integer value at each voxel that represents the tissue which

contributes most to that voxel. We created binary gray matter

masks of each of the discrete models and used these masks as

ground truth for the corresponding simulated images. The gray

matter signal-to-noise ratio in this data set ranged from 47 to 59

(M=53, SD=3.1; see Table 1).

The IBSR data set consists of high-resolution, T1-weighted

volumetric images (resolution at least 16161.5 mm) from 14 male

and four female subjects (age: M=38, SD=22.4, including four

individuals characterized as juvenile). These images have been

reoriented into the Talairach orientation and processed by the

Center for Morphometric Analysis biasfield correction routines.

Experts segmentations of the principle brain structures include:

3rd ventricle, 4th ventricle, brain stem, and bilaterally: accumbens

area, amygdala, anterior amygdala, caudate nucleus, cerebellum

cortex, exterior cerebellum, cerebellum white matter, cerebral

cortex, exterior cerebral, cerebral white matter, hippocampus,

Table 1. Image quality parameters of the BrainWeb data set.

SNR

Data set White matter Gray matter CNR

BrainWeb data set

Image 4 59.13 44.48 14.65

Image 5 59.08 46.74 12.34

Image 6 56.80 45.72 11.08

Image 18 50.97 40.80 10.17

Image 20 54.75 43.67 11.08

Image 38 56.09 45.97 10.12

Image 41 50.28 39.95 10.33

Image 42 50.72 40.65 10.07

Image 43 50.26 39.62 10.64

Image 44 53.17 42.86 10.31

Image 45 54.71 43.78 10.93

Image 46 52.02 41.09 10.93

Image 47 50.01 40.10 9.91

Image 48 53.00 42.32 10.68

Image 49 53.06 41.23 11.83

Image 50 53.26 41.89 11.37

Image 51 49.86 38.38 11.48

Image 52 53.33 42.95 10.38

Image 53 47.13 37.35 9.78

Image 54 53.23 41.33 11.90

Note. SNR = signal-to-noise ratio; CNR = contrast-to-noise ratio.
doi:10.1371/journal.pone.0045081.t001
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inferior lateral ventricle, lateral ventricle, palladium, putamen,

thalamus proper, ventral diencephalon, and vessels. The segmen-

tations are the result of a manually-guided, semi-automatic

segmentation technique conducted by a trained expert. Segmenta-

tions are provided as structure outlines and as filled volumes. The

latter were used in the current study. For the filled volumes, fill

codes represents the various structures that were segmented. For

the purpose of the current study, the ‘‘trinary’’ representations of

the segmentations were used. In these images voxel values have

been mapped from the code-to-structure codes into the basic tissue

types: background, cerebrospinal fluid, gray matter and white

matter. Binary masks for gray matter were created to serve as

ground truth for the 18 images. The signal-to-noise-ratio for gray

matter in this data set ranged from 16 to 95 (M=47, SD=22.4;

see Table 2).

To determine the reliability of different segmentation pathways

we acquired ten MRI images of one individual (male, 40 years old;

‘‘Single Subject data set’’). The first five images were acquired on

five different days between October 29th and November 15th 2010.

The sixth image was acquired on March 28th, 2011. The

remaining images were acquired in different sessions on May

19th, 2011. The images were acquired on a Siemens Trio (A Tim

System, 3 Tesla) with software version Syngo MR B17.

Acquisition parameters of the images were as follows: 3D

MPRAGE sagittal acquisition of 176 slices (1 mm thickness) with

a field of view of 2566256 mm and a matrix of 2566252 resulting

in isotropic voxels of 16161 mm3; TR=1900 ms, TE=2.52 ms,

TI = 900 ms, flip angle = 9 , pixel bandwidth = 170 Hz, 12

channel head RX-coil, parallel imaging factor 2 (GRAPPA). The

signal-to-noise-ratio for gray matter in this data set ranged from

126 to 144 (M=137, SD=7.1; see Table 3).

Additionally, we used the reliability data set provided by the

Open Access Series of Imaging Studies (www.oasis-brains.org;

‘‘OASIS data set’’) [25]. This data set contains twenty subjects

scanned on subsequent visits within ninety days. In contrast to

Klauschen et al. [20], we only used a subset of the images

provided, namely subject numbers 61, 92, 111, 145, 150, 156, 236,

249, 285, and 379 (mean age: 22.7 years, SD=4.7). We chose

these particular subjects, because they were scanned twice within

twelve days at maximum (M=4, SD=3.8). That way, we ensured

that the two scans were maximally similar. The signal-to-noise

ratio in gray matter for this data set ranged from 18 to 32 (M=25,

SD=4.2; see Table 4).

Our study primarily used simulated data and data publicly

available. The single subject images were scans that were obtained

in the context of continuous quality management at the scanner

facility of the Department of Psychiatry and Psychotherapy,

Philipps-University Marburg. The images were obtained from J.

S., who made the data available for our study.

Algorithms
We used two preprocessing steps in our analyses: intensity

correction and skull-stripping. For intensity correction we used the

nonparametric nonuniform intensity normalization (N3) algorithm

[26] and for skull-stripping (i) the ‘‘watershed’’ (WS) algorithm of

FreeSurfer [27] and the BET algorithm of FSL (version 2.1) [28].

For gray matter segmentation we used (1) ‘‘Segment’’ (provided

by SPM8 (r4290): www.fil.ion.ucl.ac.uk/spm/software/spm8/), (2)

‘‘New Segment’’ (provided by SPM8), (3) ‘‘VBM8’’ (provided by

the Voxel-based morphometry toolbox for SPM8 (r413): http://

dbm.neuro.uni-jena.de/vbm/), (4) ‘‘FAST’’ (version 4.1, provided

by FSL (version 4.1.6): www.rmrib.ox.ac.uk/fsl/index.html), and

(5) ‘‘FreeSurfer’’ (provided by FreeSurfer (version 4.5.0): (http://

surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki).

Segment performs segmentation, bias correction and normaliza-

tion in one step (cf. ‘‘Unified Segmentation’’) [29]. The underlying

generative model includes a correction for intensity non-unifor-

mity and is estimated for a maximum a posteriori solution. New

Segment, currently work in progress, is an extension of the unified

segmentation approach that uses an improved registration model

and an extended set of tissue probability maps [30]. The VBM8

segmentation algorithm uses a maximum a posteriori technique,

together with a partial volume estimation and two denoising

methods [31]. Additionally, this algorithm integrates the DAR-

Table 2. Image quality parameters of the IBSR data set.

SNR

Data set White matter Gray matter CNR

Image 1 47.27 36.28 10.99

Image 2 116.98 94.92 22.06

Image 3 40.01 27.01 13.00

Image 4 23.48 15.86 7.62

Image 5 113.07 80.23 32.84

Image 6 100.85 68.55 32.30

Image 7 69.17 34.42 34.75

Image 8 75.83 43.87 31.96

Image 9 83.92 48.52 35.40

Image 10 51.07 25.02 26.05

Image 11 106.32 58.95 47.37

Image 12 57.38 42.79 14.59

Image 13 39.13 27.52 11.61

Image 14 61.94 40.74 21.20

Image 15 103.84 70.01 33.83

Image 16 111.24 71.60 39.64

Image 17 40.41 26.67 13.74

Image 18 39.43 26.81 12.62

Note. SNR = signal-to-noise ratio; CNR = contrast-to-noise ratio.
doi:10.1371/journal.pone.0045081.t002

Table 3. Image quality parameters of the Single Subject data
set.

SNR

Data set White matter Gray matter CNR

Image 1 132.49 86.01 46.48

Image 2 137.74 85.82 51.92

Image 3 128.06 78.71 49.35

Image 4 141.60 89.15 52.45

Image 5 125.76 78.81 46.95

Image 6 143.16 83.24 59.92

Image 7 143.88 84.14 59.74

Image 8 144.12 83.93 60.19

Image 9 131.53 81.86 49.67

Image 10 142.81 64.14 78.67

Note. SNR = signal-to-noise ratio; CNR = contrast-to-noise ratio.
doi:10.1371/journal.pone.0045081.t003
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TEL normalization [32]. FAST uses a hidden Markov random

field model and an associated Expectation-Maximization algo-

rithm. The algorithm also corrects for intensity non-uniformities

[33]. FreeSurfer is a set of tools for the analysis of structural and

functional brain imaging data. In its processing stream it allows for

subcortical segmentation and cortical parcellation based on prior

cortical modeling and a Gaussian classifier atlas [34].

Study Design and Implementation
Figure 1 depicts the study design. By combining the algorithms

mentioned above for intensity correction (2 possibilities: no

intensity correction, N3), skull-stripping (3 possibilities: no skull-

stripping, BET,WS), and segmentation (5 possibilities: Segment, New

Segment, VBM8, FAST, FreeSurfer) we created thirty gray matter

segmentation pathways in total. Seven of the pathways were not

considered further in our study because we regarded these

pathways as not relevant in practice. As FreeSurfer’s default

segmentation procedure already includes N3 intensity correction

and WS skull-stripping, combinations with any of the preproces-

sing steps would have been redundant. In the case of FAST, only

segmentation pathways that included a skull-stripping step were

feasible, because the algorithm assumes brain-extracted data.

Thus, we retained a testable pathway total of 23 different

processing pathways. We processed each data set with each

pathway, resulting in 1564 total calculations of gray matter maps.

Intensity correction was implemented with FreeSurfer’s mri_-

nu_correct.mni program. Skull-stripping was implemented using

FSL’s bet and FreeSurfer’s mri_watershed program with no

additional parameters selected except those specifying the input

and output volume. Segmentation via Segment and New Segment was

implemented in the batch tool of SPM8 with standard parameters.

For VBM8, we also used the batch tool of SPM8; here, we used the

standard parameters except that we explicitly specified that the

output should be saved in native space. For the segmentation with

FreeSurfer we used the recon-all –all command line command. As

FreeSurfer does not provide a gray matter map right away, we

created gray matter masks from the results of the subcortical

segmentations and the cortical parcellations and combined these

two masks to get the desired gray matter map.

Evaluation
To quantify the accuracy of gray matter segmentations, we used

the Dice coefficient (DC) [35], a similarity measure related to the

Jaccard index. The DC is commonly used to determine accuracy of

segmentation methods in neuroimaging settings [36,37,38] and is

defined as the size of the union of the segmentation result and the

ground truth: DC= 2TP/((FP + TP) + (TP + FN)), that is, the set of

True Positives (TP) is divided by the average size of the

segmentation result (False Positives (FP) + True Positives (TP))

and the ground truth (True Positives (TP) + False Negatives (FN)).

A DC of 0 indicates no overlap; a value of 1 indicates perfect

agreement. Using the DC, we evaluated the accuracy of the

standard implementations of Segment, New Segment, VBM8, FAST,

and FreeSurfer. With regard to the BrainWeb data set, we resliced

the gray matter maps produced by the segmentation pathways to

the corresponding ground truth images with a trilinear in-

terpolation. Next, we compared the resliced gray matter maps

(binarization threshold: p.0.5) and the corresponding ground

truth images voxel-wise to calculate the DC. With respect to the

IBSR data set, segmentation results could be directly compared to

the corresponding ground truth images, because original T1

images and ground truth images had the same resolution. Only in

case of FreeSurfer, gray matter maps were again resliced to fit the

resolution of the corresponding ground truth images. In addition

to the DC, for each of the five standard segmentation algorithms,

we determined the average false positive rate (fp; cf. specificity) and

the average false negative rate (fn; cf. sensitivity). Moreover, to

examine the impact of the choice of the binarization threshold, we

also evaluated the gray matter maps using p.0.10 and p.0.90.

To assess the reliability of the five standard segmentation

algorithms, we initially used the Single Subject data set. We

calculated the variability in segmented gray matter volumes in

terms of the standard deviation in mm3 and in terms of the

coefficient of variation cv, which is defined as the ratio of the

standard deviation to the mean. Next, we calculated the reliability

coefficient r for the segmented gray matter volumes measured for

the OASIS data set. For this data set, we also computed the

average deviation in volume (in %) between the first and second

scan.

Finally, to determine which processing factor had the largest

impact on segmentation accuracy, we computed separate univar-

iate, three-way analyses of variance (ANOVAs) with according

pairwise comparisons for the BrainWeb data set and the IBSR

data set. In these analyses, DC was the dependent variable and

Intensity Correction, Skull-Stripping, and Segmentation were the

respective factors for repeated measures. To create a balanced

design for statistical analysis, we excluded all pathways that used

FreeSurfer for segmentation and all pathways that did not use any

skull-stripping. Thus, we computed 2 (Intensity correction: none,

N3)62 (Skull-stripping: BET,WS)64 (Segmentation: Segment, New

Segment, VBM8, FAST) Greenhouse-Geisser corrected ANOVAs

with repeated measures on all factors. To further determine which

of all five segmentation algorithms tested achieved the highest

accuracy, we additionally computed one-way ANOVAs for the

Table 4. Image quality parameters of the OASIS data set.

SNR

Data set White matter Gray matter CNR

Image 61/1 17.83 9.30 8.53

Image 62/2 22.44 12.06 10.38

Image 92/1 18.71 10.23 8.48

Image 92/2 19.53 10.71 8.82

Image 111/1 26.10 12.84 13.26

Image 111/2 22.62 10.00 12.62

Image 145/1 21.13 9.10 12.03

Image 145/2 22.92 10.45 12.47

Image 150/1 28.05 13.80 14.25

Image 150/2 28.08 14.39 13.69

Image 156/1 29.91 15.30 14.61

Image 156/2 28.22 14.15 14.07

Image 236/1 29.09 14.28 14.81

Image 236/2 27.96 15.80 12.16

Image 249/1 27.06 13.35 13.71

Image 249/2 27.25 13.09 14.16

Image 285/1 22.05 11.48 10.57

Image 285/2 18.99 9.90 9.09

Image 379/1 25.89 13.17 12.72

Image 379/2 32.27 15.79 16.48

Note. SNR = signal-to-noise ratio; CNR = contrast-to-noise ratio.
doi:10.1371/journal.pone.0045081.t004
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factor Segmentation (Segmentation: Segment, New Segment, VBM8,

FAST, FreeSurfer) separately for the BrainWeb and the IBSR data

set. Likewise, we computed a one-way ANOVA for the factor

Skull-Stripping (Skull-Stripping: none, BET, WS) to test whether

this preprocessing step actually increased or decreased segmenta-

tion accuracy in comparison to no prior brain extraction.

Results

Accuracy
Panel A of Figure 2 shows that on the BrainWeb data set FAST,

VBM8, Segment, and New Segment reached an average DC greater

than 0.93. FAST achieved the highest accuracy (M=0.9513,

SD=0.0064), while VBM8 was slightly lower (M=0.9474,

SD=0.0067). FreeSurfer showed the lowest accuracy (M=0.8679,

SD=0.0087). On the IBSR data set, as illustrated in Figure 2,

panel B, New Segment reached the highest average DC (M=0.8326,

SD=0.0129). Compared to New Segment, FAST (M=0.7962,

SD=0.0570), Segment (M=0.8167, SD=0.0359), and VBM8

(M=0.8026, SD=0.0270) showed slightly lower accuracy. Free-

Surfer again showed the lowest accuracy of all segmentation

algorithms (M=0.5838, SD=0.0570).

Figure 2, panel C and D, illustrates that all segmentation

algorithms were especially prone to reduced sensitivity, that is,

they tended to underestimate gray matter volume (BrainWeb data

set: all fns.5%; IBSR data set: all fns.20%). At the same time, all

segmentation algorithms showed high specificity (BrainWeb data

set: all fps ,1.5%; IBSR data set: all fps ,2%). On real data (cf.

IBSR data set), NewSegment demonstrated the highest sensitivity

(fn=24.3%) and FreeSurfer the lowest (fn=49.6%).

For p.0.10 instead of p.0.50 as binarization threshold, all

segmentation algorithms yieled similar accurary on the BrainWeb

data set (DCs ranged from 0.88 to 0.90). For the IBSR data set,

however, Segment, New Segment, VBM8 and FAST yielded compa-

rable results (DCs ranged from 0.84 to 0.87), whereas FreeSurfer

showed significantly decreased accuracy (0.66). For p.0.90, on the

BrainWeb data set, again all segmentation algorithms demon-

strated comparable accuracy (DCs ranged from 0.79 to 0.83). On

the IBSR data set, however, only Segment and New Segment showed

feasible accuracy (DCs 0.70), whereas VBM8, FAST, and FreeSurfer

Figure 1. Overview of the study design. In total we processed fifty data sets: (i) twenty simulated brains of the Simulated Brain Database with
different anatomical models (‘‘BrainWeb data set’’), (ii) 18 different real subjects with corresponding expert segmentations (‘‘IBSR data set’’), (iii) ten
T1-weighted scans of the same individual (‘‘Single Subject data set’’), and (iv) ten pairs of images of subjects who were scanned twice within
a maximum of twelve days (‘‘OASIS data set’’). We created in total thirty segmentation pathways where each consisted of: An intensity non-uniformity
correction preprocessing step (consisting of no intensity correction or N3), a skull-stripping preprocessing step (consisting of no skull-stripping, BET,
orWS), and the segmentation of gray matter (via Segment, New Segment, VBM8, FAST, or FreeSurfer). Once created, we determined that 23 of the total
constructed segmentation pathways were feasible for evaluation and these were investigated in the analysis (infeasible pathways are represented
with a dot as end marker). To determine the accuracy of the different segmentation pathways we calculated the Dice coefficient for the gray matter
maps and corresponding ground truth images for the twenty simulated brains and the IBSR data set. We tested the reliability of the segmentation
pathways by (i) determining the variability in terms of standard deviation and coefficient of variation with respect to gray matter volume on the
Single Subject data images, and (ii) by calculating the test-retest reliability with respect to gray matter volume for the OASIS data set.
doi:10.1371/journal.pone.0045081.g001
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demonstrated poor accuracy (VBM8:0.61; FAST: 0.57; FreeSufer:

0.48).

Reliability
As shown in Figure 2, panel E, FreeSurfer showed by far the least

variability in segmented gray matter volumes calculated for the

Single Subject data set (SD=4504 mm3, cv = 0.6%). VBM8 yielded

the second most reliable results (SD=9998 mm3, cv=1%),

whereas FAST (SD=26583 mm3, cv=3%) and Segment

(SD=26651 mm3, cv=3%) showed the largest variability in

segmented gray matter volumes. The mean segmented gray

matter volumes measured by the five standard segmentation

algorithms ranged from 731379 mm3 (FreeSurfer) up to

820202 mm3 (New Segment). Thus, the maximum discrepancy

between the different segmentation algorithms was 11%. With the

exception of FAST, all segmentation algorithms showed very high

test-retest reliability on the OASIS data set (all rs .0.97; please see

Figure 2, panel F). FAST, however, only demonstrated a reliability

coefficient of 0.90. The corresponding average volume differences

between first and second scan were: Segment: 1.2%, SD=1.1; New

Segment: 0.6%, SD=0.6; VBM8:2.0%, SD=2.2; FAST: 3.3%,

SD=2.6; FreeSurfer: 1.0%, SD=0.7.

Impact of Preprocessing Versus Choice of Segmentation
Algorithm
For the BrainWeb data set, an Intensity Correction 6 Skull-

Stripping6Segmentation ANOVA on DCs revealed a main effect

of Intensity Correction (F(1,19) = 4.85, p= .04, g2 = .20), a main

effect of Skull-Stripping (F(1,19) = 101.69, p,.001, g2 = .84), and

a main effect of Segmentation (F(3,57) = 135.89, p,.001, g2 = .88).

Additionally, the analysis revealed a significant Skull-Stripping 6
Segmentation interaction effect (F(3,57) = 34.98, p,.001, g2 = .65).

Bonferroni-corrected post-hoc comparisons revealed that only the

factor Segmentation produced meaningful differences in segmen-

tation accuracy. FAST produced the most accurate segmentations

(M= .95, SD= .002) and Segment produced the least accurate

segmentations (M= .93, SD= .002). The interaction effect in-

dicated no additional practically relevant result, A follow-up one-

way ANOVA for the factor Segmentation additionally revealed

that FreeSurfer’s accuracy (M= .87, SD=0.002) was significantly

lower than the accuracy of all other segmentation algorithms

(Bonferroni-corrected post-hoc comparisons: all p’s ,.001).

For the IBSR data set, an Intensity Correction6Skull-Stripping

6Segmentation ANOVA on DCs revealed a main effect of Skull-

Stripping (F(1,17) = 17.80, p= .001, g2 = .51) and a main effect of

Segmentation (F(3,51) = 7.07, p= .005, g2 = .29), Moreover, the

analysis revealed an Intensity Correction 6 Skull-Stripping

interaction (F(1,17) = 5.51, p,.03, g2 = .25), an Intensity 6
Segmentation interaction (F(3,51) = 14.11, p,.001, g2 = .45), and

a Skull-Stripping 6 Segmentation interaction (F(3,51) = 7.69,

p= .004, g2 = .31), Bonferroni-corrected post-hoc comparisons

revealed that segmentation pathways using WS for skull-stripping

produced significantly more accurate segmentations (M= .82,

SD= .006) than pathways using BET for skull-stripping (M= .80,

SD= .008). A follow-up one-way ANOVA for the factor Skull-

Stripping further revealed that neither BET (M= .80, SD= .004),

nor WS (M= .82, SD= .003) yielded an improved accuracy

compared to no skull-stripping at all (M= .81, SD= .008;

Bonferroni-corrected post-hoc pairwise comparisons: both ps

..30). Further, analyses revealed that, on real T1 MRI data,

from all segmentation algorithms New Segment yielded the most

Figure 2. Overview of the results for the five segmentation algorithms in default mode. Depicted is the mean Dice coefficient that was
reached by each of the five standard segmentation algorithms in its default mode on the BrainWeb images (Panel A) and on the IBSR data set (Panel
B). Panel C and D summarize the average false positive rate fp and the average false negative rate fn for each segmentation algorithm on the Brain
Web data set (Panel C) and on the IBSR images (Panel D). Panel E shows the coefficient of variation for gray matter volumes detected in the Single
Subject data set. For each segmentation algorithm, Panel F depicts the test-retest reliability determined on the OASIS data set.
doi:10.1371/journal.pone.0045081.g002
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accurate segmentations (M= .82, SD= .004). New Segment’s accu-

racy was higher than the accuracy of Segment (M= .79, SD= .009),

the accuracy of VBM8 (M= .81, SD= .006), and better than the

accuracy of FAST (M= .80, SD= .011). Again, a follow-up one-

way ANOVA for the factor Segmentation additionally revealed

that FreeSurfer’s accuracy (M= .58, SD= .013) was significantly

lower than the accuracy of all other segmentation algorithms

(Bonferroni-corrected pairwise comparisons: all p’s ,.001). Both

the Intensity Correction 6 Skull-Stripping interaction and the

Intensity Correction 6 Segmentation interaction indicated no

additional practically relevant effect. The Skull-Stripping 6
Segmentation interaction, however, indicated that only Segment

and New Segment showed higher accuracy when combined with WS

(Segment: M= .81, SD= .009; New Segment: M= .83, SD= .004)

compared to when combined with BET (Segment: M= .78,

SD= .01; New Segment: M= .82, SD= .005), whereas VBM8 and

FAST showed comparable results for BET and WS.

Discussion

Accuracy of Current Segmentation Algorithms
In the current study, the gray matter segmentation algorithms

Segment, New Segment, VBM8, and FAST achieved very high

accuracy on simulated T1-weighted MRI images (all DCs.0.93)

and good accuracy on real T1-weighted MRI images (all DCs

..79), FreeSurfer, however, only achieved a mean DC of 0.88 on

simulated T1 data and a mean DC of.58 on real T1 data. In

comparable MRI settings, DCs commonly range between 0.75 and

0.97 [36,37,38,39,40]. From a practical point of view, the average

DCs of Segment, New Segment, VBM8, and FAST are closely

comparable. Only FreeSurfer’s accuracy must be considered

substantially lower in comparison to the other segmentation

algorithms (please see below). Our findings are in agreement with

the results of Klauschen et al. [20], who demonstrated that FAST

and Segment have a similar level of sensitivity for gray matter on

simulated T1 images (Klauschen et al.: FAST: 91%, Segment: 90%;

current study: FAST: 94%, Segment: 92%). Importantly, however,

our results also demonstrate that sensitivity on real T1 images is

substantially lower than on simulated data (e.g., FAST: 70%,

Segment: 75%). Our results are also in accordance with Klauschen

et al.’s finding that FreeSurfer performs substantially worse than

other segmentation algorithms (sensitivity Klauschen et al.: 83%;

current study: 82% (simulated T1 data), 50% (real T1 data)).

Notably, we also reproduced the findings of Klauschen et al. [20]

in that all segmentation algorithms underestimate the actual gray

matter volume. This suggests that, in terms of accuracy, the latest

algorithmic advancements have not improved segmentation

accuracy significantly.

Reliability of Current Segmentation Algorithms
VBM8 and FreeSurfer demonstrated the most reliable results,

whereas FAST showed highly variable results. In terms of test-

retest reliability, all segmentation algorithms showed almost

perfect agreement in segmented gray matter volume. However,

the test-retest reliability coefficient for FAST was r=0.90, equal to

an average deviation of 4% in segmented gray matter volume

between the first and second scan. All other segmentation

algorithms demonstrated a reliability coefficient of at least 0.99.

This finding suggests that, of all tested segmentation algorithms,

FAST is most sensitive to varying image quality. FreeSurfer and

VBM8, on the other hand, were the least sensitive to noise factors

introduced by different scan sessions. Nevertheless, VBM8 and

FreeSurfer still showed an average volume difference between the

first and second scan of 2%, or 1% respectively. Taken together,

these findings have two important implications: (1) Despite high

test-retest reliability, segmentation pathways might still show

considerable variations in segmented gray matter volume when

several scans of the same subject are segmented. Thus, in

accordance with the conclusions of Klauschen et al. [20], our

findings further suggest that even segmentation algorithms, which

are considered both very accurate and very reliable, still introduce

a ‘‘segmenter-factor’’ of up to 3%. This factor has to be considered

when morphometric studies of the brain are planned and

particularly when results of such studies are interpreted. (2) The

fact that we observed pronounced differences in mean segmented

gray matter volumes between the different segmentation algo-

rithms strongly emphasizes that findings of segmentation studies

that used different segmentation algorithms or different segmen-

tation procedures respectively are not easily comparable.

Tests on Real Versus Tests on Simulated MRI Images
To our knowledge, our study is the first to investigate

segmentation accuracy on real T1-weighted MRI images. Results

obtained from simulated images are always limited in their

generalized application because simulated images cannot capture

the full complexity of real MRI images. Nevertheless, the use of

simulated images provides a feasible way of evaluating accuracy,

because perfect ground truth images exist in this case. However, as

can be seen for example in the case of FAST, it is not sufficient to

use simulated MRI images to get an idea of how a segmentation

algorithm will perform on real data sets. It is of crucial importance

to perform tests on both simulated and real MRI data sets, as one

may not know all factors that influence the performance of

automated segmentation algorithms beforehand. In the current

study, for example in the case of FAST, only tests on real data sets

revealed that the algorithm is highly sensitive to changes in image

quality, and only tests on real T1 images could demonstrate that in

practice gray matter sensitivity of segmentation algorithms may be

up to five times smaller than suggested by evaluations on simulated

T1 images. Likewise, Klauschen et al. [20] used simulated data

sets of the same subject with variable image quality. In their

analysis FreeSurfer showed the largest variability in segmented gray

matter volume while FAST demonstrated a variability that was

significantly lower by comparison. Notably, in our study, FreeSurfer

showed practically no variability whereas FAST showed the highest

variability on the Single Subject data set. This suggests that even

using simulated MRI images with varying image quality cannot

replace systematic evaluation of automated segmentation algo-

rithms on real data sets.

The Impact of Processing Steps
In our study, intensity correction and skull-stripping algorithms

applied prior to gray matter segmentation had no impact on later

segmentation accuracy that would be of practical relevance.

Similarly, Clark et al. [17] found no pronounced differences in

segmentation reliability due to intensity correction on their single

subject data set. Klauschen et al. [20] also reported no significant

influence of skull-stripping algorithms on segmented gray matter

volume. Fein et al. [18] reported increased sensitivity in gray

matter segmentation for skull-stripped images. However, their

results were obtained from SPM2, whose segmentation algorithm

suffered from an inaccurate normalization to a T1 brain template

and associated problems with the accurate extraction of the brain.

Since the implementation of the Unified Segmentation approach

[29] these issues obviously do not exist any longer, as can be seen

from the fact that Segment’s accuracy did not profit from skull-

stripping. Acosta-Cabronero et al. [19] demonstrated that skull-

stripping may improve SPM5’s segmentation accuracy. However,
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they used skull-stripping prior to intensity correction and further-

more applied algorithms with customized parameters. Because of

this, it is difficult to directly compare their results with the results of

the current study.

Our results indicate that in particular Segment is sensitive to the

type of skull-stripping applied. More importantly, however, our

results suggest that skull-stripping, may actually decrease segmen-

tation accuracy. This effect might be due to an inaccurate skull-

stripping process that cuts out parts of the brain or leaves parts of

the skull in the image. These shortcomings could of course be

corrected by manual editing. However, in our study, we explicitly

wanted to concentrate on fully automated procedures that may be

chosen by the average user. Therefore we must conclude that

skull-stripping (BET, WS), in general, should not be used prior to

segmentation. The exception is, of course, the processing stream of

FSL, where no skull-stripping prior to segmentation produces no

feasible segmentation results. In this case, BET should be used.

Performance of FreeSurfer
The results of our analysis of FreeSurfer’s accuracy and reliability

have to be interpreted cautiously. FreeSurfer, in contrast to all other

segmentation algorithms reported here, segments and reports gray

matter volumes of structures as a whole. All other segmentation

algorithms segment a 3D T1 MRI image voxel-wise into tissue

classes. In FreeSurfer, the definition of the thalamus, for example,

extends into the lateral thalamic nuclei, which have a rather

heterogeneous tissue composition. The structure labeled as

‘‘thalamus’’ by FreeSurfer’s segmentation algorithm may therefore

contain both white matter and gray matter. This mechanism may

be the reason for FreeSurfer’s decreased segmentation accuracy and

its high reliability. As FreeSurfer labels structures as a whole, the

segmentation algorithm is not very sensitive to changes in image

quality or noise, which in other algorithms, may lead to

misclassifications of single voxels within structures. However, the

high reliability caused by this mechanism may become problem-

atic as it is accompanied by low accuracy. Thus, researchers need

to decide first, whether they want to focus on identifying cerebral

and subcortical structures or gray matter tissue (please see also

[41]).

Limitations and Outlook
The results of the current study have their own limitations. We

systematically tested a considerable number of different factors,

which may influence segmentation quality, and examined two

major measures of segmentation quality, namely accuracy and

reliability. However, it is inappropriate to generalize towards every

possible scan setting from only the results of our study. Most

importantly, this study focused on data processing and was not

designed to test technical factors during data acquisition, such as

type of coil, impact of parallel imaging, acquisition protocol, or

field strength. Future studies may also address regional differences

in segmentation accuracy between different segmentation algo-

rithms. Clark et al. [17] implicitly made the first attempt in this

direction by calculating gray matter volumes of the major lobes of

the brain separately, instead of comparing total gray matter

volumes. The focus of further investigations should be to

determine which brain segmentation algorithm is most accurate

for which region of the brain, most importantly, which segmen-

tation algorithm is best suited for the segmentation of cortical

areas, and which algorithm provides the most accurate results for

subcortical areas.

Conclusions
Our findings address crucial factors that influence the quality of

gray matter segmentation. Additionally, our results provide

guidance in designing state-of-the-art segmentation pathways

optimized for individual software settings. Our study emphasizes

that comparisons of the results of morphological studies using

different segmentation algorithms should be made with great

caution. In conclusion, our results suggest that researchers must be

aware of the fact that the choice of the segmentation pathway used

in a morphometric investigation can easily introduce a ‘‘segmenter-

effect’’ on the order of 2–3% variability in segmented gray matter

volume. Researchers therefore need to optimize their scanning

and processing procedure with respect to their individual settings.

Before performing a study, the accuracy and reliability of a specific

segmentation pathway has to be adequately determined to enable

correct interpretation of the results.
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