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Background. Theoretical work suggests that data from multiple nuclear loci provide better estimates of population genetic
parameters than do single loci, but just how many loci are needed and how much sequence is required from each has been
little explored. Methodology/Principle Findings. To investigate how much data is required to estimate the population
genetic parameter h (4Nem) accurately under ideal circumstances, we simulated datasets of DNA sequences under three values
of h per site (0.1, 0.01, 0.001), varying in both the total number of base pairs sequenced per individual and the number of
equal-length loci. From these datasets we estimated h using the maximum likelihood coalescent framework implemented in
the computer program MIGRATE. Our results corroborated the theoretical expectation that increasing the number of loci
impacted the accuracy of the estimate more than increasing the sequence length at single loci. However, when the value of h
was low (0.001), the per-locus sequence length was also important for estimating h accurately, something that has not been
emphasized in previous work. Conclusions/Significance. Accurate estimation of h required data from at least 25
independently evolving loci. Beyond this, there was little added benefit in terms of decreasing the squared coefficient of
variation of the coalescent estimates relative to the extra effort required to sample more loci.
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INTRODUCTION
Coalescent theory, placed in a maximum-likelihood framework,

allows researchers to explicitly test hypotheses concerning the

processes that shape patterns of genetic variation in natural

populations [1]. Catalyzed by automated sequencing technologies

as well as the availability of universal PCR primers (a direct benefit

of genome projects), population genetic studies of natural

populations have recently experienced a large-scale shift from

single-locus investigations of cytoplasmic markers (e.g. mitochon-

drial, chloroplast) to multi-locus studies of autosomal and sex-

linked loci. Although single-locus cytoplasmic gene trees are

expected to outperform nuclear gene trees in some instances [2,3],

the statistical confidence of the inferences drawn from such trees is

limited [4–6]. Consequently, the recombining histories of multiple

nuclear loci are being used increasingly in empirical estimates of

population genetic parameters [7–9].

It is well understood that coalescent estimates of population

genetic parameters (e.g. effective population size, recombination

rates) are often estimated with large errors when calculated from

single-locus datasets [10,11]. Simulation studies have demonstrat-

ed that the error rates associated with such parameter estimations

can be reduced by analyzing data from multiple independent loci

[12,13]. Statistically, adding additional loci corresponds to gaining

independent replicates of the underlying evolutionary processes

[14]. Additionally, in some situations, greater precision of a

population genetic parameter estimate can be achieved by sampl-

ing both shared polymorphisms and fixed differences between two

populations, which can only be observed by sampling loci that

have different genealogies [e.g. 13]. Multiple loci are also required

in some methods for estimating the effective population size of

ancestral populations [15,16].

With the development of analytical methods for multiple-locus

parameter estimation and the relative ease of collecting large

amounts of sequence data, researchers with limited resources are

concerned increasingly with how much data is required to estimate

the parameters of interest accurately [17]. If more loci are better,

as previous work has alluded to [12,18], how many loci are needed

and how many base pairs from each locus? Until an analytical

solution to this question is developed, simulated data can provide

insights into whether, given a fixed amount of sequencing effort, it

is preferable to increase the number of loci or the sequence length

of individual loci. Theory suggests that the number of in-

dependently segregating loci is crucial to the accurate estimation

of the population genetic parameter h (4Nem) [14,17], which is

usually interpreted as a scaled measure of the neutral mutation

rate per site or as the proportion of polymorphic sites in a

population [19].

Our primary motivation was to investigate the accuracy and

precision of estimates of h, using a coalescent-based analytical

method, across simulated datasets which vary in both the number

of loci and the total number of base pairs sequenced per individual

(e.g. 10 kb sequence/individual at one locus or distributed evenly

among 10 loci). Whereas previous work in this area has focused

primarily on making theoretical predictions of optimal sampling

strategies [14,17], our work uses extensive data simulations, over

a broad range of both number of loci sampled and total sequence

length sampled, to explore the validity of those predictions.
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MATERIALS AND METHODS

Simulated Data
For three different per-site values of h (0.1, 0.01, 0.001), we

simulated DNA sequence data using Treevolve version 1.3 [20]

according to scenarios that varied in both total amount of

sequence per individual, as well as in the number of loci.

Treevolve simulates DNA sequence evolution under a coalescent

model. Although Treevolve can simulate sequences under a variety

of population dynamic models, our data were simulated under a

simple model with no selection, no intra-locus recombination, no

population subdivision, and no migration. A population sample

size of 10, which corresponds to phased nuclear haplotype data

from five diploid individuals, was used in all simulations. We

adjusted the Treevolve input parameters as follows: sequence

length (varied according to scenario, see Table 1); mutation rate

(161026 for h = 0.1; 161027 for h = 0.01, 0.001); number of loci

sampled per individual (varied according to scenario, see Table 1);

ploidy (haploid); generation time/variance in offspring number

(1.0, corresponds to Wright-Fisher reproduction of non-

overlapping generations and sampling with replacement); length

of period (161012 upper limit on coalescent time, our value

ensures all simulated sequences coalesce); population size (25000

for h = 0.1, 0.01; 2500 for h = 0.001); subdivision (1, corresponds

to no population subdivision); and recombination (0.0). Sequences

were simulated under the Felsenstein ’84 [21] model of sequence

evolution, with a transition/transversion ratio of 2.0 to model

a moderate transition bias.

By manipulating the user-defined mutation rate and population

size, we were able to simulate sequences under known values of h.

With h = 0.1 (m = 161026, Ne = 25000), we first simulated 100

replicate datasets, each containing 10 single-locus DNA sequences

0.5 kb in length. Keeping h = 0.1, we then simulated 100 more

datasets that differed from the first datasets only in the length of

each DNA sequence, which was increased to 1 kb. Next, 100

datasets were generated that contained DNA sequences from two

unlinked loci, each 0.5 kb in length, sampled from 10 individuals.

In these datasets the amount of DNA sequence per individual was

equal to the previous datasets (1 kb), but was partitioned into two

independent (i.e. no intra-genic recombination, but free inter-

genic recombination) loci instead of being sampled from a single

locus. In this way, we generated 100 replicates of datasets which

varied in total DNA sequence length per individual from 0.5 kb to

100 kb, and the number of equal-length loci from which the

sequences were sampled: 1 to 100 (15 total datasets, Table 1). We

repeated the simulations with h = 0.01 (m = 161027, Ne = 25000;

Table 1). The same 15 scenarios, plus three additional ones (25 kb

per individual divided among five equal length loci, 50 kb among

10 loci, 100 kb among 20 loci), were simulated with h = 0.001

(m = 161027, Ne = 2500; Table 1). Output files were manipulated

into the input format required by MIGRATE (see below) using a Perl

script we wrote. We chose the values of h to span the extremes of

variation observed in natural populations [22–25]. Simulated

datasets and the Perl scripts are available from the corresponding

author.

Calculations and Analyses
A number of software packages and analytical methods are

available for estimating h, such as such as SITES [13], Arlequin

[26], GeneTree [27], and BEAST [28]. Because methods that

incorporate phylogenetic structure into the parameter estimation

procedure have been demonstrated to have less bias [1,29,30], we

calculated h using the coalescent framework implemented in

MIGRATE version 1.7.5 [31], but our results should be applicable to

other methods of h estimation. Using Markov chain Monte Carlo

(MCMC) methods to approximate the likelihood distribution,

MIGRATE calculates maximum likelihood estimates of population

parameters under a coalescent framework. After discarding the

first 10000 genealogies in each chain as ‘‘burn-in’’, we sampled

every 20 genealogies for both the 10 short chains (1000 total

genealogies sampled), and the three long chains (10000 total

genealogies sampled). We set the transition/transversion ratio at

2.0; other parameters were left at their default settings.

To test for bias in the parameter estimates we investigated

whether any mean value of h differed from the mean values for

other scenarios within a given simulated value of h. Statistical

analyses were performed using SAS version 9.0 (SAS Institute Inc.,

Cary, NC 2002). We used the Tukey multiple comparison

adjustment to test all pairwise combinations [32].

RESULTS

Number of loci
As predicted by theory [14,17] and demonstrated in previous

analyses of simulated data [31,33], estimates of h were greatly

improved by increasing the number of loci sequenced per

individual (Figure 1). The accuracy, measured as the square of

the mean estimate divided by the variance of the estimate,

increased proportionately with the number of sampled loci

(Figure 1A) and concomitantly, the square of the coefficient of

variation (standard deviation/mean) decreased considerably over

the same sampling regime (Figure 1B). For a given value of h,

sampling additional loci always increased the accuracy and

decreased the coefficient of variation (Table 1). Further, our

calculations of accuracy were largely congruent with theoretical

predictions of accuracy calculated using Felsenstein’s [17] modifi-

cation of formulas developed by Fu and Li [34]. Discrepancies

between our calculated accuracies and the predicted accuracy

values arose when MIGRATE produced biased estimates of h (see

below)

In terms of further decreasing the squared coefficient of

variation, little additional improvement was gained by sampling

more than 25 loci (Figure 1B). For example, when h = 0.01, the

total improvement in the coalescent estimate, measured by

subtracting the squared coefficient of variation for the 100 loci

scenario (0.00111) from the squared coefficient of variation for the

1 locus scenario (0.15965) was 0.15854. Roughly 81% of the

improvement was accounted for by increasing the number of loci

sampled from 1 to 5, and nearly 98% of the improvement could be

explained by increasing the number of sampled loci from 1 to 25;

adding the last 75 loci accounted for less than 3% of the total

improvement in the squared coefficient of variation. As in

accuracy (above), the decrease in the squared coefficients of

variation was as predicted by theory [17]. Similar results were

obtained when h = 0.1. Approximately 78% of the total improve-

ment could be explained by increasing the number of sampled loci

from 1 to 5 and nearly 97% was accounted for by increasing the

number of loci sampled from 1 to 25.

Although increasing the number of sampled loci improved

accuracy and decreased the squared coefficient of variation when

h = 0.001, the means of the estimates decreased (see below),

precluding calculations of the improvement gained by sampling

additional loci.

Number of base pairs per locus
In contrast to increasing the number of loci sampled, increasing

the length of sequence at a particular locus had relatively little

impact on improving the accuracy associated with estimating h,
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Table 1. Simulation conditions and summary statistics for è calculations.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Base pairs (kb)a Nb Mean SDc (CV)2d Accuracye Accuracyf Min. Max.

h = 0.1

0.5 1 0.10446 0.03430 0.10780 9.37032 8.19992 0.03355 0.18634

1 1 0.10340 0.03479 0.11322 8.92154 8.57662 0.03768 0.22603

1 2 0.09866 0.02533 0.06590 15.32828 16.39984 0.05461 0.18858

5 1 0.10230 0.03762 0.13522 7.47025 8.91112 0.04109 0.21550

5 5 0.09913 0.01573 0.02516 40.13992 42.88309 0.06993 0.13707

10 1 0.09740 0.03063 0.09888 10.21524 8.95528 0.03764 0.20748

10 2 0.09924 0.02048 0.04257 23.72742 17.82225 0.05205 0.14940

10 10 0.10206 0.01062 0.01082 93.32927 85.76617 0.07593 0.14100

10 20 0.09961 0.00753 0.00572 176.61691 163.99841 0.08268 0.11965

25 1 0.10388 0.03405 0.10745 9.40103 8.98205 0.05233 0.21848

25 25 0.10039 0.00682 0.00461 219.16537 214.41543 0.08455 0.11310

50 1 0.09952 0.03030 0.09268 10.89851 8.99101 0.04395 0.20070

50 50 0.10009 0.00459 0.00210 480.59756 428.83086 0.08838 0.11059

100 1 0.10217 0.03251 0.10127 9.97439 8.99550 0.05343 0.21563

100 100 0.10008 0.00309 0.00095 1062.89199 857.66172 0.09416 0.10920

h = 0.01

0.5 1 0.01024 0.00458 0.19997 5.05132 4.84114 0.00058 0.02244

1 1 0.01033 0.00413 0.15965 6.32706 6.18771 0.00291 0.02058

1 2 0.01032 0.00368 0.12740 7.92880 9.68229 0.00379 0.02041

5 1 0.00992 0.00346 0.12195 8.28258 8.19992 0.00429 0.02280

5 5 0.00981 0.00174 0.03132 32.24705 30.93857 0.00602 0.01647

10 1 0.01006 0.00326 0.10510 9.61111 8.57662 0.00349 0.02080

10 2 0.00990 0.00229 0.05356 18.85885 16.39984 0.00553 0.01643

10 10 0.01006 0.00116 0.01324 76.32032 61.87714 0.00749 0.01446

10 20 0.00983 0.00100 0.01029 98.19435 96.82290 0.00775 0.01220

25 1 0.01000 0.00295 0.08720 11.58395 8.82443 0.00414 0.01999

25 25 0.00998 0.00070 0.00489 206.70923 154.69285 0.00829 0.01165

50 1 0.01011 0.00361 0.12779 7.90437 8.91112 0.00406 0.02223

50 50 0.01003 0.00053 0.00284 355.14088 309.38570 0.00885 0.01179

100 1 0.01019 0.00319 0.09775 10.33373 8.95528 0.00396 0.02198

100 100 0.01009 0.00034 0.00111 911.30927 618.77140 0.00914 0.01088

h = 0.001

0.5 1 0.00099 0.00087 0.76699 1.31696 1.13326 0.00001 0.00360

1 1 0.00100 0.00068 0.47277 2.13656 1.92897 0.00002 0.00292

1 2 0.00084* 0.00073 0.75814 1.32443 2.26651 0.00001 0.00289

5 1 0.00099 0.00039 0.15853 6.37159 4.84114 0.00014 0.00200

5 5 0.0008* 0.00043 0.28908 3.45982 9.64484 0.00008 0.00185

10 1 0.00096 0.00038 0.15398 6.56014 6.18771 0.00021 0.00250

10 2 0.00099 0.00032 0.10329 9.77894 9.68229 0.00035 0.00190

10 10 0.00071* 0.00032 0.20148 5.07397 19.28968 0.00014 0.00145

10 20 0.00039* 0.00015 0.15354 6.70372 22.66511 0.00019 0.00113

25 1 0.00103 0.00036 0.11944 8.45688 7.55630 0.00034 0.00179

25 5 0.00100 0.00018 0.03099 32.59571 24.20572 0.00058 0.00149

25 25 0.00072* 0.00023 0.09932 10.12236 48.22421 0.00024 0.00131

50 1 0.00102 0.00033 0.10501 9.61915 8.19992 0.00035 0.00218

50 10 0.00099 0.00014 0.02117 47.71601 48.41145 0.00072 0.00138

50 50 0.00072* 0.00016 0.04798 20.77620 96.44841 0.00037 0.00107

100 1 0.00099 0.00030 0.09159 11.02908 8.57662 0.00047 0.00221

100 20 0.00101 0.00010 0.01026 98.40558 96.82290 0.00075 0.00131

100 100 0.00069* 0.00011 0.02685 37.32792 192.89683 0.00042 0.00100

aTotal number of base pairs sampled per individual
bN, number of equal length loci the sampled base pairs were partioned into
cSD, standard deviation
dCV, coefficient of variation = standard deviation/mean
eAccuracy = mean2/variance
fAccuracy = predicted value based on Felsenstein’s (2006) modification of Fu and Li’s (1993) estimator
*P,0.05, mean estimates of è are less than true value (0.001)
doi:10.1371/journal.pone.0000160.t001..
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except when the known value of h was small (Figure 2). Increasing

the length of sequence from 0.5 kb to 100 kb resulted in a total

improvement in the estimate accuracy of 5.2824, when h = 0.01,

which is less than 0.6% of the total improvement in accuracy

gained by increasing the number of 1 kb loci from one to 100.

More dramatically, when the known value of h was 0.001, point

estimates calculated from 1 kb of sequence from a single locus

were anywhere from 1.71 (min/0.0016100) to 291.3% (max/

0.0016100) of the actual value (Table 1). These results demons-

trate that parameter estimates based on single-locus population

genetic data have large deviations regardless of sequence length or

true value of the parameter of interest.

Figure 1. Influence of increasing the number of loci sampled per individual on the coalescent estimates of h (0.1, 0.01, 0.001): (A) improvement in
accuracy (mean2/variance), loci sampled are 1 kb in length; (B) improvement in squared coefficient of variation ((standard deviation/mean)2), loci
sampled are 1 kb in length; (C) accuracy, loci sampled are 5 kb in length, h = 0.001 (see text); (D) squared coefficient of variation, loci are 5 kb in
length (see text).
doi:10.1371/journal.pone.0000160.g001

Figure 2. Influence on increasing the sequence length of a single sampled locus on (A) accuracy (mean2/variance) of the coalescent estimates of h
(0.1, 0.01, 0.001); (B) squared coefficient of variation ((standard deviation/mean)2).
doi:10.1371/journal.pone.0000160.g002
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On average, across 100 replicate datasets, MIGRATE performed

well at recovering the known value of h (Table 1). However,

MIGRATE produced biased estimates of h when the known

parameter value was small (0.001). The mean values of h under

some scenarios were significantly less than the true value of 0.001

(one-way ANOVA, P,0.05, Table 1). The downward bias

resulted from the lack of information (i.e. polymorphic sites)

available when the known value of h was small (0.001 here),

especially when the length of the sequence was less than 1 kb.

With little information at each locus, the likelihood surfaces were

very flat, leading to poor estimates of h [31]. We addressed this

problem by increasing the per-locus sequence length to 5 kb

(Figures 1C and 1D), such that we generated additional datasets,

which had 25 kb of sequence divided among five loci of 5 kb each,

50 kb divided equally among 10 loci, and 100 kb divided equally

among 20 loci. Increasing the per-locus sequence length eliminated

the downward bias (Table 1), and also increased the accuracy of the

parameter calculations when compared to the values obtained for

shorter sequence lengths (contrast Figures 1A and 1B with Figures 1C

and 1D). Since the simulations were not extended to include datasets

containing 50 and 100 loci, each 5 kb in length for h = 0.001, we did

not investigate the improvement gained by adding loci.

DISCUSSION
Our simulations demonstrated clearly the utility of multi-locus

datasets in estimating population genetic parameters under

a coalescent framework, validating a key component of theoretical

investigations of optimal sampling strategies [14,17]. An important

consideration is that there are two sources of error that contribute

to the variance in coalescent-based parameter estimates, error

associated with calculating the probability of the genealogy and

error associated with calculating the probability of the coalescent.

MIGRATE and other coalescent-based software packages attempt to

marginalize the effects of the genealogical error.

The number of loci is crucial to reducing the coefficient of

variation, even more so than increasing the length of the sequence

at any one locus (Figures 1, 2). In our data, the most reliable way

to reduce the variation in the parameter estimates was to increase

the number of loci sequenced per individual. Previous work has

mentioned this issue [e.g. 11], but our results provide additional

insights into how the precision of parameter estimation varies with

the amount of genetic information available.

Other investigations into the optimal sampling strategy for

coalescent-based estimates of population genetic parameters have

used a fixed-cost approach [14,17]. In general, they sought to

identify the ratio of individuals, number of loci, and per-locus

sequence length that would maximize the accuracy of the estimate.

Since they operated under a fixed-cost model, there are trade-offs;

for example, an increase in the number of individuals sampled

necessitated a decrease the in the number of loci sampled. One

important conclusion of the pioneering theoretical work by

Pluzhnikov and Donnelly [14] was that to increase precision one

should always choose to move to an independent region rather

than extend the length of the current region. Felsenstein [17] came

to similar conclusions, and described the optimal sampling strategy

under a cost-per-base model as one in which large numbers of loci,

each a single base long, are employed. A more realistic cost-per-

read model still advocates a many-locus, few individual design,

a result supported by our simulations. However, our simulations

focus attention on an important caveat to the many-locus sampling

strategy – the loss of information at short loci (0.5 kb in our

simulations) when h is small (0.001 in our simulations).

Under small values of h (0.001 here), which are commonly

observed in empirical data [22,35–37], the paucity of informative

sites in short sequences may introduce a downward bias in the

estimates (Table 1). Examining the results from the simulated

datasets where the total sequence data from each individual was

10 kb reveals the magnitude of this problem. At large and

moderate values of h (0.1 and 0.01), the accuracy of the estimates

was highest when the 10 kb of sequence was partitioned into

20 loci, each 0.5 kb in length (Table 1). In contrast, the most

accurate sampling strategy when h = 0.001 was to sample only two

loci, each 5 kb in length (Table 1). Further, when h was 0.001, the

mean value of the estimates was 0.00039 when the data were

partitioned into 20 equal-length loci. This low estimate represents

a statistically significant reduction of ,60% from the known value

(Table 1). Note that theoretical predictions encourage sampling

more loci even at small values of h; a 20 loci sampling strategy

produced the highest predicted accuracy for each value of h when

each individual was sequenced at 10 kb. At our smallest simulated

value of h (0.001), the mean estimates of seven of the 18 datasets

were significantly smaller than the known value, a potential

problem with the ‘‘more loci, shorter sequence’’ sample design.

The sampling scenarios that resulted in a biased estimate of h were

the same scenarios for which our calculated accuracy values differ

greatly from the predicted values (Table 1). The predicted values

are based on an unbiased coalescent estimator, which our data

suggest is not the case when h was small. The downward bias in

the coalescent estimates likely accounts for the differences between

our calculated accuracies and the predicted values. Increasing the

sequence length at each particular locus may alleviate the

problem. In our simulations, none of the datasets that contained

loci 5 kb in length or longer showed the downward bias (Table 1).

Further work is needed to investigate the minimum amount of

sequence data per locus required to ameliorate the problem. The

problem of a downward bias is well documented [17,31], but it has

not been emphasized in previous work of optimal sampling

strategies. The results of our study underscore the need to consider

both the per locus sequence length and number of sampled loci.

Accurate estimation of h required data from at least 25

independently evolving loci. Beyond this, there was little added

benefit in terms of decreasing the squared coefficient of variation of

the coalescent estimates relative to the extra effort required to sample

more loci. Interestingly, a recent paper concluded that to accurately

recover phylogenetic relationships with maximum support, research-

ers should use at least 20 genes [38], suggesting that 20 loci will not

only provide a robust estimate of population genetic parameters, but

also of phylogeny. While sampling 25 loci will increase the statistical

confidence in population genetic parameters, researchers interested

in comparing parameter estimates between taxa should remain

cautious in attributing biological significance to statistical differences

[39]. These differences might be small enough to render any

corresponding biological differences irrelevant.

Our analyses were based on a large, panmictic population at

equilibrium, and without recombination or selection. Application

of our results to empirical data must be considered in light of the

restrictive assumptions under which the data were simulated.

Multi-locus empirical datasets have many more sources of

variation that would elevate the number of loci needed to estimate

h accurately. Another important source of variation not considered

here were the theoretical limits of current coalescent methods to

correctly infer population processes [40].

The calculations based on the simulated datasets were focused

on generating average, multi-locus estimates of h. Evolutionary

forces (e.g. different mutation rates, levels of selection) whose

impacts are heterogeneous across the genome further complicate

the interpretation of empirical estimates of h measured from loci

distributed across the genome [41,42]. For example, genetic
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diversity and recombination are positively correlated; genomic

regions with high rates of recombination often show high

nucleotide diversity [43–45] and vice-versa [46,47], where

selection typically reduces variation. Therefore, differences in

genome-wide recombination rates [48,49] could inflate levels of

variation at some loci, beyond what might be expected for

neutrally evolving loci as were sampled in our simulations.
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