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Abstract

Background: Deep sequencing techniques provide a remarkable opportunity for comprehensive understanding of
tumorigenesis at the molecular level. As omics studies become popular, integrative approaches need to be developed to
move from a simple cataloguing of mutations and changes in gene expression to dissecting the molecular nature of
carcinogenesis at the systemic level and understanding the complex networks that lead to cancer development.

Results: Here, we describe a high-throughput, multi-dimensional sequencing study of primary lung adenocarcinoma tumors
and adjacent normal tissues of six Korean female never-smoker patients. Our data encompass results from exome-seq, RNA-
seq, small RNA-seq, and MeDIP-seq. We identified and validated novel genetic aberrations, including 47 somatic mutations
and 19 fusion transcripts. One of the fusions involves the c-RET gene, which was recently reported to form fusion genes that
may function as drivers of carcinogenesis in lung cancer patients. We also characterized gene expression profiles, which we
integrated with genomic aberrations and gene regulations into functional networks. The most prominent gene network
module that emerged indicates that disturbances in G2/M transition and mitotic progression are causally linked to
tumorigenesis in these patients. Also, results from the analysis strongly suggest that several novel microRNA-target
interactions represent key regulatory elements of the gene network.

Conclusions: Our study not only provides an overview of the alterations occurring in lung adenocarcinoma at multiple
levels from genome to transcriptome and epigenome, but also offers a model for integrative genomics analysis and
proposes potential target pathways for the control of lung adenocarcinoma.
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Introduction

Recent advances in DNA sequencing technology have revolu-

tionized genomics and biomedical research, especially in the field

of cancer research [1]. Various types of mutations as well as large

scale chromosomal aberrations are being reported and cataloged,

and the rate of data accumulation will likely accelerate for the

foreseeable future. This should certainly apply to lung cancer

which is currently the second most common cancer and the

primary cause of mortality among cancer-related death in the

United States [2].

The first complete sequence of a lung adenocarcinoma genome

revealed about 50 000 single nucleotide variations in the tumor

relative to normal lung [3]. This was followed by the sequencing

study of a small-cell lung cancer genome which highlighted the

role of tobacco carcinogens such as polycyclic aromatic hydro-

carbons in shaping mutational patterns in lung cancers from

smokers [4]. Transcriptome analysis of multiple lung adenocarci-
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noma patients using next-generation sequencing (NGS) recently

showed the existence of a fusion gene containing the tyrosine

kinase domain of the c-RET oncogene in 1%–2% of patients; this

fusion leads to aberrant activation of RET kinase and is considered

to be a new driver mutation of lung adenocarcinoma [5]. This

finding was further confirmed through an independent study using

a combination of targeted sequencing with an integrated

molecular- and histopathology-based screening system [6]. Given

that patients with c-RET fusions do not harbor mutations or

fusions in EGFR, KRAS or ALK oncogenes, it is likely that c-RET

fusion genes represent lung adenocarcinoma drivers and will lead

to the definition of a new subclass of lung cancer [5].

Identifying mutations with high probabilities of being ‘drivers’,

mutations that confer genes with oncogenic activity, is clearly a

prototypical and certainly already a productive application of

NGS, but the greater challenge is moving beyond the simple

cataloging of mutations and establishing means for integrating

diverse high-throughput data generated by NGS [7] to understand

cancer at the multiple levels of gene networks and signaling

pathways [8]. In this report, we describe a high-dimensional, high-

throughput sequencing study of primary lung tumors and matched

Figure 1. Circos plot of somatic mutations, copy number variations, transcriptome expression, and structural variations. From inside
to out, structural variations (purple and orange), copy number variations (gain in dark red, loss in dark blue, mRNA expression (up in gold, down in
olive), differentially expressed microRNAs (up in red, down in green), DNA methylation with sky-blue background (up in dark orange, down in
chartreuse), somatic mutations with a gene symbols, and chromosomal cytobands.
doi:10.1371/journal.pone.0055596.g001
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normal tissues isolated from 6 Korean female never-smoker

patients with non-small cell lung cancer (NSCLC). This is the first

multi-dimensional study of NSCLC that covers the exome-seq,

RNA-seq, small RNA-seq, and methylated DNA immunoprecip-

itation-sequencing (MeDIP-seq). To complement the NGS data

and obtain a full picture of sequence and structural variation, we

also performed microarray-based gene expression profiling and

array comparative genomic hybridization (array-CGH) study for

DNA copy number variations (CNVs). Our study represents the

simultaneous probing of the genome, transcriptome, and epigen-

ome of biological samples revealing the full spectrum of cancer-

associated alterations, including structural and genetic variations

as well as changes in gene expression and epigenetic regulation.

More importantly, we describe integrative analyses that entail the

combination of the different types of omic data obtained in this

study and that identify key regulators of NSCLC and elucidate

relevant cellular processes at the systems level. Our findings show

that the gene network modules that are highly relevant to the

development of cancer, including those that govern progression

through mitosis, are consistently disturbed in these NSCLC

patients. We also report that multiple microRNAs are consistently

inversely correlated with the predicted and validated target genes

within these modules and throughout the whole network,

indicating that microRNAs might be key regulatory agents of

NSCLC development.

Results

Multi-omic Data Description
To understand the genomic, transcriptomic and epigenomic

changes in NSCLC, we performed high-throughput sequencing

experiments for exome, transcriptome, and methylome on

matched normal and tumor samples of 6 female non-smoker

patients (see Figure S1 in File S8; data summary, experimental

procedures are provided in the File S8; detailed sample/patient

descriptions are provided in Table S1 in File S8 and File S1). CNV

data were obtained from array-CGH assays. The genomic

landscape of all NSCLC samples analyzed is visualized as a

Circos plot of somatic mutations, transcriptome expression, CNVs,

and structural variations_ENREF_6 (Figure 1; see Table S2 in File

S8 for summary statistics of the exome data and Figure S2 in File

S8 for Circos plots for individual patients) [9]. Experimental raw

data and processed results are deposited in GEO (GSE37765) and

SRA (SRA051952) databases. Raw additional data and informa-

tion are also available at http://www.lungcancer.or.kr.

NSCLC Somatic Mutations from Exome Sequencing Data
In our case, mutation calling by conventional programs such as

Varscan (version 1.0) [10] did not show satisfactory performance,

which was most likely due to the problem of normal cell

contamination or heterogeneity of cancer cells. We therefore used

the JointSNVmix program instead, to take advantage of the paired

nature of samples (tumour and adjacent normal material) [11].

After validation by Sanger sequencing, we identified 47 somatic

mutations that included 37 missense, 2 nonsense, and 7 silent

mutations; there was also 1 mutation in the 39 UTR (see Figure S3

in File S8). For several ambiguous cases, we subcloned PCR

products and sequenced individual plasmid clones to confirm the

mutation calls. Analyses of the validation process indicated that

stringent criteria are required for the reliable prediction of somatic

mutations if bulk clinical samples are used, as they were in our

study. Cases with a predicted probability of over 0.999 often

turned out to be false (45 positives and 55 negatives out of the 103

cases tested; PCR amplification failed in 3 cases). It should

nevertheless be noted that some of these ‘false-positive’ somatic

mutations may have occurred in a minority of tumor cells and are

in fact positive, and newly discovered mutations in the future

should be examined (e.g. for recurrence) with respect to all

available raw data rather than just those confirmed by Sanger

sequencing.

All confirmed mutations except for one were homozygous in the

normal tissue. None of the somatic mutations identified in this

study were identical to those reported in previous studies. In fact,

none of the mutated genes isolated in this study except for CELF4

(G86C/S29T in the COSMIC database; G86A/S29N in patient

3) have been reported to be mutated in other studies or in the

COSMIC database. A complete list of mutations is provided in

Table S3 in File S8, and a summary of gene functions is provided

in File S6. It should be noted that several genes identified are

known to have functions that might be relevant to cancer

development: BAZ1B regulates the DNA-damage response by

phosphorylating the histone H2A.X; POLN is a DNA polymerase

that performs translesion synthesis in response to DNA damage;

and FBOX11, a component of the Skp1-Cullin1-F-box (SCF)

complex, promotes neddylation of p53 and inhibits its transcrip-

tional activity.

Differentially Expressed genes and Isoforms from RNA-
Seq Data

We used the Bowtie and NEUMA applications for the mapping

and quantification of RNA-Seq data, respectively [12,13] (see

Table S4 in File S8 for RNA-Seq data mapping summary).

NEUMA, our in-house developed software (accessible at http://

neuma.kobic.re.kr/), provides a highly accurate estimation of

transcript abundance both at the gene and individual splice

variant (isoform) levels using an algorithm that mimics the real-

time PCR process.

Determining differentially expressed genes (DEGs) and differ-

entially expressed isoforms (DEIs) from RNA-Seq data was

performed using the edgeR program, which supports the analysis

of paired samples. A rigorous filtering procedure based on false

discovery rates, minimum applicable patient numbers, and gene

expression levels was devised to select reliable sets of DEGs and

DEIs (see File S8 for details). For the final result, we obtained 1459

DEGs (543 upregulated and 916 downregulated) and 1320 DEIs

(460 upregulated and 860 downregulated) in tumors when

compared with normal tissues (see Table S5 in File S8). Imposing

additional requirement of a minimum two-fold change yielded 387

DEGs (98 upregulated and 289 downregulated in tumors). The

detailed procedure of the RNA-Seq analysis is described in the File

S8, and the list of DEGs is provided in File S2.

Identification of Fusion Transcripts from RNA-Seq Data
We used FusionMap [14] and an in-house developed application,

FusionScan, to predict fusion transcripts from RNA-Seq data. These

two programs require the fusion boundary to be found inside one

of the sequence reads, even in the case of paired-end data. The

likelihood of missing fusion transcripts due to this requirement

should be minimal since our RNA-Seq data have a high

sequencing coverage (32.7X on average after mapping) and long

read length (78 bp on average). Given that the two applications

produced an overwhelmingly large number of candidates, we

further filtered the initial output candidates by manual inspection

of alignment against the hypothetical fusion transcripts. All

candidate transcripts were examined for coherency of the 59–39

direction between the two fusion partner transcripts and strict

adherence to the established wild-type exon-intron boundaries.

Experimental validation was carried out by RT-PCR and Sanger

Multi-Omics Deep-Sequencing Study of NSCLC
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sequencing. In total, we confirmed 19 fusion transcripts from 5 out

of 6 patients as summarily presented in Table 1, including the

MARK4-ERCC2 gene fusion shown in detail as an example (see

Figure 2 and Table S6 in File S8).

Most of the validated fusion transcripts were intra-chromosomal

(15 out of 19) and presented tumor-specific events (16 out of 19;

Table 1); the others were found in both tumor and normal cells.

This finding implies that at least a subset of fusion transcripts likely

arose from intra-chromosomal events such as copy number

changes specific to cancer cells. Indeed, the fusion case of

MARK4-ERCC2 showed the tumor-specific CNVs at the fusion

points in the array-CGH data (Figure 2D). In-depth array-CGH

Figure 2. MARK4-ERCC2 fusion transcript. (a) Allignment of sequence reads of fusion transcripts. The extent of the assembled fusion transcript
appears at the top and reads are shows below it. The vertical line indicates the fusion point. The sequence to the left matches the 39 end of exon 7 of
MARK4, and the sequence to the right matches the 59 end of exon 18 of ERCC2. (b) cDNA samples taken from tumor (T) and adjacent normal (N) tissue
of patient 3 were used to confirm the presence of the MARK4-ERCC2 fusion transcript by RT-PCR only in the tumor sample. ACTB was used as the
internal control. (c) Schematic diagram of the predicted fusion protein along with domains having a defined function. The fusion protein is predicted
to contain a part of the MARK4 kinase domain and most of the C-terminal helicase domain of ERCC2. (d) Array-CGH profiles are shown for the MARK4-
ERCC2 intrachromosomal fusion. Note that the copy number variation is seen only in the tumor tissue but in not normal tissue. Vertical lines represent
fusion points.
doi:10.1371/journal.pone.0055596.g002
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analyses revealed 7 additional fusion events with strong association

with DNA copy number changes (Table 1). Two fusions (RHPN2-

PEPD and SIRT2-NPHS1) were observed in chromosome 19 of

patient 1, and five cases were observed in chromosome 8 of patient

3 (PTK2-FAM84B, COX6C-LAPTM4B, STK3-PTK2, PKHD1L1-

MATN2, NDUFB9-PGCP). Patient 3 harbored 7 fusion events in

total two of which involved PTK2, also known as Focal Adhesion

Kinase, a kinase with multiple functions including regulation of

cell locomotion, survival and mitogen response [15]. In one

patient (#6), all 3 fusions were detected in both normal and tumor

samples, which suggests that these fusions are likely germline

mutations. Of the 19 fusion events, 8 yielded in-frame gene fusions

that potentially created proteins with novel functions.

Several of the gene fusion events could have an impact on

cancer development and could potentially be driver mutations. For

example, ERCC2 is involved in transcription-coupled DNA repair,

and the tyrosine phosphatase PTPN12 is known to dephosphor-

ylate and thereby inactivate the proto-oncogene c-ABL [16].

Perhaps most notably, one of the fusions involves CCDC6 and c-

RET kinase, which is seen frequently in papillary thyroid

carcinoma [17]. Preliminary structural analysis shows that the c-

RET kinase domain is intact, raising the strong possibility that this

fusion is a so-called ‘driver’ mutation of NSCLC. Recent

publications have reported fusion events of c-RET kinase with

KIF5B as well as with CCDC6 [5,6,18]. Finally, none of the

identified fusions were found recurrently in our 6 patients,

suggesting that a larger number of patients must be examined

before the full significance of these fusion events can be evaluated.

Functional Interpretation of Somatic Mutations, DEGs,
and Fusion Events

Although most of the somatic mutations and gene fusions are

probably ‘passenger’ mutations, we cannot rule any of them out a

priori as drivers of carcinogenesis. To facilitate the process of

isolating functional DEGs and significant mutations, we performed

a gene set analysis (GSA) and network analysis for 1536 genes,

including the 47 genes that we found to have somatic mutations,

the 37 genes involved in fusion, and the 1459 DEGs, some of

which belong to more than one category.

A GSA, which tests the statistical enrichment or depletion of

specific annotation terms, provides a comprehensive functional

summary for genes in the list. We used the Ingenuity Pathway

Analysis (IPA) software, which uses a database of evidence

manually compiled from the literature. The most enriched term

in the diseases and disorders category was cancer (p value = 2.13E-

42), which supports the validity of our gene set. Other relevant

terms in the molecular and cellular functions category included

cellular growth and proliferation (p value = 1.71E-17) and cell

death (p value = 1.97E-17). The IPA results are presented in

Figure S9 in File S8. Gene ontology (GO) analysis produced

similar results to IPA, albeit in a less comprehensive manner (data

not shown).

We sought to gain further mechanistic and functional insights

about the genes of interest using a network-based analysis. Protein-

protein interaction data from the MIMI database was superim-

posed onto our gene list. The overall network thus obtained

(Figure S10 in File S8) is complex but reveals a number of

interesting interactions that may be connected to tumorigenesis.

To identify network modules of coherent function, we used the

Table 1. List of experimentally confirmed fusion genes.

Fusion Gene1 Head Gene
Head Gene
Location Tail Gene

Tail Gene
Location Sample N/T2 Method3 CN4

RHPN2-PEPD* RHPN2 19q13.11 PEPD 19q13.11 P1T T B 3

SIRT2-NPHS1* SIRT2 19q13 NPHS1 19q13.1 P1T T S 3

COX6C-LAPTM4B COX6C 8q22.2 LAPTM4B 8q22.1 P3T T B 3

MARK4-ERCC2* MARK4 19q13.3 ERCC2 19q13.3 P3T T M 3

NDUFB9-PGCP NDUFB9 8q13.3 PGCP 8q22.2 P3T T B 3

SLC6A9-MORN1 SLC6A9 1p33 MORN1 1p36.33 P3T T B

STK3-PTK2 STK3 8q22.2 PTK2 8q24.3 P3T T B 3

PTK2-FAM84B PTK2 8q24.3 FAM84B 8q24.21 P3T T B 3

PKHD1L1-MATN2 PKHD1L1 8q23 MATN2 8q22 P3T T B 3

MKL1-NIPA1 MKL1 22q13 NIPA1 15q11.2 P4T T B

HSPG2-TMCO4 HSPG2 1p36.1 TMCO4 1p36.13 P4T T B

NIPAL3-ATAD3B* NIPAL3 1p36.12 ATAD3B 1p36.33 P4T T S

UBFD1-CDH11* UBFD1 16p12 CDH11 16q21 P4T T S

SLC7A6-LRRC36 SLC7A6 16q22.1 LRRC36 16q22.1 P4T T S

KDM6A-WSB1 KDM6A Xp11.2 WSB1 17q11.1 P6T N,T M

EIF1AX-PDE4DIP EIF1AX Xp22.12 PDE4DIP 1q12 P6T N,T S

GRHL2-PTPN12* GRHL2 8q22.3 PTPN12 7q11.23 P6T N,T S

CCDC6-RET* CCDC6 10q21 RET 10q11.2 P8T T B

GLE1-CCBL1* GLE1 9q34.11 CCBL1 9q34.11 P8T T B

1In-frame fusions are indicated with an asterisk.
2N/T specifies the tissue type where fusion was detected (normal or tumor).
3Method: S = FusionScan only, M = FusionMap only, B = both S and M.
4CN: Supported by copy number variation (array-CGH) data.
doi:10.1371/journal.pone.0055596.t001
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MCODE application to find densely connected network compo-

nents [19]. We found 8 network modules consisting of 66 genes in

total (Figure S11 in File S8). Most genes in each network module

showed expression changes in the same direction, suggesting a

coherent and coordinated function in carcinogenesis as a gene

network module. The largest network module features genes

involved in mitotic cell-cycle regulation. In fact, this network

module contains several key genes such as AURKB, PLK1, CCNE1,

CCNB2, CHEK1, and PKMYT1, which are involved in the G2/M

transition and/or M-phase progression [20,21,22]. All the genes

within the cell-cycle regulation module were significantly upregu-

lated (see below).

MicroRNA Analysis from Small RNA-Seq Data
Multiple studies have demonstrated that microRNAs could

serve as viable tumor biomarkers and potential therapeutic targets

or tools [23]. The computational pipeline for analyzing small

RNA-Seq data (i.e., mapping, normalization, quantification, and

identification of differentially expressed microRNAs) is illustrated

in Figure S4 in File S8. On average, 70% and 76% of the total

reads from small RNA-seq experiments were identified and

mapped as microRNAs for normal and tumor tissues, respectively

(see Table S7 in File S8).

Differentially expressed microRNAs (DEmiRs) were obtained

using a process similar to that used to obtain DEGs. We limited

the analysis to a subset of microRNAs belonging to the upper 25%

in expression levels in at least one of the 12 samples. Other filtering

conditions, such as fold change, were maintained. In total, we

obtained 40 DEmiRs (23 up- and 17 downregulated in tumors

compared to adjacent normal material; Table S8 in File S8 and

File S3).

An inverse correlation in expression levels within a validated or

predicted microRNA-mRNA pair provides strong evidence for an

extant microRNA-target relationship in the biological context

under examination. A search for inverse correlations between

DEmiRs and DEGs yielded 151 relations (14 validated and 137

predicted) with a Pearson correlation cutoff of 20.5 and a p-value

cutoff of 0.05 (see Table S9 and Figure S6 in File S8). Expanding

the search scope beyond DEmiRs to identify other microRNAs of

potential functional importance, we found 13 additional micro-

RNAs with at least a two-fold change in expression between

normal and tumor samples involved in 53 validated inverse

correlations with DEGs. We did not use the predicted targets in

this case, in order to avoid the inclusion of false positives. Overall,

we identified 40 DEmiRs and 13 additional microRNAs that may

play important roles in lung cancer development.

The MA-plot (logConcentration vs. logFoldChange) shows

abundance and changes in expression and is thus an effective

method for assessing the significance of potential biomarkers (see

Figure 3 for the MA-plot of 40 DEmiRs and 13 additional

microRNAs). Notably, the DEmiRs from a single genomic locus of

chr7q32.2 (miR-96, miR-182, miR-183, and miR-183*) found

Figure 3. Differential expression of microRNAs. Fold change versus expression level is shown in the MA-plot of DEmiRs and anti-correlated
microRNAs. MicroRNAs from the same genomic locus are shown with the same color and symbol (e.g., 96, 182, 183). MicroRNAs inversely correlated
with DEGs are indicated with a black circle. Fold changes in log2 (tumor/normal) and expression magnitude in Klog2 (tumor 6 normal) are the
average values over six patients. Inset figures show subsets of microRNA-centric relationships with targets potentially involved in carcinogenesis.
Relevant microRNAs are indicated by background orange and blue ovals within the plot. Only the validated targets are shown for simplicity. Changes
in expression levels are indicated via node color.
doi:10.1371/journal.pone.0055596.g003
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upregulated in our study have also been previously reported as

potential biomarkers for NSCLC [24]. By contrast, miR-144,

miR-144* and miR-451 (all from chr17q11.2 locus) form a cluster

of downregulated DEmiRs. Given that microRNAs derived from a

polycistronic transcript often target the same set of genes, the

change in expression of these microRNAs may have particularly

strong effects. Among the 13 additional ‘non-DEmiR’ micro-

RNAs, miR-21 (3.32 fold increase) and let-7b (2.20 fold decrease)

deserve special attention. The miR-21 and let-7 families have

previously been reported as oncomirs and tumor suppressors,

respectively [25,26]. Although neither family satisfied our stringent

criteria for DEmiRs, their expression levels were among the

highest, and their fold changes were statistically significant.

Analysis of CNV and DNA Methylation Data
Copy number data from Agilent 1M CNV microarrays were

analyzed using the within-slide lowess normalization and the

circular binary segmentation (CBS) method [27]. We detected

statistically significant somatic copy number alterations in tumor

with the threshold of CNV change beyond log2 (tumor/

normal) = 60.3 (corresponding to the range outside 1.62–2.46

copies). We found multiple significant copy number gains in

chromosomes 1, 5, 8, 16, 19, 20, and X, and copy number losses in

chromosomes 1, 6, 9, 16, 17, 18, 19, and 22 (see Figure S7 and S8

in File S8 for CNV plots; Table S10 in File S8 for statistics). The

genomic loci of copy number gains or losses in at least 3 patients

included 8q22–24, 16p13, and 20q13 for gains and 1p12–13 and

9p21 for losses (File S4).

Comparison with previous studies (Table S11 in File S8) showed

that our data agreed most closely with the Job et al. data that

profiled 60 adenocarcinoma samples of never-smokers [28]. The

genomic loci of 5p, 8q24, and 20q13 were repeatedly detected for

copy number gains, and 9p21 was consistently detected for loss in

copy numbers. Other markers may be never-smoker-female

specific, which need to be validated with additional patient

samples. Other chromosome-level events require further exami-

nation down the road. For example, the copy number gain in the

large chr8q region, which has already been reported as a smoking-

related biomarker for NSCLC patients [29], was detected in three

of our six patients. Preliminary analysis indicated that many genes

within this region were overexpressed in tumor samples (data not

shown) and were involved in gene fusion in one of the patients (see

Table 1).

DNA methylation patterns represent a potentially valuable

biomarker in various types of cancer. We analyzed the DNA

methylation data from MeDIP-seq using the Eland (version 2) and

edgeR programs (see Table S14 in File S8 for mapping statistics;

details in File S8). With conservative filtering options, we identified

558 differentially methylated regions (DMRs), almost 75% of

which were in the promoter or 59 UTR regions. The list of DMRs

with genome annotation (from the UCSC genome browser

database for hg19) is provided in File S5.

Copy number variations and DNA methylation are important

factors in regulating gene expression. We investigated the

correlation between CNV and mRNA expression in a similar

manner to that performed in the microRNAs-target correlation

study and obtained 107 positive correlations with a correlation

cutoff of 0.5 (Table S12 in File S8). Highly correlated genes

include several genes involved in gene fusion such as STK3,

NDUFB9, COX6C, FAM84B, and PTK2. The inverse correlation

analysis between mRNA expression and DNA methylation in

promoter regions yielded 32 relations whose correlation coeffi-

cients were smaller than 20.3 (Table S13 in File S8).

Pathway Modeling with Network Modules and
microRNAs

Several validated and predicted target genes of anti-correlated

microRNAs were DEGs that were found in gene network modules

using the MCODE clustering analysis described above. To obtain a

more comprehensive picture of the regulatory networks, we

integrated the 66 genes from MCODE clustering and microRNA-

target relations using the IPA systems knowledgebase. The

resulting gene network now incorporates the relevant microRNAs

and additional genes interacting with the 66 DEGs (Figure 4).

Genes were clustered initially into broad functional categories, and

the inverse correlations with microRNAs were superimposed.

Consistent with the initial clustering analysis, the cell-cycle cluster

labeled as ‘‘cell death, cell cycle, cancer’’ formed the most

comprehensive cluster. Furthermore, the sub-clustering analysis

shows that the mitosis module, subsumed within the cell-cycle

cluster, formed the most tightly organized gene network model

(Figure 4).

The integrated network presented in this study enables the

examination of gene- and microRNA-expression changes in

combination with the interactions among them. Several micro-

RNA-target relationships relevant to tumorigenesis are readily

observed within this network. As described above, let-7b shows

multiple functionally significant and inverse correlative interac-

tions with genes within the network. The expression of two genes

whose overexpression can drive tumorigenesis, AURKB and c-

RET, is inversely correlated to the reduced expression of let-7b

microRNA. AURKB (aurora kinase B) is the catalytic component

of the chromosomal passenger complex that is responsible for

chromatin condensation, bipolar spindle formation and attach-

ment of chromatin to the bipolar spindle [21]. AURKB is also a

DEG and a member of the network module described above

whose members regulate the progression through the M phase.

The c-RET receptor tyrosine kinase [17] has been found as a

fusion protein in which the kinase domain remains intact. An

overexpression of this fusion gene is therefore expected to have

oncogenic activity, as recent studies have consistently suggested4.

Two other cell cycle-related genes, NCAPG and UHRF1, are

targeted by let-7b. NCAPG, the subunit G of non-SMC condensin I

complex, which is required for conversion of interphase chromatin

into condensed mitotic chromatin [30], is targeted by both let-7a

and let-7b, exemplifying the regulation of a gene by multiple

members of a microRNA cluster. UHRF1, a RING-finger type E3

ubiquitin ligase, which plays a major role in G1/S transition [31],

is another target of let-7b. UHRF1 is also targeted by another

microRNA, miR-1, which also regulates CENPF, a protein

involved in kinetochore formation and chromosomal segregation.

Whether the convergence of regulatory inputs into the genes from

multiple microRNAs, as exemplified above, will lead to synergistic

effects in the regulation of the mRNA level and/or in carcino-

genesis remains an interesting question.

One of the most notable targets of the oncomir miR-21 is

RECK, a membrane-anchored glycoprotein that inhibits matrix

metalloproteinase-9. RECK, which is known to be strongly

downregulated in multiple tumors and in cell lines transformed

by oncogenes [32], is a predicted and inverse correlated target of

several microRNAs (miR-96, miR-182, and miR-135b) within our

network (Figure 4, Figure S6 in File S8). miR-96 and miR-182,

which are DEmiRs from a single cluster, along with miR-183,

have been proposed as RECK inhibitors, again exemplifying co-

targeting by members of a single polycistronic cluster. Another

microRNA-target relationship of significance involves MYBL2.

This proto-oncogene produces the B-myb transcription factor, a

well-known transcription factor with critical functions during G1/
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S and G2/M transitions. It is a validated target of miR-30a*,

miR30b* and 30C-2*, all of which are downregulated in tumors

consistent with upregulation of MYBL2.

Conclusions

In this study, we sought to define the nature of pathology at the

molecular and systemic level within tumor cells of NSCLC female

never-smoker patients, a group with few mutations known. Never-

smokers account for 20% of men and 50% of all women with lung

cancer and likely represent an etiologically distinct group from

smokers [33]. Activating mutations of the EGFR tyrosine kinase

are found at a far higher frequency among non-smokers, and

subsequently a correspondingly higher efficacy is seen with EGFR

tyrosine kinase inhibitors such as gefitinib and erlotinib in these

patients [34,35]. The Tumor Sequencing Project (TSP), which

used a conventional Sanger sequencing technique to examine the

coding exons of 623 candidate cancer genes in 188 lung

adenocarcinomas, revealed that smokers suffer mutations at rates

5- to 10-times higher than never-smokers [36]. Given that most

somatic mutations are expected to be ‘‘passengers,’’ the smaller

number of mutations among never-smoker patients offers the

possibility of more effectively isolating driver mutations.

We have identified and validated multiple point mutations and

gene fusion events from 6 patients. It should be noted that these

patients were negative mutations in KRAS and EGFR genes and

did not sustain a fusion between EML4 and ALK which are the

well-known transforming events of NSCLC. In fact, comparisons

with other gene expression profiling studies of NSCLC cases

indicate that the patient group tested in this study has acquired

patterns in gene expression distinct from NSCLC cases with KRAS,

EGFR or ALK mutations (File S7). A telling observation from our

study was that none of the mutations or fusion genes was found in

more than one patient. This strongly implies that for the large

Figure 4. NSCLC pathway modeling for female never-smokers. The pathway information was obtained from an Ingenuity Pathway Analysis
(IPA) using the 66 network module genes as an input list. The resulting genes were grouped into five functional categories as suggested by IPA.
Validated and predicted microRNA-target relations are shown in solid and dotted lines, respectively. Changes in expression levels are indicated via
node color (red for up-regulation and blue for down-regulation). For c-RET and PTK2, the+symbol was used to indicate that they are involved in gene
fusion event.
doi:10.1371/journal.pone.0055596.g004
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proportion of NSCLC cases negative for the established ‘driver’

mutations, the diversity or heterogeneity of mutations will likely

remain a challenge for isolating biomarkers or drivers even in

never-smokers. One of the most important goals for the future

should be to expand the number of patient samples for NGS

studies. This is critical for determining the recurrence and thereby

the significance of each of the genetic aberrations.

Other than the CCDC6-RET fusion, which is expected to

generate an oncogenic driver, it is difficult in most cases to predict

the function of a given mutation (i.e. gain in oncogenic activity or a

loss of tumor suppressor activity, or neither). This would be the

case even when some of the information is available for the gene

structure and function, unless an extensive characterization of the

gene activity is performed in vitro and in vivo. Although such an

analysis is obviously necessary, a different tactic based on

integration of multiple omic data that investigates the interplay

among genetic aberrations, transcripts, and regulatory factors in

tumor cells can provide valuable information, as demonstrated in

this study. Most importantly, we propose that the key cellular

malfunction during tumorigenesis in our sampled population

occurs in the control of the M-phase progression and that a set of

specific microRNAs may be a source of viable biomarkers and

functionally significant regulators of tumorigenesis. This will

however require examination of individual genes in the context

of lung cancer development as most of the genes promoting M-

phase progression appear to up-regulated in diverse types of

cancer as well according to our analysis on gene expression pattern

using the GENT database (http://medical-genome.kribb.re.kr/

GENT/; data not shown).

In summary, integrative data analyses, such as those performed

in this study, may be the only practically viable method for

handling the anticipated volume of data from NGS studies. As

more high-throughput data of multiple types from additional

tumor samples are combined with reference datasets and gene

networks, such as those reported here, the predictive power of

integrative analyses should become more evident.
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