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Abstract

Background: Increasing evidence has revealed important roles for complex glycans as mediators of normal and
pathological processes. Glycosaminoglycans are a class of glycans that bind and regulate the function of a wide array of
proteins at the cell-extracellular matrix interface. The specific sequence and chemical organization of these polymers likely
define function; however, identification of the structure-function relationships of glycosaminoglycans has been met with
challenges associated with the unique level of complexity and the nontemplate-driven biosynthesis of these biopolymers.

Methodology/Principal Findings: To address these challenges, we have devised a computational approach to predict fine
structure and patterns of domain organization of the specific glycosaminoglycan, heparan sulfate (HS). Using chemical
composition data obtained after complete and partial digestion of mixtures of HS chains with specific degradative enzymes,
the computational analysis produces populations of theoretical HS chains with structures that meet both biosynthesis and
enzyme degradation rules. The model performs these operations through a modular format consisting of input/output
sections and three routines called chainmaker, chainbreaker, and chainsorter. We applied this methodology to analyze HS
preparations isolated from pulmonary fibroblasts and epithelial cells. Significant differences in the general organization of
these two HS preparations were observed, with HS from epithelial cells having a greater frequency of highly sulfated
domains. Epithelial HS also showed a higher density of specific HS domains that have been associated with inhibition of
neutrophil elastase. Experimental analysis of elastase inhibition was consistent with the model predictions and
demonstrated that HS from epithelial cells had greater inhibitory activity than HS from fibroblasts.

Conclusions/Significance: This model establishes the conceptual framework for a new class of computational tools to use
to assess patterns of domain organization within glycosaminoglycans. These tools will provide a means to consider high-
level chain organization in deciphering the structure-function relationships of polysaccharides in biology.
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Introduction

Complex glycans such as glycosaminoglycans (GAGs) are rapidly

becoming appreciated as major regulators of cell function

throughout the animal kingdom [1–3]. In particular, the GAG

chains of proteoglycans have been shown to play important roles in

mediating cell-extracellular matrix interactions, extracellular matrix

structure and function, and cell-cell communication principally

through the ability of GAGs to bind to a wide range of proteins

[4,5]. Heparan sulfate (HS), the most structurally diverse GAG

class, has been implicated in countless normal and pathological

biological processes [1,3,6,7]. HS is a linear polysaccharide

composed of repeating disaccharide units of hexuronic acid (D-

glucuronic acid or L-iduronic acid) and D-glucosamine (N-

unsubstituted, N-acetylated, or N-sulfated) with varying degrees of

O-sulfation. The disaccharides are clustered in alternating domains

of short segments of highly sulfated disaccharides (S-domains) and

longer segments of predominantly unmodified disaccharides [1,8,9].

Since the discovery that a rare sequence of five sugars in heparin is

responsible for the binding and functional modulation of anti-

thrombin III [10], substantial effort has focused on specifying the

sequences for other HS-protein interactions.

Although significant advances in the analytical methodology for

HS sequencing have been made in recent years [5,11–15], the

current level of technology still lacks the capability to ‘‘sequence’’

HS chains longer than a decasaccharide. Instead, typical HS

chains (25–200 disaccharides) are degraded with chemicals and

enzymes of known specificity into a population of smaller segments

that are separated by size and then purified and sequenced.

Successful sequencing of small oligosaccharides containing ten or

less sugars has been accomplished by a variety of techniques

ranging from gel electrophoresis and chromatography to mass

spectrometry (MS) and nuclear magnetic resonance (NMR)

spectroscopy.
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In a strategy called integral glycan sequencing (IGS), oligosac-

charides are labeled on the reducing end with a fluorescent tag,

partially cleaved with nitrous acid (low pH), and sequentially

processed with different exoenzymes [16,17]. The various stages of

digested oligosaccharides are separated by polyacrylamide gel

electrophoresis (PAGE), and the ladder-like pattern of fluorescent

bands from a single run is used to directly read the saccharide

sequence. Other methods follow a similar approach by labeling the

oligosaccharides with different tags (e.g., radiolabels) and using a

series of strong anion-exchange high-performance liquid chroma-

tography (SAX-HPLC) steps to separate and identify the digests

[18–20].

These relatively simple techniques of degradation and separa-

tion are frequently combined with more sophisticated instrumen-

tation and software programs in sequencing strategies. For

example, by integrating capillary electrophoresis (CE) with

matrix-assisted laser desorption ionization MS (MALDI-MS), a

list of all possible sequences for the oligosaccharide is generated

using a scheme based upon a property-encoded nomenclature

(PEN) [21,22]. Subsequent chemical or enzymatic degradations of

the oligosaccharide, followed by MALDI-MS identification of the

fragments, allow convergence to a unique sequence on the list. In a

related strategy using the PEN system, CE is paired with NMR

spectroscopy to deduce the oligosaccharide sequence by combin-

ing complementary information on linkages between adjacent

monosaccharides [23]. NMR data are acquired from a single

series of one-dimensional (1D) proton and two-dimensional (2D)

correlation spectroscopy (COSY)/total correlation spectroscopy

(TOCSY) experiments using the intact oligosaccharide without

need for further degradation. Another sequencing strategy

integrates electrospray ionization MS (ESI-MS) of the intact

oligosaccharide with ESI-MS and tandem MS (MSn) of the

exhaustively digested oligosaccharide through a software applica-

tion called the heparin oligosaccharide sequencing tool (HOST) to

generate all possible sequences [24]. These sequences are then

fragmented theoretically by the program, and product ions are

compared with experimental fragments from MSn of the

oligosaccharide to determine the best match.

Despite the continuing development of these analytical

methods, the reality of the situation is that only short oligosac-

charides can be fully sequenced, and the prospect of unmasking

the structure of intact HS chains remains a formidable challenge.

The original success of the heparin-antithrombin binding model,

however, is becoming somewhat tempered by the recognition that

the presence of distinct protein-specific saccharide sequences is

more likely the exception than the rule [3,5,9,12]. Although

studies indicate that particular sulfated residues are required or

more preferred in certain situations [25], protein binding may

ultimately depend on the ability to properly position these residues

with respect to complementary regions on the protein surface.

While flexibility of the iduronic acid ring enhances local fit

between binding partners, on a larger scale, this feature has

minimal influence on the orientation of the chain [26]. Instead, the

overall flexibility of the chain is defined by the spacing of the

unmodified domains. Thus, variations in domain spacing and

overall chain flexibility are likely to have dramatic effects on the

potential of an HS chain to bind and modulate proteins [1,26,27].

The lack of an analytical capability to detect patterns of HS

domain organization is a direct offshoot of the inability to fully

sequence the chain, and the consequence of this deficiency has

severely limited the understanding of HS structure-function

relationships at a mechanistic level [28]. As a result, alternative

approaches have been sought in an attempt to reveal information

regarding the larger picture of domain organization. For example,

an end-referencing approach was used to describe the domain

structure of the first 36 disaccharides of an HS chain [29], and

more recently, a method of selective lyase degradation was utilized

to predict an average spacing of 16–18 disaccharides between

highly sulfated domains [30]. However, there remains no

generalized conceptual approach for exploring patterns of HS

domain organization. Solutions to this challenge will require new

and creative tools as alternative sources of information.

To address this need, a novel computational approach was

developed for predicting the patterns of HS domain organization.

Using experimental data from disaccharide analysis and selective

heparin lyase digestion of HS samples, a computational routine

was devised to generate populations of predicted HS chains that

can be evaluated for the presence of general and specific structural

properties. The generated chains are transformed into strings of

user-defined domains and examined for patterns of domain

organization. The model was tested by applying it to the analysis

of two different samples of HS chains isolated from rat pulmonary

fibroblast and epithelial cell cultures. The results show significant

differences in the overall domain organization of these two samples

as well as in the density of a specific structural motif proposed to be

required for the inhibition of the inflammatory protease,

neutrophil elastase. The findings herein indicate that this approach

may provide an innovative tool for exploring the structural

distinctions in various HS populations (i.e., from different tissues,

organs, disease states, or stages of development) that could yield

insight into the mechanisms of HS control of important biological

processes.

Materials and Methods

Nomenclature
Disaccharides were designated by four alphanumeric characters

called the disaccharide structural code [31]. For the relevant HS

disaccharides of this study, the first two characters represent the

hexuronic acid—a letter for the stereochemistry (D = unsaturat-

ed; G = glucuronic; I = iduronic) and a number for the location

of O-sulfation (0 = no sulfation; 2 = 2-O-sulfation), and the last two

characters represent the glucosamine—a letter for the N

substituent (H = free amine or N-unsubstituted; A = N-

acetylated; S = N-sulfated) and a number for the location of O-

sulfation (0 = no sulfation; 6 = 6-O-sulfation).

Materials
Heparin (porcine intestinal mucosa; 17–19 kDa), chondroitin-4-

sulfate, and 1,9-dimethylmethylene blue were from Sigma-Aldrich

(St. Louis, MO). Heparan sulfate (porcine intestinal mucosa; 8–

10 kDa) was obtained from Neoparin (Alameda, CA). Human

neutrophil elastase (human purulent sputum; 29.5 kDa) and

elastin (bovine neck ligament; particle size ,37 mm) were

purchased from Elastin Products Company (Owensville, MO).

Dulbecco’s phosphate-buffered saline (PBS) without calcium and

magnesium salts was ordered from Invitrogen (Carlsbad, CA).

Chemical Structure Analysis of HS Preparations
Purified HS preparations were isolated from rat pulmonary

fibroblasts [32] and epithelial cells [33] according to published

methods [34]. Lyophilized samples of HS chains were sent to the

Glycotechnology Core Resource at the University of California,

San Diego (La Jolla, CA), for a series of heparin lyase digestions

followed by HPLC profiling of the disaccharide products. All

digestions were performed at 37uC overnight, and the resulting

data are tabulated in Tables 1 and 2. The first set (Table 1) is the

total disaccharide composition of each sample after exhaustive

Computational Analysis of GAGs
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digestion with heparin lyases I, II, and III. The second set (Table 2)

represents an attempt to mimic a sequential-like digestion by

dividing each sample into three parts and digesting the first with

heparin lyase III, the second with heparin lyases I and III, and the

third with heparin lyases I, II, and III. The values in the table are

the cumulative percentage of each disaccharide released after each

digestion ‘‘step.’’

Neutrophil Elastase Inhibition
The ability of various GAG preparations to inhibit the activity

of human neutrophil elastase (HNE) was evaluated with an in vitro

elastin digestion assay. Inhibitor stock solutions in PBS were made

for two commercial products, heparin and heparan sulfate (85 mg/

mL), and for two HS preparations from rat pulmonary fibroblasts

and epithelial cells (85 mg GAG/mL; determined using the

dimethylmethylene blue assay with chondroitin-4-sulfate standards

[35]). A quantity (63 mL) of inhibitor stock or PBS was added with

vortexing to tubes containing 1 mL of elastin suspension (1.0 mg/

mL in PBS), and after 30 minutes at room temperature, a quantity

(10 mL) of HNE stock (12.9 mM in PBS) or PBS was added. The

resulting set of samples consisted of duplicates of elastin alone,

elastin with HNE, and elastin with HNE plus inhibitor at final

concentrations of 0.93 mg/mL elastin, 120 nM HNE, and

5.0 mg/mL inhibitor. The tubes were slowly rotated (6 rpm) for

4 hours at 37uC, and the contents were transferred to filter units

(Millipore Ultrafree-CL, 0.22 mm) for centrifugation at 3000 g for

4 minutes at 4uC. The filtrates (500 mL) were transferred to empty

tubes for determination of soluble elastin with the Fastin Elastin

assay kit (Biocolor, Carrickfergus, UK). An equal volume of an

elastin precipitating reagent was added to each tube with vortexing

and allowed to set for 10 minutes. The precipitated elastin was

packed by centrifugation (10,000 g, 10 min) and drained of liquid.

One milliliter of dye reagent containing TPPS (5,10,15,20-

tetraphenyl-21,23-porphine tetrasulfonate) was added to each

tube with vortexing. The tubes were covered with foil and placed

on an orbital mixer (150 rpm) for 90 minutes at room

temperature. The insoluble elastin-dye complex was collected by

centrifugation (10,000 g, 10 min), drained of liquid, and destained

with 250 mL of a dye dissociation reagent. The solutions of

recovered dye were transferred to a 96-well microplate and read at

513 nm on a SpectraMax 190 microplate reader (Molecular

Devices, Sunnyvale, CA). Absorbances of duplicate samples were

averaged and corrected by subtracting the elastin control, and

elastin content was determined from a standard curve (0–70 mg)

based on a-elastin supplied with the kit. The quantity of elastin in

the samples was used to calculate values of relative rate (elastin

digestion with inhibitor/elastin digestion without inhibitor) for

comparing the effect of each GAG preparation on HNE activity.

Estimation of Hexuronic Acid Epimeric Fractions
The glucuronic acid and iduronic acid components of the

unsaturated disaccharides from heparin lyase digestion are listed in

Table 3. These epimeric fractions were estimated from published

data on the degradation of bovine lung HS [36]. In this reference,

disaccharides were measured after three reactions: hydrazinolysis

followed by nitrous acid deaminative cleavage at pH 1.5 and 3.9

(reaction 1), nitrous acid deaminative cleavage at pH 1.5 (reaction

2), and exhaustive digestion with a mixture of heparin lyases

(reaction 3). In reaction 1, the anhydromannose disaccharides

provided glucuronic acid/iduronic acid fractions (XG, XI) for all N-

unsubstituted (H), N-acetylated (A), and N-sulfated (S) disaccha-

rides of a particular O-sulfation in the chain. The anhydroman-

nose disaccharides from reaction 2 gave glucuronic acid/iduronic

acid fractions (xGS, xIS) for N-sulfated disaccharides of a particular

O-sulfation in N-sulfated blocks, and this was assumed represen-

tative of the overall chain. The unsaturated disaccharides from

reaction 3 were a source of fractions for N-unsubstituted, N-

acetylated, and N-sulfated disaccharides (YH, YA, YS) of a particular

O-sulfation in the chain. With this information, it was possible to

write a mass balance on disaccharides with the same degree of O-

sulfation for either glucuronic acid

XG~xGHYHzxGAYAzxGSYS ð1Þ

or iduronic acid

XI~xIHYHzxIAYAzxISYS, ð2Þ

where xGH and xIH are fractions of glucuronic acid and iduronic

acid, respectively, for N-unsubstituted disaccharides of a particular

Table 1. Total disaccharide composition of HS samples after
exhaustive digestion.

HS sample D0H0 D0A0 D0S0 D0A6 D0S6 D2S0 D2S6

Fibroblast 0.8 61.3 18.6 12.0 1.8 3.8 1.7

Epithelial 1.0 59.8 19.2 7.5 1.7 8.2 2.4

Each HS sample was exhaustively digested with heparin lyases I, II, and III at
37uC overnight. Values represent the mole percentage of total disaccharides.
doi:10.1371/journal.pone.0009389.t001

Table 2. Cumulative percentage of disaccharides released
after sequential-like digestions of HS samples.

HS sample D0H0 D0A0 D0S0 D0A6 D0S6 D2S0 D2S6

Fibroblast

Heparin lyase III 87.6 79.8 81.4 34.7 31.4 0.0 0.0

Heparin lyases I, III 100.0 80.4 100.0 50.7 100.0 55.3 100.0

Heparin lyases I, II, III 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Epithelial

Heparin lyase III 79.8 66.2 73.2 42.2 20.9 0.0 0.0

Heparin lyases I, III 100.0 71.8 85.6 56.0 86.0 43.3 66.3

Heparin lyases I, II, III 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Each HS sample was divided into three parts. The first was digested with
heparin lyase III, the second with heparin lyases I and III, and the third with
heparin lyases I, II, and III. Digestions were performed at 37uC overnight. Values
represent the cumulative mole percentage of each disaccharide released after
each sequential-like digestion step.
doi:10.1371/journal.pone.0009389.t002

Table 3. Estimated fractions of glucuronic acid and iduronic
acid in unsaturated HS disaccharides.

Hexuronic acid D0H0 D0A0 D0S0 D0A6 D0S6 D2S0 D2S6

Glucuronic 1.00 0.99 0.83 0.54 0.61 0.01 0.00

Iduronic 0.00 0.01 0.17 0.46 0.39 0.99 1.00

Epimeric fractions were estimated from experimental data on bovine lung HS
[36] as described in Materials and Methods. Values represent the mole fraction
of each disaccharide that is glucuronic acid or iduronic acid.
doi:10.1371/journal.pone.0009389.t003
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O-sulfation, and xGA and xIA are fractions of glucuronic acid and

iduronic acid, respectively, for N-acetylated disaccharides of a

particular O-sulfation.

In the study on bovine lung HS [36], N-unsubstituted

glucosamine was not detected in the analysis of the unsaturated

disaccharides from reaction 3. This information (YH = 0) was used

with the other data in the report to solve Equations 1 and 2 for the

glucuronic acid/iduronic acid components of disaccharide groups

containing N-acetylated glucosamine (D0A0 and D0A6). For

D0A0, a mass balance was written on all non-O-sulfated

disaccharides, and for D0A6, a mass balance was written on all

6-O-sulfated disaccharides. The determination of the glucuronic

acid/iduronic acid components for disaccharide groups with N-

sulfated glucosamine (D0S0, D0S6, D2S0, and D2S6) was

straightforward, using the reported data from reaction 2 [36].

The remaining disaccharide group containing N-unsubstituted

glucosamine (D0H0) was assumed to be all glucuronic acid.

Heparin Lyase Specificities
The 12612 cleavage matrices for heparin lyases I and III are

shown in Figure 1. For each matrix, the rows (i) and columns (j) are

assigned to the 12 disaccharides identified by Table 3, and each

cell (i, j) represents a linkage between disaccharides i and j, with j

being the downstream disaccharide (closer to the tetrasaccharide-

protein linker). Some linkages (crosshatched cells) are prohibited

by the rules of biosynthesis (rows 1, 2, 4, 7, and 9 in the right half

of the matrix), and other linkages (turquoise cells) are outside the

rules of lyase specificity. The entry in each cell indicates the

probability of cleavage by the lyase of interest. Wherever possible,

these values were adapted from reported data on the fractional

conversion of substrates containing the linkages [37,38]. Values of

complete conversion were adjusted to 0.9 to allow for some

randomness in the simulated cleavage process. When conflicting

information was found in the literature, the most inclusive rules for

lyase specificity were selected [30,39–42].

The cleavage matrix for heparin lyase I in Figure 1A reflects a

specificity for iduronic acid in the downstream disaccharide

[37,40]. Although evidence suggests that cleavage also occurs with

G2S6 on the downstream side [42], this disaccharide was absent

from the HS composition (Table 3). Accordingly, all entries in the

left half of the matrix (columns 1–6) were set to zero. Five linkages

(S0-I2, S6-I0A6, S6-I0S6, S6-I2S0, and S6-I2S6) were assigned

cleavage probabilities from 0.2 to 0.9 based on reported

degradation of defined oligosaccharides [38]. Other linkages

containing unsulfated iduronic acid (S0-I0, S6-I0A0, and S6-

I0S0) were given a nominal probability of 0.1.

Figure 1B shows the cleavage matrix for heparin lyase III. The

specificity of this lyase requires a downstream disaccharide

containing either unsulfated glucuronic acid (primary site) or

unsulfated iduronic acid (secondary site) [37,38,42]. As a result of

this requirement, the entries in columns 6, 11, and 12 of the

cleavage matrix were set to zero. Cleavage probabilities for other

cells were established from experimental degradation results on

defined oligosaccharides containing four linkages (S0-G0, A6-G0,

S6-G0, and S6-I0) [38]. These probabilities ranged in value from

0.5 to 0.9. For several linkages (H0-G0, A0-G0, and S0-I0),

comparable data were not found, and probabilities were estimated

at values from this range.

The cleavage matrix for heparin lyase II is not shown because

all the entries were adjusted to a value of 1. As the least

discriminating of the lyases [37], this enzyme was restricted to the

last position in the simulated digestion sequence. Consequently,

the lyase was assumed to finish the degradation of the HS chain

and was allowed to break every intact disaccharide-disaccharide

bond. This assumption seemed reasonable since exhaustive

digestion with all three lyases is a common preparatory procedure

for determining the disaccharide composition of HS oligosaccha-

rides. However, if heparin lyase II were applied at an earlier step

in the sequential digestion, the cleavage matrix would require

Figure 1. Heparin lyase cleavage matrices for HS disaccharide-
disaccharide linkages. (A) Estimated cleavage probabilities for
heparin lyase I. (B) Estimated cleavage probabilities for heparin lyase
III. Each cell in (A) and (B) represents a disaccharide-disaccharide
linkage with an indicated probability of cleavage by the specific heparin
lyase. Turquoise cell = linkage not cleaved by lyase. Crosshatched
cell = linkage prohibited by rules of biosynthesis.
doi:10.1371/journal.pone.0009389.g001
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some modification to more accurately reflect the action of this

lyase.

Computational Analysis of HS
The computational approach for predicting patterns of HS

domain organization was driven by experimental inputs and user-

defined rules of HS biosynthesis and lyase breakdown. In its

present form, the model uses the total disaccharide composition

determined after complete lyase digestion and the relative amounts

of various disaccharides released after individual or sequential

lyase digestion in conjunction with average chain length

measurements to build populations of theoretical HS chains to

represent the original HS sample. These HS chain populations are

then evaluated for structural patterns of domain organization. The

model performs these operations through a modular format

consisting of input/output sections and three routines called

chainmaker, chainbreaker, and chainsorter.

Input. The input section of the computational model requires

information on (a) the number of disaccharides in the chain, N, (b)

the number of chains, M, (c) the total disaccharide composition

with glucuronic acid/iduronic acid specifications, (d) the order of

heparin lyase digestion, (e) the breakdown constraints for matching

simulated and real results of disaccharide release after each

digestion step, and (f) the specific disaccharides that define each

domain.

Chainmaker routine. The chainmaker routine (Figure 2A)

creates an HS chain of specified length and composition with

disaccharides situated in positions that satisfy known rules of

biosynthesis. In step 1 of the routine, a base chain is generated

containing N units of unmodified disaccharide (G0A0) (see

definition of nomenclature in Materials and Methods). The

actual disaccharides in the chain are calculated from the total

disaccharide composition, and these disaccharides (except for

G0A0) are placed into a selection pool. A disaccharide is randomly

selected from the pool, and a position on the chain is randomly

chosen (step 2). If G0A0 exists in the selected chain position and N-

unsubstituted glucosamine is not on the upstream side (farther

from the tetrasaccharide-protein linkage), the selected disaccharide

replaces G0A0. If N-unsubstituted glucosamine is on the upstream

side of the position, the selected disaccharide must contain

glucuronic acid in order to replace G0A0. If any of these

conditions is not satisfied, another position is randomly chosen for

the disaccharide until a successful replacement occurs.

Once the selected disaccharide is placed on the chain, it is

subjected to another set of positional constraints (step 3). These

constraints are adapted from reported observations on HS

biosynthesis [8,36,37,43] and consist of the following: (a) a

disaccharide with either iduronic acid or 2-O-sulfation must have

N-sulfated (66S) glucosamine on the upstream side, (b) a

disaccharide with 6-O-sulfation must have at least one adjacent

disaccharide with N-sulfated (66S) glucosamine, and (c) a disaccha-

ride with N-unsubstituted glucosamine must have glucuronic acid on

the downstream side. If the positional constraints are met, the

disaccharide remains on the chain (step 4); otherwise, the

disaccharide returns to the pool, G0A0 refills the vacated spot, and

the selection process starts over. Eventually, all disaccharides from

the pool are placed on the chain, and the resulting chain has a

disaccharide composition compatible with the original input (step 5).

Chainbreaker routine. The chainbreaker routine (Figure 2B)

determines whether a newly created chain (step 6) is acceptable by

subjecting the chain to simulated digestions and comparing the

released disaccharides with breakdown constraints. The chain is

exposed to sequential digestion by heparin lyases in a specified order

(III, I, II or I, III, II). In the first digestion step (step 7), the linkage

between the first and second disaccharides on the chain is assigned a

probability of cleavage based on the specificity of the particular lyase

[30,37–42] (Figure 1 and Materials and Methods). A random

number is generated, and if it is less than or equal to the assigned

probability, the bond is broken. This process is repeated along the

chain, assessing each disaccharide-disaccharide linkage, until the

end is reached. The chain is re-examined for all broken bonds (step

8), and if cleavage occurs on both sides of a disaccharide, that

disaccharide is considered ‘‘released.’’ The second digestion step is

Figure 2. Schematic diagrams of chainmaker and chainbreaker
routines for generating HS chains. (A) Chainmaker routine: (1)
creates a base chain of N units of G0A0; (2) selects a disaccharide
randomly from a pool based on experimental composition and places
the disaccharide at a random position on the chain; (3) checks the
positional constraints for disaccharide placement; (4) repeats steps 2–3
until placement occurs; (5) repeats steps 2–4 until all disaccharides from
the pool are placed on the chain. The completed chain moves to the
chainbreaker routine. (B) Chainbreaker routine: (6) receives the
completed chain from the chainmaker routine; (7) initiates the first
digestion (heparin lyase I or III) by comparing a random probability with
the cleavage probability of each bond; (8) determines the broken bonds
and releases disaccharides with cleavage on both sides; (9) repeats
steps 7–8 for the second digestion; (10) cleaves all remaining bonds and
releases all remaining disaccharides in the final digestion (heparin lyase
II); (11) compares the released disaccharides from the first two
digestions with the experimental breakdown constraints. If the
constraints are satisfied, the successful chain moves to storage.
doi:10.1371/journal.pone.0009389.g002
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then activated (step 9), and the chain is reprocessed with a new set of

cleavage probabilities appropriate for the lyase of the step. Finally,

in the last digestion step (step 10), all bonds remaining in the chain

are broken.

The disaccharides released in each of the first two digestion

steps are compared with the experimental products of sequential

digestion, and if they fall within the allowable limits (breakdown

constraints), the chain is designated as a successful chain (step 11).

If any constraint is not met, the chain is discarded, and the

program returns to the chainmaker routine to generate a new

chain. The program cycles between chainmaker and chainbreaker

routines until M successful chains are generated.

Chainsorter routine. The chainsorter routine transforms

each successful chain into a string of user-defined domains. Each

chain is processed disaccharide by disaccharide, classifying the

disaccharide into the appropriate domain and keeping track of the

length and order of the contiguous stretches of each domain along

the chain.

Output. The output section of the model generates files that

contain the following: (a) a list of successful chains in the form of

sequences of numbers, each number representing a particular

disaccharide, (b) a list for each domain giving a sequence of

numbers for each chain, where each number indicates the domain

length in disaccharides sequentially along the chain, and (c) a

summary containing the successful chains, the disaccharide

breakdown of these chains after specific lyase digestion, and the

average domain lengths within these chains.

Computer Program
A computer program of the model was written in Fortran 95

using Absoft Pro Fortran software (Absoft, Rochester Hills, MI)

and supported by the IMSL Fortran Library (Visual Numerics,

Houston, TX). Pseudorandom uniform numbers were generated

using a generalized feedback shift register to avoid cycling issues.

This generator was essential for building unique chains; for

example, approximately one million chains were required in order

to produce 100 successful chains (no duplicates) of 250

disaccharides for fibroblast HS. The program was compiled and

executed on a personal computer operating under Windows XP

(Microsoft, Redmond, WA) with an Intel Core 2 Quad processor

(Intel, Santa Clara, CA) at 2.40 GHz (3.50 GB of RAM).

Execution times varied from less than one minute to more than

two days, depending on the values for chain length, chain number,

and breakdown constraints.

Domain Analysis
The average domain size in disaccharides for chains of equal

length was calculated by determining the average domain size for

each chain and then averaging these values over all the chains in

the set. The 95% confidence interval for the average domain size

was estimated from the standard error of the mean and the

Student’s t-distribution. The characteristics of the plateau region

(equilibrium domain size; critical length) were determined by a

one-way analysis of variance (alpha = 0.05) of the points in each

plot. If there was a statistical difference (p,0.001), a pairwise

multiple comparison using the Holm-Sidak method (overall

significance level = 0.05) was performed. The points that showed

no statistical differences among themselves were averaged to

obtain the equilibrium domain size, and the shortest chain length

in the group was designated as the critical length for stabilization

of the domain. To determine if there were statistical differences

(p,0.001) between the domains of the two sets of HS chains, a t-

test was performed (alpha = 0.05) on the less sulfated domains and

on the highly sulfated domains.

Fourier Analysis
Fourier analysis was completed on a set of M chains of length N

disaccharides, where N is a power of 2. The disaccharide sequence

of each chain was converted into a binary sequence representing

the domains of interest [44,45]. A fast Fourier transform routine in

Microsoft Office Excel 2003 was applied to each binary sequence

to yield a set of N complex coefficients

cmk~
1

N

XN{1

n~0

xmne{2pink=N , k~ 0, . . . ,N{1, ð3Þ

where k is the wavenumber, k/N is the spatial frequency, and xmn is

a component in the binary sequence m (m = 1, …, M) at position n

(n = 0, …, N-1). For frequencies above the base frequency (k = 0),

the power spectrum for each sequence was calculated as the square

of the magnitude of the Fourier coefficients

Smk~ cmkj j2: ð4Þ

An average power spectrum for a set of M spectra [46] was

defined as a frequency by frequency average over all spectra

�SSk~
1

M

XM

m~1

Smk: ð5Þ

For each HS sample, 100 chains were generated having a length

equal to the smallest power of 2 above the critical length. Each

chain was converted into a binary sequence by substituting 1 for

disaccharides in the highly sulfated domain and 0 for disaccharides

in the less sulfated domain. The Fourier coefficients (Equation 3)

and the resulting power spectrum (Equation 4) were calculated for

each binary sequence, and the power spectra were averaged

(Equation 5), starting with 10 chains and increasing in 10-chain

increments to 100 chains, to determine a set of average power

spectra for each HS sample. Each average power spectrum was

normalized with respect to the highest response and plotted to

show only the first half of the symmetric trace (k = 1, …, N/2). A

prominent peak at a wavenumber of k signifies a periodic structure

in the chain consisting of N/k disaccharides. The power at k = 0

contains no information on position and was disregarded for this

analysis.

Results

Computational Analysis of HS Preparations
HS chains from rat pulmonary fibroblasts and epithelial cells

[34] were subjected to chemical compositional analysis, and the

data were used to generate predicted chain structures using the

computational model. The experimental data consisted of the total

disaccharide composition after digestion with heparin lyases I, II,

and III (Table 1) and the percentage of each disaccharide released

after sequential-like digestions with heparin lyases III, I, and II

(Table 2). Epimeric fractions (Table 3) were estimated from

published data [36] and used to proportion the unsaturated

disaccharides in Table 1 into glucuronic acid and iduronic acid

components. Three groups (D0A0, D0A6, and D2S0) in Table 2

were chosen for comparison with the simulated disaccharide

release, and practical tolerances for the breakdown constraints

were set at D0A0 62%–4%, D0A6 620%, and D2S0 60% for

each of the first two digestion steps. The resultant output from the

Computational Analysis of GAGs
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model was a series of chains of a given length and disaccharide

sequence that were consistent with the experimental data (Tables 1

and 2). The chains were analyzed in several ways to predict

general patterns of domain organization as well as the distribution

and density of specific structural motifs within the two HS

populations.

Predictions of General Patterns
HS structure has been described as being comprised of

alternating domains of highly sulfated regions (S-domains)

separated by less sulfated regions (NA-domains) which are

generally connected by regions containing intermediate levels of

sulfation (transition domains). However, HS domains can be

arbitrarily specified to include any defined structures of particular

disaccharides. Thus, as a first approximation for this analysis,

domains were defined simply as being one of two regions—a

highly sulfated domain containing disaccharides with 2-O-sulfated

iduronic acid (Figure 3A) and a less sulfated domain containing all

other disaccharides. Consequently, the less sulfated domain

contains not only unsulfated disaccharides but also some sulfated

disaccharides (e.g., I0S0, I0S6, and G0A6). In terms of commonly

used nomenclature, the highly sulfated domain is most similar to

the S-domain, and the less sulfated domain encompasses both the

NA-domain and the transition regions [30].

Examples of 250-disaccharide chains with alternating regions of

highly sulfated domains (yellow blocks) and less sulfated domains

(blue blocks) are illustrated for both fibroblast and epithelial HS

chains (Figure 3B). The less sulfated domains exhibited a wide

range of sizes (1–113 disaccharides) while the highly sulfated

domains were more limited in size (1–4 disaccharides). Compar-

ison of the size distributions of the less sulfated domains (Figure 3C)

for 100 chains of each sample shows a larger fraction of shorter

domains (below 10 disaccharides) for epithelial HS chains and a

larger fraction of longer domains (above 20 disaccharides) for

fibroblast HS chains. For a more in-depth analysis of the overall

patterns of domain organization that characterize these chains,

two analytical methods were applied to the output. The first

method was a relatively straightforward technique using average

domain sizes, and the second method was a more sophisticated

technique of pattern recognition using Fourier analysis.

Average domain sizes. The simple determination of average

domain sizes requires a sufficient number of chains to achieve a

reasonable level of consistency in the predicted results. A series of

runs was completed in which 5 to 400 chains of various lengths

were generated for both fibroblast and epithelial samples. The

results for the shortest chains (50 disaccharides) and the longest

chains (250 disaccharides) are shown in Figure 4A, where the

uncertainty in the average size of the less sulfated domain is plotted

as a function of the number of generated chains. Although the

uncertainty was as high as 18% for 10 or less chains, the

generation of at least 100 chains reduced the uncertainty to less

than 5%. Further increases in the number of chains decreased the

uncertainty even more, but this gain was offset by growing

computational time. Based on these results, the generation of 100

chains guaranteed a reasonable run-to-run consistency, and all

subsequent executions were carried out with this number of

chains.

Analysis of the average size of the less sulfated domain as a

function of chain length (Figures 4B and 4C) revealed the same

overall trend for both samples—domain size increased with

increasing chain length until a critical length was reached, after

which the domain size remained relatively constant. For fibroblast

HS chains (Figure 4B), this critical chain length was 250

disaccharides, and the equilibrium domain size was 20.160.1

Figure 3. General patterns of domain organization predicted
for fibroblast HS and epithelial HS. (A) Chemical structure of the
disaccharide containing 2-O-sulfated iduronic acid that defines the
highly sulfated domain. All other disaccharides, including the remaining
sulfated disaccharides, belong to the less sulfated domain. (B)
Schematic diagram of HS chains showing domain organization. Yellow
blocks are highly sulfated domains; blue blocks are less sulfated
domains. Chain lengths are 250 disaccharides. Minimum block length is
1 disaccharide. (C) Size distribution of less sulfated domains in HS
chains. N = 250 disaccharides and M = 100 chains. Although the
distribution is shown for less sulfated domains up to 80 disaccharides
in length, a few longer domains are present in both sets of HS chains.
For epithelial HS, less sulfated domains extend to 87 disaccharides; for
fibroblast HS, less sulfated domains extend to 113 disaccharides. Dashed
lines indicate average sizes: E = 11.460.2 disaccharides (average 695%
confidence limits) for epithelial chains and F = 20.060.4 disaccharides for
fibroblast chains.
doi:10.1371/journal.pone.0009389.g003
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disaccharides (average 695% confidence limits). For epithelial HS

chains (Figure 4C), the critical chain length occurred at a much

shorter 100 disaccharides, and the equilibrium domain was much

smaller at 11.260.2 disaccharides. In contrast, the size of the

highly sulfated domain remained relatively stable regardless of

chain length. The equilibrium size was 1.2260.02 and 1.3860.02

disaccharides for fibroblast and epithelial HS chains, respectively

(Figures 4B and 4C). The equilibrium sizes of both the less sulfated

domains and the highly sulfated domains were significantly

different (p,0.001) between the two HS samples. A comparison

of the resulting patterns of these domains in a fibroblast HS chain

and an epithelial HS chain above the critical length reveals that

the epithelial HS chain has a greater frequency of highly sulfated

domains separated by shorter segments of less sulfated domains

(Figure 4D).

Fourier analysis. Because discrete Fourier transform

analysis has been successfully used to detect periodical properties

in DNA and protein sequences [45,46], this technique was

examined as an alternative method for discerning general patterns

of domain organization in HS chains. For each HS sample, 100

chains were generated, and the average Fourier power spectrum

was calculated for a variable number of chains, starting at 10 and

increasing by increments to 100. A few examples of the resulting

power spectra for each group of HS chains are depicted in

Figure 5.

The average power spectra for fibroblast HS chains of 256

disaccharides consistently showed a dominant peak at a wave-

number of k = 12 or 13 (Figures 5A, 5C, and 5E). This peak was

visible in all the average spectra from as few as 10 chains to as

many as 100 chains. The peak wavenumbers indicate a periodic

component (N/k) with a length of 20–21 disaccharides. This size is

in good agreement with the equilibrium domain sizes (Figure 4B),

where the length of one highly sulfated domain followed by one

less sulfated domain is 21 disaccharides.

The patterns of the average power spectra for epithelial HS

chains of 128 disaccharides were more complex to interpret

(Figures 5B, 5D, and 5F). The average spectra showed two peaks

at k = 8 and 12 that were predominant in the majority of the

spectra. These wavenumbers represent periodicities of 16 and 11

disaccharides, suggesting a mixture of two patterns. Remarkably,

the average of these two numbers compares favorably with the

periodic spacing of 13 disaccharides predicted from the equilib-

rium domain sizes (Figure 4C).

Predictions of Specific Motifs
Some activities of HS are likely related to the general

organization of the chains, while others are dependent on the

presence of specific local structural motifs. As an extreme example,

the ability of heparin to bind to antithrombin III is dependent on

the presence of a rare pentasaccharide structure [10], whereas

most other protein interactions seem to involve less stringent

criteria [3,5,9,12]. The ability of the computational model to

predict the arrangement of particular structural motifs was

evaluated by analyzing the HS chains for the presence of

structures associated with elastase inhibition.

Heparin is a potent inhibitor of neutrophil elastase [47–50]. In

particular, the inhibition of elastase-mediated solubilization of

elastin has been shown to depend on both the presence of sulfated

disaccharides and the length of the chain [48]. The removal of 2-

O-sulfate from the hexuronic acid residues in heparin reduced

inhibitory activity by 20%, while the removal of 6-O-sulfate or N-

sulfate from the glucosamine residues resulted in approximately

50% and 70% loss of inhibitory activity, respectively [48].

Examination of the molecular structure of heparin [26] revealed

Figure 4. Average domain sizes predicted for fibroblast HS and
epithelial HS chains. (A) Uncertainty in average domain size of less
sulfated domains as a function of chain number. N = 50 and 250
disaccharides; M = 5–400 chains. % Uncertainty = [(695% confidence
limits)/(average domain size)]6100. (B) Average domain size as a function of
chain length for fibroblast HS. (C) Average domain size as a function of chain
length for epithelial HS. N = 25–450 disaccharides and M = 100 chains for (B)
and (C). Error bars show 95% confidence interval. (D) Schematic diagram of
chains showing predicted domain patterns. Yellow blocks are highly sulfated
domains; blue blocks are less sulfated domains. Each chain is above the
critical length, and domain sizes are equilibrium values. For fibroblast HS, less
sulfated domain = 20.160.1 disaccharides (average 695% confidence
limits) and highly sulfated domain = 1.2260.02 disaccharides. For epithelial
HS, less sulfated domain = 11.260.2 disaccharides and highly sulfated
domain = 1.3860.02 disaccharides.
doi:10.1371/journal.pone.0009389.g004
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Figure 5. Examples of average Fourier power spectra for HS chains. Average power spectrum for fibroblast HS based on (A) 20 chains, (C) 40
chains, and (E) 60 chains. N = 256 disaccharides. Average power spectrum for epithelial HS based on (B) 20 chains, (D) 40 chains, and (F) 60 chains.
N = 128 disaccharides. Each spectrum is normalized with respect to the highest response and is shown for the first half of the symmetric trace (k = 1,
…, N/2).
doi:10.1371/journal.pone.0009389.g005
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that these three sulfate groups form a cluster that alternates from

side-to-side along the length of the chain. The sulfate cluster is

composed of two sequential disaccharides on the chain—a

disaccharide with 2-O- and 6-O-sulfation followed by an upstream

disaccharide with N-sulfation. Molecular-docking simulations

suggested that these sulfate clusters bind to positively charged,

clamp-like regions on elastase that span the active site [48].

According to this bridging model, appropriately sized heparin

chains would tend to block the active site and cause inhibition,

whereas shorter chains would be unable to span the site. Longer

chains would provide increased stability in blocking the active site

and might eventually encourage translation of the elastase

molecule along the chain, thus contributing to an increased

inhibitory response with increased chain length. This proposed

mechanism was supported by experimental results with heparin

oligosaccharides. No significant effect on elastolysis was detected

until the chain reached a length of about 6 disaccharides (16%

inhibition), and this effect increased by more than three times

(51% inhibition) with the addition of one disaccharide to the

chain. Although longer oligosaccharides (greater than 7 disaccha-

rides) were not tested, inhibitory activity leveled off at about 92%–

95% with heparin preparations having average chain lengths of

24–30 disaccharides [48].

On the basis of this information, search criteria were specified

for elastase inhibitory motifs in HS chains. A pattern was defined

as a sulfate cluster (cluster domain) containing a pair of

disaccharides, with I2S6 as the downstream disaccharide and N-

sulfated disaccharide as the upstream disaccharide (Figure 6A),

separated by 2–20 disaccharides (connector domain) from the next

sulfate cluster. Cluster/connector/cluster motifs having connector

domains larger or smaller than this range were considered

ineffective for elastase inhibition. Even though there was no

experimental evidence in support of this size constraint for

effective elastase inhibitory motifs in HS chains, the existence of

limits seemed reasonable based on structural considerations. For

example, a connector domain of less than 2 disaccharides would

create a cluster/connector/cluster length of less than 6 disaccha-

rides. A chain section with this specific motif would have difficulty

in physically spanning the active site of elastase as suggested by the

bridging model for heparin inhibition [48]. Longer connector

domains would allow this bridging to take place with subsequent

disruption of elastase activity. However, at some point, unlike the

heparin chain, the connector domain would become too long,

leading to reduced effectiveness of the HS chain. The proposed

divergence from the trend observed with heparin oligosaccharides

was attributed to the alternating domain structure of the HS chain.

In contrast to the relatively rigid heparin chain, the HS chain

would have increased flexibility because of the less sulfated and

therefore less constrained connector domains [1,26,27]. For an HS

chain in the bridging formation, a flexible connector domain

would have less likelihood of remaining in close proximity to the

elastase surface. This situation would allow substrate access to the

active site, a condition that would become worse with increasing

size of the connector domain. In fact, a long connector domain

might even prevent the cluster domains from binding to the

requisite elastase regions for bridging the active site. The upper

limit of the effective connector domain was set to a relatively high

value of 20 disaccharides as a first step in the analysis. The

resulting cluster/connector/cluster motif of 24 disaccharides

agreed with the average chain size of an experimentally evaluated

heparin preparation that was an effective elastase inhibitor [48].

Sequences from the 250-disaccharide chains generated for

Figure 3B were searched for the distinctive cluster/connector/

cluster pattern of the elastase inhibitory motif. Examples of 10

chains from each HS sample are illustrated in Figure 6B, showing

cluster domains (yellow blocks), connector domains (blue blocks),

and connector domains that meet the size requirement of the

pattern (dark blue blocks). Comparison of the two sets of chains

clearly shows that epithelial HS contained more chains with the

elastase inhibitory motif and more instances of this motif per chain

than fibroblast HS. The statistics for 100 chains confirmed these

findings, indicating that 89% of epithelial chains and 54% of

fibroblast chains had the motif, and within those selected chains,

58% of epithelial chains and 24% of fibroblast chains had more

than one occurrence of the motif. Figure 6C shows the size

distribution of connector domains in the 100 chains generated for

each HS sample. Although the plots are shown for connector

domains up to 100 disaccharides in length, the actual distributions

extend past this cut-off for both sets of chains. The average

connector domain size (average 695% confidence limits) was

3663 disaccharides for epithelial HS and 5265 disaccharides for

fibroblast HS. The crosshatched bars represent the connector

domains that fit the requirements for the elastase inhibitory motif.

They indicate that epithelial HS had more than twice as many of

these motifs as fibroblast HS. This same trend was observed in the

subset of domains with connector lengths of 2–10 disaccharides.

Although the original limits on the connector domain were

generously set at 2–20 disaccharides, the lower end (2–10

disaccharides) is more likely to be the functional range for

inhibition based on elastase structural considerations.

Elastase Inhibition by HS Preparations
Based on the relative density of the elastase inhibitory motif, the

model results predict that epithelial HS would be a more potent

inhibitor of elastase than fibroblast HS. This prediction was tested

by measuring elastase activity in the presence of various GAG

preparations consisting of commercial heparin and heparan sulfate

and HS preparations derived from rat pulmonary fibroblasts and

epithelial cells. The results from the experiments are presented in

Figure 6D in terms of the relative rate of reaction (elastin digestion

with inhibitor/elastin digestion without inhibitor). As expected,

heparin was a potent inhibitor of elastolysis (92% inhibition) while

heparan sulfate was less active (22% inhibition). Interestingly, the

HS preparations from the pulmonary cells showed differences

consistent with the model predictions. Whereas the HS prepara-

tion from the fibroblasts reduced elastase activity by only 17%, the

epithelial HS preparation was significantly more effective at 49%

inhibition.

Discussion

Glycans are a diverse group of carbohydrates that play an intricate

role in fundamental physiological processes through their modulation

of protein activity and their ability to fine-tune biological responses

[4]. Sulfated glycosaminoglycans represent a group of linear sugars

that are incorporated as proteoglycans at the surfaces of cells and in

the extracellular matrix. GAGs positioned at the cell-extracellular

matrix interface have a unique opportunity to interact with a wide

spectrum of proteins, including growth factors, cytokines, chemo-

kines, morphogens, proteases, antiproteases, cell adhesion molecules,

and extracellular matrix components [1,8]. The resulting GAG-

protein interactions provide a mechanism by which GAGs exert their

control over critical biological processes. However, unlike the binary

on/off concept generally applied to the understanding of protein

activity regulation (e.g., receptor binding and activation), GAGs

exhibit a gradation of control through the diverse nature of their

disaccharide sequence, chemical organization, and chain length. The

inherent heterogeneity of GAG chains is a product of nontemplate-
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based biosynthesis [5]. The ability to characterize this complexity

remains a challenge with the current analytical methods, and as a

consequence, progress in deciphering GAG structure-function

relationships has been hindered.

The most structurally complex member of the GAG family is

heparan sulfate, having an information-dense chain carrying

potentially 48 different disaccharide structures segregated into

chemical blocks of highly sulfated and largely unsulfated domains

[1,8,9]. Heparan sulfate is a major physiological player at the cell-

extracellular matrix interface where it has been shown to interact

with and mediate the activity of a number of proteins. Many HS-

protein interactions appear to be less dependent on the specific

disaccharide sequence and more dependent on the domain

organization of the HS chain [3,5,9,12]. Because the analytical

capability to detect domain organization is currently limited, new

methods that can provide insight into HS chain organization will

be extremely useful to researchers in the field.

Several early attempts with mathematical modeling [51] and

computer simulation [52–55] were focused on the structure of

heparin. These methods were used in conjunction with cleavage

experiments to test alternative hypotheses concerning the action

pattern of heparin lyase I and the arrangement of specific

oligosaccharides within the heparin chain. Although the method-

ology was later applied to hyaluronic acid and the action of

hyaluronate lyase [56], the extension of these techniques to the

more complex structure of HS was not implemented.

The computational approach described in this study offers a

unique way to probe the organizational structure of HS chains.

Using minimal experimental data from disaccharide analysis and

selective heparin lyase digestion, the computational routines can

generate chains according to rules of HS biosynthesis and lyase

specificity and then transform them into strings of user-defined

domains for pattern analysis. As demonstrated with HS chain

populations from two different cell culture sources, the model has

the ability to predict significant differences in overall domain

organization properties as well as in the density and distribution of

specific functional motifs. HS activity measurements revealed that

Figure 6. Specific motif for inhibition of elastolysis predicted
for fibroblast HS and epithelial HS. (A) Chemical structure of the
disaccharide pair that defines the cluster domain. Disaccharides
excluded from the cluster domain belong to the connector domain.
(B) Schematic diagram of HS chains showing domain organization with
specific motif for inhibition of elastolysis. Yellow blocks are cluster
domains; blue blocks are connector domains; dark blue blocks are
connector domains that meet the size requirement for effective elastase
inhibition. Chain lengths are 250 disaccharides. Minimum block length
is 1 disaccharide. (C) Size distribution of connector domains in HS
chains. N = 250 disaccharides and M = 100 chains. Crosshatched bars
indicate lengths of connector domains (2–20 disaccharides) for effective
elastase inhibition. Although the distribution is shown for connector
domains up to 100 disaccharides in length, longer domains are present
in both sets of HS chains. For fibroblast HS, connector domains extend
to 226 disaccharides with an average size of 5265 disaccharides
(average 695% confidence limits). For epithelial HS, connector domains
extend to 184 disaccharides with an average size of 3663 disaccharides.
(D) Inhibition of elastolysis by GAG preparations. Relative rate = (elastin
digestion with inhibitor)/(elastin digestion without inhibitor). Bar height
equals the average of duplicate readings; error bar shows the
propagation-of-error estimate using standard errors. Control = no
inhibitor; Hep = commercial heparin (17–19 kDa); HS = commercial
heparan sulfate (8–10 kDa); Fibro HS = HS preparation from rat
pulmonary fibroblasts; Epi HS = HS preparation from rat pulmonary
epithelial cells. Reaction conditions: [Inhibitor] = 5.0 mg/mL; [HNE
(human neutrophil elastase)] = 120 nM; [Elastin] = 0.93 mg/mL; buffer
= Dulbecco’s phosphate-buffered saline without calcium and magne-
sium salts; temperature = 37uC; time = 4 hours; volume = 1.073 mL.
doi:10.1371/journal.pone.0009389.g006
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these structural differences are related to functional differences in

HS-protein interactions. Hence these tools can be used in

conjunction with experimental measurement to investigate the

relationship between proposed structural requirements and

functional activities in HS.

The existence of a causal relationship between cell-surface HS

structure and cell behavior is supported by various studies. HS

chains from different cell types have been reported to have

consistent structural variations that result in distinct biological

functions [57–59]. For example, experimental measurements of

HS chains purified from the surfaces of mouse mammary gland

epithelial cells and embryonic fibroblasts showed differences in

structure (chain length and disaccharide composition of highly

sulfated domains) as well as binding to type I collagen [58]. The

current investigation is consistent with these earlier studies and

provides additional evidence for cell type-specific differences in HS

structure that have direct functional consequences. In this case,

however, these differences include not only analytical measure-

ments of disaccharide compositions for the chain and lyase-specific

domains but also computer-predicted patterns of overall domain

structure and specific functional motifs. On both a large and small

scale, the differences in HS structure appear to contribute to the

ability of different cell types to appropriately respond to molecular

signals in their particular microenvironment.

For the pulmonary fibroblasts and epithelial cells used in this

study, the cellular microenvironments are quite different. The

epithelial cells form a tight barrier of cell-to-cell contacts in a layer

(epithelium) that lines the pulmonary airspace. There is minimum

extracellular matrix around the epithelial cells except at the basal

surface where they juxtapose a thin layer called the basal lamina.

By contrast, the fibroblasts exist in isolation from one another in a

generous layer of extracellular matrix and fibrous polymers that

forms the connective tissue support of the epithelium [60]. As a

result of these unique microenvironments, distinctly different

biological responses are required from the resident cells. Because

the epithelial cells are positioned at the forefront of the airway,

their major function is to defend the lung by actions that include

providing a barrier and clearance mechanism for environmental

agents, modulating the inflammatory response, and regulating

cellular activities in response to injury [61]. The fibroblasts,

however, embedded within the interior of the tissue, assiduously

maintain the integrity of the structure by producing the

components of the extracellular matrix (e.g., collagens, elastin,

fibronectin, and proteoglycans) and when required, migrate to

sites of injury to proliferate and produce large amounts of matrix

[60,62].

Considering the diverse biological functions of pulmonary

fibroblasts and epithelial cells, it is not surprising that a different

structural organization would be predicted for the cell-surface HS

chains of these two cell types. Since the epithelial cells are the first

line of defense against injury caused by excessive release of elastase

by neutrophils, they may have need for a more potent HS

structure for binding and inhibiting this protease as a means to

restrict its action to sites of injury or infection. Their HS structure

may be more condensed (higher frequency of highly sulfated

domains) because of the shorter range of operation among the

closely packed epithelial cells. On the other hand, the fibroblasts

exist as a sparse population in the extracellular matrix where

distances are considerable. An HS structure that is more spread

out (lower frequency of highly sulfated domains) may be more

practical for these longer range interactions. Since the extracellular

matrix also contains a convenient source of HS proteoglycans,

excessive elastase activity within the matrix may be more readily

addressed by extracellular HS chains, either as intact proteogly-

cans or as fragments released by injury. Consequently, the HS

chains on the surface of the fibroblasts may have less need to be as

effective in inhibiting elastase as their counterparts on the

epithelial cells.

The ability to read and interpret the patterns of HS chains will

have far-reaching implications for understanding the biological

function of these complex glycans. The analysis of these patterns

can be handled in many different ways, and as illustrated with the

computer-generated chains of this study, the results can reveal

varied aspects of the same chain depending on the chosen method.

If the emphasis is placed on the macro organization of the chain,

the calculation of the average domain size and the Fourier power

spectrum are reasonable techniques for characterizing the overall

domain pattern for a group of chains. However, the model

generates unique chains, and although the general pattern gives a

sense of the properties and potential activity of the population of

chains as a whole, there is no single chain pattern that exactly

matches the average chain pattern (compare Figures 3B and 4D).

The existence of individual chains with unique sequences provides

an opportunity to evaluate the relative density of rare patterns

within the population of chains or to search for distinct local

patterns within each chain. Thus, differences in the biological

activities of various HS chain populations, including HS isolated

from diseased and nondiseased tissues, can be correlated to

differences in either the overall domain organization or the

presence of specific structural motifs within the population.

Even though sequence analysis was not the impetus behind

developing this computational model, it appears that it may be a

powerful byproduct of the overall process. In fact, a system that

can integrate the computational model with the current analytical

sequencing technology may have the potential to actually

‘‘sequence’’ entire biologically active HS chains. The strategy

behind such a system would be to use a sequencing technique to

explicitly define the major oligosaccharides (ten or less sugars)

from the partial degradation of the chain by one or more schemes.

These fully sequenced chain fragments would then be input as a

set of constraints for the model. As each chain is generated by the

program, the simulated sequence would be searched for matches

with the real fragments. Chains would be ranked as a function of

the number of matches, and the top-scoring chain or chains would

represent the best solution for the sequence of the real chain.

Although future work will focus on refining the computational

model, there are two aspects of its basic design that should be

emphasized. On a practical level, the first and perhaps more

important factor is that the model does not require extraordinary

means to achieve results. The experimental data are fairly

straightforward to obtain by standard laboratory methods, and

the computer program is executable on a personal computer. The

second and less obvious factor is that the model has a modular

structure. This allows for great flexibility in modifying specific

parts of the model, such as the rules for chain position or lyase

digestion, or in adding new parts, such as the generation of chains

from a normal distribution of lengths. Moreover, because of this

modular structure, the model is rather broad in application and

can be tailored to other glycosaminoglycans or enzymes, such as

chondroitin sulfate and associated chondroitin lyases.

While basic information is sufficient for operation of the model,

it is apparent that the more complete these data are, the more

closely the predicted chains will represent the real chains. For

example, instead of using estimates of the glucuronic acid/

iduronic acid ratio from the literature, improved values can be

determined by comparing data from chemical and enzymatic

degradations of the actual sample [36]. As another example, if the

molecular weight distribution of the sample is obtained, an
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average chain length or a distribution of chain lengths can be

defined, replacing the generation of chains over an arbitrary range

of lengths with a more realistic representation of the sample [63].

An overriding issue for any simulation is how well the

predictions agree with the real system. Confidence in the predicted

results can only be established through model validation, and

future work will focus on addressing this critical element [64].

Although there is insufficient knowledge on the domain organi-

zation of HS chains for direct comparison, an indirect method can

be used to apply the model to experimental data from HPLC

profiling that identify both the disaccharide and oligosaccharide

products after selective heparin lyase digestion. The presence of

substantial disagreement may suggest refinements to the internal

rules for chain synthesis or enzyme degradation that will bring the

model predictions closer to reality. A high level of agreement

between the predicted results and the data will establish credibility

for the model.

The true value of this model rests on whether it answers the

question that prompted its development; namely, can knowing the

domain organization of HS chains increase understanding of HS

function. For example, activities of HS samples such as protein

binding, enzyme inhibition, and cell regulation can be measured

and related to domain structure. Toward this end, evaluation of

the elastase inhibitory potential of the HS samples used in this

study has indicated differences that might relate to altered domain

organization. These differences may also have physiological

implications regarding the particular role of these HS populations

in their cell type of origin. For instance, the ability of HS from lung

epithelial cells to inhibit elastase activity may contribute to the

normal control of tissue damage at sites of inflammation where

neutrophil elastase has been shown to be involved. As the model is

refined and applied in conjunction with additional functional

measurements with a wide range of HS samples, there are

reasonable expectations that new mechanisms for the activity of

HS and proteoglycans will be revealed.

The conceptual framework for an innovative computational

approach to predict patterns of domain organization within a

population of HS chains is presented. This model will give

investigators the ability to consider high-level chain organization

in understanding HS-protein interactions. The approach de-

scribed here will likely provide the basis for the development of a

new class of tools to probe for structure-function relationships in

glycosaminoglycans that may ultimately be used to design selective

drugs that target GAG-protein interactions associated with disease.
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